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Summary. This article is the third part of a paper proving the funda-
mental Urysohn Theorem concerning the existence of a real valued continuous
function on a normal topological space. The paper is divided into two parts. In
the first part, we describe the construction of the function solving thesis of the
Urysohn Lemma. The second part contains the proof of the Urysohn Lemma in
normal space and the proof of the same theorem for compact space.

MML Identifier: URYSOHN3.

The notation and terminology used here have been introduced in the following

papers: [15], [10], [7], [8], [4], [1], [9], [6], [12], [16], [17], [13], [14], [2], [3], [11],

and [5].

Let D be a non empty subset of R. One can check that every element of D

is real.

One can prove the following proposition

(1) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A∩B = ∅. Let n be a natural number. Then there exists a function G from

dyadic(n) into 2the carrier of T such that for all elements r1, r2 of dyadic(n)

if r1 < r2, then G(r1) is open and G(r2) is open and G(r1) ⊆ G(r2) and

A ⊆ G(0) and B = ΩT \G(1).

Let T be a non empty topological space, let A, B be subsets of T , and let n be

a natural number. Let us assume that T is a T4 space and A 6= ∅ and A is closed

and B is closed and A ∩ B = ∅. A function from dyadic(n) into 2the carrier of T

is said to be a drizzle of A, B, n if it satisfies the condition (Def. 1).

(Def. 1) Let r1, r2 be elements of dyadic(n). Suppose r1 < r2. Then it(r1) is open

and it(r2) is open and it(r1) ⊆ it(r2) and A ⊆ it(0) and B = ΩT \ it(1).
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One can prove the following propositions:

(2) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩ B = ∅. Let n be a natural number and D be a drizzle of A, B, n.

Then A ⊆ D(0) and B = ΩT \D(1).

(3) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩ B = ∅. Let n be a natural number and G be a drizzle of A, B, n.

Then there exists a drizzle F of A, B, n + 1 such that for every element r

of dyadic(n + 1) if r ∈ dyadic(n), then F (r) = G(r).

Let A, B be non empty sets, let F be a function from N into A→̇B, and let

n be a natural number. Then F (n) is a partial function from A to B.

Next we state the proposition

(4) Let T be a non empty topological space, A, B be subsets of T , and

n be a natural number. Then every drizzle of A, B, n is an element of

DYADIC →̇2the carrier of T .

Let A, B be non empty sets, let F be a function from N into A→̇B, and let

n be a natural number. Then F (n) is an element of A→̇B.

One can prove the following proposition

(5) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed

and A ∩ B = ∅. Then there exists a sequence F of partial functions from

DYADIC into 2the carrier of T such that for every natural number n holds

F (n) is a drizzle of A, B, n and for every element r of domF (n) holds

F (n)(r) = F (n + 1)(r).

Let T be a non empty topological space and let A, B be subsets of T . Let

us assume that T is a T4 space and A 6= ∅ and A is closed and B is closed and

A∩B = ∅. A sequence of partial functions from DYADIC into 2the carrier of T is

said to be a rain of A, B if it satisfies the condition (Def. 2).

(Def. 2) Let n be a natural number. Then it(n) is a drizzle of A, B, n and for

every element r of dom it(n) holds it(n)(r) = it(n + 1)(r).

Let x be a real number. Let us assume that x ∈ DYADIC . The functor

InfDyadicx yields a natural number and is defined by:

(Def. 3) x ∈ dyadic(0) iff InfDyadicx = 0 and for every natural number n such

that x ∈ dyadic(n + 1) and x /∈ dyadic(n) holds InfDyadicx = n + 1.

The following propositions are true:

(6) For every real number x such that x ∈ DYADIC holds x ∈

dyadic(InfDyadicx).

(7) For every real number x such that x ∈ DYADIC and for every natural

number n such that InfDyadicx ¬ n holds x ∈ dyadic(n).
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(8) For every real number x such that x ∈ DYADIC and for every natural

number n such that x ∈ dyadic(n) holds InfDyadicx ¬ n.

(9) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed

and A ∩ B = ∅. Let G be a rain of A, B and x be a real number. If

x ∈ DYADIC, then for every natural number n holds G(InfDyadicx)(x) =

G(InfDyadicx + n)(x).

(10) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩ B = ∅. Let G be a rain of A, B and x be a real number. Suppose

x ∈ DYADIC . Then there exists an element y of 2the carrier of T such that

for every natural number n if x ∈ dyadic(n), then y = G(n)(x).

(11) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩B = ∅. Let G be a rain of A, B. Then there exists a function F from

DOM into 2the carrier of T such that for every real number x holds

(i) if x ∈ R<0, then F (x) = ∅,

(ii) if x ∈ R>1, then F (x) = the carrier of T , and

(iii) if x ∈ DYADIC, then for every natural number n such that x ∈

dyadic(n) holds F (x) = G(n)(x).

Let T be a non empty topological space and let A, B be subsets of T . Let

us assume that T is a T4 space and A 6= ∅ and A is closed and B is closed and

A∩B = ∅. Let R be a rain of A, B. The functor TempestR yielding a function

from DOM into 2the carrier of T is defined by the condition (Def. 4).

(Def. 4) Let x be a real number such that x ∈ DOM . Then

(i) if x ∈ R<0, then (TempestR)(x) = ∅,

(ii) if x ∈ R>1, then (TempestR)(x) = the carrier of T , and

(iii) if x ∈ DYADIC, then for every natural number n such that x ∈

dyadic(n) holds (TempestR)(x) = R(n)(x).

Let X be a non empty set, let T be a topological space, let F be a function

from X into 2the carrier of T , and let x be an element of X. Then F (x) is a subset

of T .

One can prove the following three propositions:

(12) Let T be a non empty topological space and A, B be subsets of T .

Suppose T is a T4 space and A 6= ∅ and A is closed and B is closed and

A ∩B = ∅. Let G be a rain of A, B and r be a real number. If r ∈ DOM,

then for every subset C of T such that C = (TempestG)(r) holds C is

open.

(13) Let T be a non empty topological space and A, B be subsets of T .

Suppose T is a T4 space and A 6= ∅ and A is closed and B is closed and

A ∩ B = ∅. Let G be a rain of A, B and r1, r2 be real numbers. Suppose
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r1 ∈ DOM and r2 ∈ DOM and r1 < r2. Let C be a subset of T . If

C = (TempestG)(r1), then C ⊆ (TempestG)(r2).

(14) Let T be a non empty topological space, A, B be subsets of T , G be a

rain of A, B, and p be a point of T . Then there exists a subset R of R such

that for every set x holds x ∈ R if and only if the following conditions are

satisfied:

(i) x ∈ DYADIC, and

(ii) for every real number s such that s = x holds p /∈ (TempestG)(s).

Let T be a non empty topological space, let A, B be subsets of T , let R be

a rain of A, B, and let p be a point of T . The functor Rainbow(p,R) yielding a

subset of R is defined by:

(Def. 5) For every set x holds x ∈ Rainbow(p,R) iff x ∈ DYADIC and for every

real number s such that s = x holds p /∈ (TempestR)(s).

Let T , S be non empty topological spaces, let F be a function from the

carrier of T into the carrier of S, and let p be a point of T . Then F (p) is a point

of S.

One can prove the following propositions:

(15) Let T be a non empty topological space, A, B be subsets of T , G be a

rain of A, B, and p be a point of T . Then Rainbow(p,G) ⊆ DYADIC .

(16) Let T be a non empty topological space, A, B be subsets of T , and R

be a rain of A, B. Then there exists a map F from T into R
1 such that

for every point p of T holds

if Rainbow(p,R) = ∅, then F (p) = 0 and for every non empty subset S of

R such that S = Rainbow(p, R) holds F (p) = supS.

Let T be a non empty topological space, let A, B be subsets of T , and let

R be a rain of A, B. The functor ThunderR yielding a map from T into R
1 is

defined by the condition (Def. 6).

(Def. 6) Let p be a point of T . Then if Rainbow(p,R) = ∅, then (ThunderR)(p) =

0 and for every non empty subset S of R such that S = Rainbow(p,R)

holds (ThunderR)(p) = supS.

Let T be a non empty topological space, let F be a map from T into R
1,

and let p be a point of T . Then F (p) is a real number.

One can prove the following propositions:

(17) Let T be a non empty topological space, A, B be subsets of T , G be a

rain of A, B, p be a point of T , and S be a non empty subset of R. Suppose

S = Rainbow(p,G). Let ℓ1 be an extended real number. If ℓ1 = 1, then

0
R
¬ supS and supS ¬ ℓ1.

(18) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A∩B = ∅. Let G be a rain of A, B, r be an element of DOM, and p be a
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point of T . If (ThunderG)(p) < r, then p ∈ (TempestG)(r).

(19) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed

and A∩B = ∅. Let G be a rain of A, B and r be a real number. Suppose

r ∈ DYADIC∪R>1 and 0 < r. Let p be a point of T . If p ∈ (TempestG)(r),

then (ThunderG)(p) ¬ r.

(20) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed

and A ∩ B = ∅. Let G be a rain of A, B, n be a natural number, and r1

be an element of DOM. If 0 < r1, then for every point p of T such that

r1 < (ThunderG)(p) holds p /∈ (TempestG)(r1).

(21) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩B = ∅. Let G be a rain of A, B. Then

(i) ThunderG is continuous, and

(ii) for every point x of T holds 0 ¬ (ThunderG)(x) and (ThunderG)(x) ¬

1 and if x ∈ A, then (ThunderG)(x) = 0 and if x ∈ B, then

(ThunderG)(x) = 1.

(22) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and

A ∩B = ∅. Then there exists a map F from T into R
1 such that

(i) F is continuous, and

(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.

(23) Let T be a non empty topological space. Suppose T is a T4 space. Let

A, B be subsets of T . Suppose A is closed and B is closed and A∩B = ∅.

Then there exists a map F from T into R
1 such that

(i) F is continuous, and

(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.

(24) Let T be a non empty topological space. Suppose T is a T2 space and

compact. Let A, B be subsets of T . Suppose A is closed and B is closed

and A ∩B = ∅. Then there exists a map F from T into R
1 such that

(i) F is continuous, and

(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.
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