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Summary. The paper includes proofs of few theorems proved earlier by
Shunichi Kobayashi in many different settings.

MML Identifier: PARTIT 2.

The terminology and notation used in this paper have been introduced in the

following articles: [1], [3], [4], [5], [9], [2], [10], [12], [11], [7], [6], and [8].

1. Preliminaries

Let X, Y be sets and let R, S be relations between X and Y . Let us observe

that R ⊆ S if and only if:

(Def. 1) For every element x of X and for every element y of Y such that 〈〈x,

y〉〉 ∈ R holds 〈〈x, y〉〉 ∈ S.

For simplicity, we adopt the following rules: Y is a non empty set, a is an

element of BooleanY , G is a subset of PARTITIONS(Y ), and P , Q are partitions

of Y .

Let Y be a non empty set and letG be a non empty subset of PARTITIONS(Y ).

We see that the element of G is a partition of Y .

One can prove the following propositions:

(1)
∧
∅PARTITIONS(Y ) = O(Y ).

(2) For all equivalence relations R, S of Y holds R ∪ S ⊆ R · S.

(3) For every binary relation R on Y holds R ⊆ ∇Y .

(4) For every equivalence relation R of Y holds ∇Y ·R = ∇Y and R · ∇Y =

∇Y .
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(5) For every partition P of Y and for all elements x, y of Y holds 〈〈x,

y〉〉 ∈ ≡P iff x ∈ EqClass(y, P ).

(6) Let P , Q, R be partitions of Y . Suppose ≡R = ≡P · ≡Q. Let x, y be

elements of Y . Then x ∈ EqClass(y,R) if and only if there exists an

element z of Y such that x ∈ EqClass(z, P ) and z ∈ EqClass(y,Q).

(7) Let R, S be binary relations and Y be a set. If R is reflexive in Y and

S is reflexive in Y , then R · S is reflexive in Y .

(8) For every binary relation R and for every set Y such that R is reflexive

in Y holds Y ⊆ fieldR.

(9) For every set Y and for every binary relation R on Y such that R is

reflexive in Y holds Y = fieldR.

(10) For all equivalence relations R, S of Y such that R ·S = S ·R holds R ·S

is an equivalence relation of Y .

2. Boolean-Valued Functions

The following propositions are true:

(11) For all elements a, b of BooleanY such that a ⋐ b holds ¬b ⋐ ¬a.

(12) For every element a of BooleanY and for every subset G of

PARTITIONS(Y ) and for every partition A of Y holds ∀a,AG ⋐ a.

(13) Let a, b be elements of BooleanY , G be a subset of PARTITIONS(Y ),

and P be a partition of Y . If a ⋐ b, then ∀a,P G ⋐ ∀b,P G.

(14) For every element a of BooleanY and for every subset G of

PARTITIONS(Y ) and for every partition A of Y holds a ⋐ ∃a,AG.

(15) Let a, b be elements of BooleanY , G be a subset of PARTITIONS(Y ),

and P be a partition of Y . If a ⋐ b, then ∃a,P G ⋐ ∃b,P G.

3. Independent Classes of Partitions

One can prove the following four propositions:

(16) If G is independent, then for all subsets P , Q of PARTITIONS(Y ) such

that P ⊆ G and Q ⊆ G holds ≡∧P · ≡
∧

Q = ≡∧Q · ≡
∧

P .

(17) If G is independent, then ∀∀a,P G,QG = ∀∀a,QG,P G.

(18) If G is independent, then ∃∃a,P G,QG = ∃∃a,QG,P G.

(19) Let a be an element of BooleanY ,G be a subset of PARTITIONS(Y ), and

P , Q be partitions of Y . If G is independent, then ∃∀a,P G,QG ⋐ ∀∃a,QG,P G.



classes of independent partitions 625

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[2] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics,
7(2):243–247, 1998.

[3] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and
quantifiers with respect to partitions. Formalized Mathematics, 7(2):307–312, 1998.

[4] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.
Formalized Mathematics, 1(3):441–444, 1990.

[5] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[8] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized
Mathematics, 1(4):739–743, 1990.

[9] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,
1990.

[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[12] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

Received February 14, 2001


