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The notation and terminology used in this paper have been introduced in the

following articles: [28], [24], [32], [9], [25], [10], [2], [3], [30], [29], [4], [5], [18],

[21], [23], [22], [6], [8], [14], [1], [19], [26], [7], [27], [13], [33], [17], [16], [20], [31],

[11], [12], and [15].

1. Preliminaries

For simplicity, we use the following convention: i, i1, i2, j, j1, j2, k, m, n, t

denote natural numbers, D denotes a non empty subset of E2
T, E denotes a com-

pact non vertical non horizontal subset of E2
T, C denotes a compact connected

non vertical non horizontal subset of E2
T, G denotes a Go-board, p, q, x denote

points of E2
T, and r, s denote real numbers.

The following propositions are true:

(1) For all real numbers s1, s3, s4, l such that s1 ¬ s3 and s1 ¬ s4 and 0 ¬ l

and l ¬ 1 holds s1 ¬ (1− l) · s3 + l · s4.

(2) For all real numbers s1, s3, s4, l such that s3 ¬ s1 and s4 ¬ s1 and 0 ¬ l

and l ¬ 1 holds (1− l) · s3 + l · s4 ¬ s1.

(3) If n > 0, then mn modm = 0.

(4) If j > 0 and imod j = 0, then i÷ j = i
j
.

(5) If n > 0, then in ÷ i = in

i
.
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(6) If 0 < n and 1 < r, then 1 < rn.

(7) If r > 1 and m > n, then rm > rn.

(8) Let T be a non empty topological space, A be a subset of T , and B, C

be subsets of the carrier of T . If A is connected and C is a component of

B and A ∩ C 6= ∅ and A ⊆ B, then A ⊆ C.

Let f be a finite sequence. The functor Center f yields a natural number

and is defined as follows:

(Def. 1) Center f = (len f ÷ 2) + 1.

The following two propositions are true:

(9) For every finite sequence f such that len f is odd holds len f = 2 ·

Center f − 1.

(10) For every finite sequence f such that len f is even holds len f = 2 ·

Center f − 2.

2. Some Subsets of the Plane

One can check the following observations:

∗ there exists a subset of E2
T which is compact, non vertical, non horizontal,

and non empty and satisfies conditions of simple closed curve,

∗ there exists a subset of E2
T which is compact, non empty, and horizontal,

and

∗ there exists a subset of E2
T which is compact, non empty, and vertical.

The following propositions are true:

(11) If p ∈ N-mostD, then p2 = N-boundD.

(12) If p ∈ E-mostD, then p1 = E-boundD.

(13) If p ∈ S-mostD, then p2 = S-boundD.

(14) If p ∈W-mostD, then p1 =W-boundD.

(15) BDDD misses D.

(16) For every compact non empty subset S of E2
T satisfying conditions of

simple closed curve holds LowerArcS ⊆ S and UpperArcS ⊆ S.

(17) p ∈ VerticalLine p1.

(18) [r, s] ∈ VerticalLine r.

(19) For every subset A of E2
T such that A ⊆ VerticalLine s holds A is vertical.

(20) (proj2)([r, s]) = s and (proj1)([r, s]) = r.

(21) If p1 = q1 and r ∈ [(proj2)(p), (proj2)(q)], then [p1, r] ∈ L(p, q).

(22) If p2 = q2 and r ∈ [(proj1)(p), (proj1)(q)], then [r, p2] ∈ L(p, q).
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(23) If p ∈ VerticalLine s and q ∈ VerticalLine s, then L(p, q) ⊆

VerticalLine s.

Let S be a non empty subset of E2
T satisfying conditions of simple closed

curve. Observe that LowerArcS is non empty and compact and UpperArcS is

non empty and compact.

We now state several propositions:

(24) For all subsets A, B of E2
T such that A meets B holds (proj2)◦A meets

(proj2)◦B.

(25) For all subsets A, B of E2
T such that A misses B and A ⊆ VerticalLine s

and B ⊆ VerticalLine s holds (proj2)◦A misses (proj2)◦B.

(26) For every closed subset S of E2
T such that S is Bounded holds (proj2)◦S

is closed.

(27) For every subset S of E2
T such that S is Bounded holds (proj2)◦S is

bounded.

(28) For every compact subset S of E2
T holds (proj2)◦S is compact.

In this article we present several logical schemes. The scheme TRSubsetEx

deals with a natural number A and a unary predicate P, and states that:

There exists a subset A of EAT such that for every point p of EAT
holds p ∈ A iff P[p]

for all values of the parameters.

The scheme TRSubsetUniq deals with a natural number A and a unary

predicate P, and states that:

Let A, B be subsets of EAT . Suppose for every point p of E
A
T holds

p ∈ A iff P[p] and for every point p of EAT holds p ∈ B iff P[p].

Then A = B

for all values of the parameters.

Let p be a point of E2
T. The functor NorthHalfline p yielding a subset of E

2
T

is defined as follows:

(Def. 2) For every point x of E2
T holds x ∈ NorthHalfline p iff x1 = p1 and x2 ­ p2.

The functor EastHalfline p yielding a subset of E2
T is defined as follows:

(Def. 3) For every point x of E2
T holds x ∈ EastHalfline p iff x1 ­ p1 and x2 = p2.

The functor SouthHalfline p yielding a subset of E2
T is defined as follows:

(Def. 4) For every point x of E2
T holds x ∈ SouthHalfline p iff x1 = p1 and x2 ¬ p2.

The functor WestHalfline p yields a subset of E2
T and is defined by:

(Def. 5) For every point x of E2
T holds x ∈WestHalfline p iff x1 ¬ p1 and x2 = p2.

The following propositions are true:

(29) NorthHalfline p = {q; q ranges over points of E2
T: q1 = p1 ∧ q2 ­ p2}.

(30) NorthHalfline p = {[p1, r]; r ranges over elements of R: r ­ p2}.

(31) EastHalfline p = {q; q ranges over points of E2
T: q1 ­ p1 ∧ q2 = p2}.
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(32) EastHalfline p = {[r, p2]; r ranges over elements of R: r ­ p1}.

(33) SouthHalfline p = {q; q ranges over points of E2
T: q1 = p1 ∧ q2 ¬ p2}.

(34) SouthHalfline p = {[p1, r]; r ranges over elements of R: r ¬ p2}.

(35) WestHalfline p = {q; q ranges over points of E2
T: q1 ¬ p1 ∧ q2 = p2}.

(36) WestHalfline p = {[r, p2]; r ranges over elements of R: r ¬ p1}.

Let p be a point of E2
T. One can check the following observations:

∗ NorthHalfline p is non empty and convex,

∗ EastHalfline p is non empty and convex,

∗ SouthHalfline p is non empty and convex, and

∗ WestHalfline p is non empty and convex.

3. Goboards

We now state a number of propositions:

(37) If 1 ¬ i and i ¬ lenG and 1 ¬ j and j ¬ widthG, then Gi,j ∈

L(Gi,1, Gi,widthG).

(38) If 1 ¬ i and i ¬ lenG and 1 ¬ j and j ¬ widthG, then Gi,j ∈

L(G1,j , GlenG,j).

(39) If 1 ¬ j1 and j1 ¬ widthG and 1 ¬ j2 and j2 ¬ widthG and 1 ¬ i1 and

i1 ¬ i2 and i2 ¬ lenG, then (Gi1,j1)1 ¬ (Gi2,j2)1.

(40) If 1 ¬ i1 and i1 ¬ lenG and 1 ¬ i2 and i2 ¬ lenG and 1 ¬ j1 and j1 ¬ j2

and j2 ¬ widthG, then (Gi1,j1)2 ¬ (Gi2,j2)2.

(41) Let f be a non constant standard special circular sequence. Suppose f

is a sequence which elements belong to G and 1 ¬ t and t ¬ lenG. Then

(Gt,widthG)2 ­ N-bound L̃(f).

(42) Let f be a non constant standard special circular sequence. Suppose f is

a sequence which elements belong to G and 1 ¬ t and t ¬ widthG. Then

(G1,t)1 ¬W-bound L̃(f).

(43) Let f be a non constant standard special circular sequence. Suppose f

is a sequence which elements belong to G and 1 ¬ t and t ¬ lenG. Then

(Gt,1)2 ¬ S-bound L̃(f).

(44) Let f be a non constant standard special circular sequence. Suppose f is

a sequence which elements belong to G and 1 ¬ t and t ¬ widthG. Then

(GlenG,t)1 ­ E-bound L̃(f).

(45) If i ¬ lenG and j ¬ widthG, then cell(G, i, j) is non empty.

(46) If i ¬ lenG and j ¬ widthG, then cell(G, i, j) is connected.

(47) If i ¬ lenG, then cell(G, i, 0) is not Bounded.
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(48) If i ¬ lenG, then cell(G, i,widthG) is not Bounded.

4. Gauges

One can prove the following propositions:

(49) widthGauge(D, n) = 2n + 3.

(50) If i < j, then lenGauge(D, i) < lenGauge(D, j).

(51) If i ¬ j, then lenGauge(D, i) ¬ lenGauge(D, j).

(52) If m ¬ n and 1 < i and i < lenGauge(D, m), then 1 < 2n−′m · (i−2)+2

and 2n−′m · (i− 2) + 2 < lenGauge(D, n).

(53) Ifm ¬ n and 1 < i and i < widthGauge(D, m), then 1 < 2n−′m·(i−2)+2

and 2n−′m · (i− 2) + 2 < widthGauge(D, n).

(54) Suppose m ¬ n and 1 < i and i < lenGauge(D,m) and 1 < j and j <

widthGauge(D, m). Let i1, j1 be natural numbers. If i1 = 2n−′m ·(i−2)+2

and j1 = 2n−′m · (j − 2) + 2, then (Gauge(D, m))i,j = (Gauge(D, n))i1,j1 .

(55) Ifm ¬ n and 1 < i and i+1 < lenGauge(D,m), then 1 < 2n−′m·(i−1)+2

and 2n−′m · (i− 1) + 2 ¬ lenGauge(D, n).

(56) If m ¬ n and 1 < i and i + 1 < widthGauge(D, m), then 1 < 2n−′m ·

(i− 1) + 2 and 2n−′m · (i− 1) + 2 ¬ widthGauge(D, n).

(57) If 1 ¬ i and i ¬ lenGauge(D,n) and 1 ¬ j and j ¬

lenGauge(D, m) and n > 0 and m > 0 or n = 0 and m = 0, then

((Gauge(D, n))CenterGauge(D,n),i)1 = ((Gauge(D,m))CenterGauge(D,m),j)1.

(58) If 1 ¬ i and i ¬ lenGauge(D,n) and 1 ¬ j and j ¬

lenGauge(D, m) and n > 0 and m > 0 or n = 0 and m = 0, then

((Gauge(D, n))i,CenterGauge(D,n))2 = ((Gauge(D,m))j,CenterGauge(D,m))2.

(59) If 1 ¬ i and i ¬ lenGauge(C, 1), then ((Gauge(C, 1))CenterGauge(C,1),i)1 =
W-boundC+E-boundC

2 .

(60) If 1 ¬ i and i ¬ lenGauge(C, 1), then ((Gauge(C, 1))i,CenterGauge(C,1))2 =
S-boundC+N-boundC

2 .

(61) If 1 ¬ i and i ¬ lenGauge(E, n) and 1 ¬ j and j ¬

lenGauge(E, m) and m ¬ n, then ((Gauge(E,n))i,lenGauge(E,n))2 ¬

((Gauge(E, m))j,lenGauge(E,m))2.

(62) If 1 ¬ i and i ¬ lenGauge(E, n) and 1 ¬ j and j ¬

lenGauge(E, m) and m ¬ n, then ((Gauge(E,n))lenGauge(E,n),i)1 ¬

((Gauge(E, m))lenGauge(E,m),j)1.

(63) If 1 ¬ i and i ¬ lenGauge(E, n) and 1 ¬ j and j ¬ lenGauge(E, m)

and m ¬ n, then ((Gauge(E, m))1,j)1 ¬ ((Gauge(E, n))1,i)1.
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(64) If 1 ¬ i and i ¬ lenGauge(E, n) and 1 ¬ j and j ¬ lenGauge(E, m)

and m ¬ n, then ((Gauge(E, m))j,1)2 ¬ ((Gauge(E, n))i,1)2.

(65) If 1 ¬ m and m ¬ n, then L((Gauge(E, n))CenterGauge(E,n),1,

(Gauge(E, n))CenterGauge(E,n),lenGauge(E,n)) ⊆

L((Gauge(E,m))CenterGauge(E,m),1,

(Gauge(E, m))CenterGauge(E,m),lenGauge(E,m)).

(66) If 1 ¬ m and m ¬ n and 1 ¬ j and j ¬ widthGauge(E, n),

then L((Gauge(E, n))CenterGauge(E,n),1, (Gauge(E,n))CenterGauge(E,n),j) ⊆

L((Gauge(E,m))CenterGauge(E,m),1, (Gauge(E, n))CenterGauge(E,n),j).

(67) If 1 ¬ m and m ¬ n and 1 ¬ j and j ¬ widthGauge(E, n), then

L((Gauge(E,m))CenterGauge(E,m),1, (Gauge(E, n))CenterGauge(E,n),j) ⊆

L((Gauge(E,m))CenterGauge(E,m),1,

(Gauge(E, m))CenterGauge(E,m),lenGauge(E,m)).

(68) Suppose m ¬ n and 1 < i and i + 1 < lenGauge(E, m) and 1 < j

and j + 1 < widthGauge(E, m). Let i1, j1 be natural numbers. Suppose

2n−′m · (i − 2) + 2 ¬ i1 and i1 < 2n−′m · (i − 1) + 2 and 2n−′m · (j −

2) + 2 ¬ j1 and j1 < 2n−′m · (j − 1) + 2. Then cell(Gauge(E, n), i1, j1) ⊆

cell(Gauge(E,m), i, j).

(69) Suppose m ¬ n and 3 ¬ i and i < lenGauge(E,m) and 1 < j and

j + 1 < widthGauge(E, m). Let i1, j1 be natural numbers. If i1 = 2n−′m ·

(i−2)+2 and j1 = 2n−′m · (j−2)+2, then cell(Gauge(E, n), i1−
′ 1, j1) ⊆

cell(Gauge(E,m), i−′ 1, j).

(70) If i ¬ lenGauge(C, n), then cell(Gauge(C, n), i, 0) ⊆ UBDC.

(71) If i ¬ lenGauge(E, n), then cell(Gauge(E, n), i,widthGauge(E, n)) ⊆

UBDE.

5. Cages

The following propositions are true:

(72) If p ∈ C, then NorthHalfline p meets L̃(Cage(C, n)).

(73) If p ∈ C, then EastHalfline p meets L̃(Cage(C, n)).

(74) If p ∈ C, then SouthHalfline p meets L̃(Cage(C, n)).

(75) If p ∈ C, then WestHalfline p meets L̃(Cage(C, n)).

(76) There exist k, t such that 1 ¬ k and k < lenCage(C, n) and 1 ¬ t and

t ¬ widthGauge(C, n) and (Cage(C, n))k = (Gauge(C, n))1,t.

(77) There exist k, t such that 1 ¬ k and k < lenCage(C, n) and 1 ¬ t and

t ¬ lenGauge(C, n) and (Cage(C, n))k = (Gauge(C, n))t,1.

(78) There exist k, t such that 1 ¬ k and k < lenCage(C, n) and 1 ¬ t and

t ¬ widthGauge(C, n) and (Cage(C, n))k = (Gauge(C, n))lenGauge(C,n),t.
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(79) If 1 ¬ k and k ¬ lenCage(C, n) and 1 ¬ t and t ¬ lenGauge(C, n)

and (Cage(C, n))k = (Gauge(C, n))t,widthGauge(C,n), then (Cage(C, n))k ∈

N-most L̃(Cage(C, n)).

(80) If 1 ¬ k and k ¬ lenCage(C, n) and 1 ¬ t and

t ¬ widthGauge(C, n) and (Cage(C, n))k = (Gauge(C, n))1,t, then

(Cage(C, n))k ∈W-most L̃(Cage(C, n)).

(81) If 1 ¬ k and k ¬ lenCage(C, n) and 1 ¬ t and

t ¬ lenGauge(C, n) and (Cage(C, n))k = (Gauge(C, n))t,1, then

(Cage(C, n))k ∈ S-most L̃(Cage(C, n)).

(82) If 1 ¬ k and k ¬ lenCage(C, n) and 1 ¬ t and t ¬ widthGauge(C, n)

and (Cage(C, n))k = (Gauge(C, n))lenGauge(C,n),t, then (Cage(C, n))k ∈

E-most L̃(Cage(C, n)).

(83) W-bound L̃(Cage(C, n)) =W-boundC − E-boundC−W-boundC
2n

.

(84) S-bound L̃(Cage(C, n)) = S-boundC − N-boundC−S-boundC
2n

.

(85) E-bound L̃(Cage(C, n)) = E-boundC + E-boundC−W-boundC
2n

.

(86) N-bound L̃(Cage(C, n)) + S-bound L̃(Cage(C, n)) = N-bound L̃(Cage(C,

m)) + S-bound L̃(Cage(C,m)).

(87) E-bound L̃(Cage(C, n))+W-bound L̃(Cage(C, n)) = E-bound L̃(Cage(C,

m)) +W-bound L̃(Cage(C, m)).

(88) If i < j, then E-bound L̃(Cage(C, j)) < E-bound L̃(Cage(C, i)).

(89) If i < j, then W-bound L̃(Cage(C, i)) <W-bound L̃(Cage(C, j)).

(90) If i < j, then S-bound L̃(Cage(C, i)) < S-bound L̃(Cage(C, j)).

(91) If 1 ¬ i and i ¬ lenGauge(C, n), then N-bound L̃(Cage(C, n)) =

((Gauge(C, n))i,lenGauge(C,n))2.

(92) If 1 ¬ i and i ¬ lenGauge(C, n), then E-bound L̃(Cage(C, n)) =

((Gauge(C, n))lenGauge(C,n),i)1.

(93) If 1 ¬ i and i ¬ lenGauge(C, n), then S-bound L̃(Cage(C, n)) =

((Gauge(C, n))i,1)2.

(94) If 1 ¬ i and i ¬ lenGauge(C, n), then W-bound L̃(Cage(C, n)) =

((Gauge(C, n))1,i)1.

(95) If x ∈ C and p ∈ NorthHalflinex ∩ L̃(Cage(C, n)), then p2 > x2.

(96) If x ∈ C and p ∈ EastHalflinex ∩ L̃(Cage(C, n)), then p1 > x1.

(97) If x ∈ C and p ∈ SouthHalflinex ∩ L̃(Cage(C, n)), then p2 < x2.

(98) If x ∈ C and p ∈WestHalflinex ∩ L̃(Cage(C, n)), then p1 < x1.

(99) If x ∈ N-mostC and p ∈ NorthHalflinex and 1 ¬ i and i <

lenCage(C, n) and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is horizon-

tal.
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(100) If x ∈ E-mostC and p ∈ EastHalflinex and 1 ¬ i and i < lenCage(C, n)

and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is vertical.

(101) If x ∈ S-mostC and p ∈ SouthHalflinex and 1 ¬ i and i < lenCage(C, n)

and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is horizontal.

(102) If x ∈ W-mostC and p ∈ WestHalflinex and 1 ¬ i and i <

lenCage(C, n) and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is vertical.

(103) If x ∈ N-mostC and p ∈ NorthHalflinex ∩ L̃(Cage(C, n)), then p2 =

N-bound L̃(Cage(C, n)).

(104) If x ∈ E-mostC and p ∈ EastHalflinex ∩ L̃(Cage(C, n)), then p1 =

E-bound L̃(Cage(C, n)).

(105) If x ∈ S-mostC and p ∈ SouthHalflinex ∩ L̃(Cage(C, n)), then p2 =

S-bound L̃(Cage(C, n)).

(106) If x ∈ W-mostC and p ∈ WestHalflinex ∩ L̃(Cage(C, n)), then p1 =

W-bound L̃(Cage(C, n)).

(107) If x ∈ N-mostC, then there exists a point p of E2
T such that

NorthHalflinex ∩ L̃(Cage(C, n)) = {p}.

(108) If x ∈ E-mostC, then there exists a point p of E2
T such that

EastHalflinex ∩ L̃(Cage(C, n)) = {p}.

(109) If x ∈ S-mostC, then there exists a point p of E2
T such that

SouthHalflinex ∩ L̃(Cage(C, n)) = {p}.

(110) If x ∈ W-mostC, then there exists a point p of E2
T such that

WestHalflinex ∩ L̃(Cage(C, n)) = {p}.
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