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Theorem
1

Andrzej Trybulec

University of Białystok

Summary. I present some miscellaneous simple facts that are still missing
in the library. The only common feature is that, most of them, were needed as
lemmas in the proof of the Jordan curve theorem.

MML Identifier: JCT MISC.

The articles [11], [8], [17], [14], [9], [2], [3], [7], [1], [10], [4], [12], [5], [18], [19],

[6], [15], [16], and [13] provide the notation and terminology for this paper.

1. Preliminaries

The scheme NonEmpty deals with a non empty set A and a unary functor

F yielding a set, and states that:

{F(a) : a ranges over elements of A} is non empty

for all values of the parameters.

One can prove the following propositions:

(1) For all sets A, B, C such that A ⊆ B and A misses C holds A ⊆ B \C.

(2) For all sets X, Y such that X meets
⋃

Y there exists a set Z such that

Z ∈ Y and X meets Z.

(3) For all sets A, B and for every function f such that A ⊆ dom f and

f◦A ⊆ B holds A ⊆ f−1(B).

(4) For every function f and for all sets A, B such that A misses B holds

f−1(A) misses f−1(B).
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(5) Let S, X be sets, f be a function from S into X, and A be a subset of

X such that if X = ∅, then S = ∅. Then (f−1(A))c = f−1(Ac).

(6) Let S be a 1-sorted structure,X be a non empty set, f be a function from

the carrier of S intoX, and A be a subset ofX. Then −f−1(A) = f−1(Ac).

We use the following convention: i, j, m, n denote natural numbers and r,

s, r0, s0, t denote real numbers.

Next we state several propositions:

(7) If m ¬ n, then n−′ (n−′ m) = m.

(8) For every real number r such that 1 ¬ r and i ¬ j holds ri ¬ rj .

(9) For all real numbers a, b such that r ∈ [a, b] and s ∈ [a, b] holds r+s
2
∈

[a, b].

(10) For every increasing sequence N1 of naturals and for all i, j such that

i ¬ j holds N1(i) ¬ N1(j).

(11) ||r0 − s0| − |r − s|| ¬ |r0 − r|+ |s0 − s|.

(12) If t ∈ ]r, s[, then |t| < max(|r|, |s|).

Let A, B, C be non empty sets and let f be a function from A into [:B,

C :]. Then pr1(f) is a function from A into B and it can be characterized by the

condition:

(Def. 1) For every element x of A holds pr1(f)(x) = f(x)1.

Then pr2(f) is a function from A into C and it can be characterized by the

condition:

(Def. 2) For every element x of A holds pr2(f)(x) = f(x)2.

The scheme DoubleChoice deals with non empty sets A, B, C and a ternary

predicate P, and states that:

There exists a function a from A into B and there exists a func-

tion b from A into C such that for every element i of A holds

P[i, a(i), b(i)]

provided the parameters meet the following requirement:

• For every element i of A there exists an element a1 of B and there

exists an element b1 of C such that P[i, a1, b1].

We now state the proposition

(13) Let S, T be non empty topological spaces and G be a subset of [:S, T :].

Suppose that for every point x of [:S, T :] such that x ∈ G there exists a

subset G1 of S and there exists a subset G2 of T such that G1 is open and

G2 is open and x ∈ [:G1, G2 :] and [:G1, G2 :] ⊆ G. Then G is open.
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2. Topological Properties of Sets of Real Numbers

One can prove the following proposition

(14) For all compact subsets A, B of R holds A ∩B is compact.

Let A be a subset of R. We say that A is connected if and only if:

(Def. 3) For all real numbers r, s such that r ∈ A and s ∈ A holds [r, s] ⊆ A.

The following proposition is true

(15) Let T be a non empty topological space, f be a continuous real map of

T , and A be a subset of T . If A is connected, then f◦A is connected.

Let A, B be subsets of R. The functor ρ(A,B) yielding a real number is

defined by:

(Def. 4) There exists a subset X of R such that X = {|r − s|; r ranges over

elements of R, s ranges over elements of R: r ∈ A ∧ s ∈ B} and ρ(A,B) =

infX.

Let us notice that the functor ρ(A,B) is commutative.

The following propositions are true:

(16) For all subsets A, B of R and for all r, s such that r ∈ A and s ∈ B

holds |r − s| ­ ρ(A,B).

(17) For all subsets A, B of R and for all non empty subsets C, D of R such

that C ⊆ A and D ⊆ B holds ρ(A,B) ¬ ρ(C, D).

(18) For all non empty compact subsets A, B of R there exist real numbers

r, s such that r ∈ A and s ∈ B and ρ(A,B) = |r − s|.

(19) For all non empty compact subsets A, B of R holds ρ(A, B) ­ 0.

(20) For all non empty compact subsets A, B of R such that A misses B holds

ρ(A,B) > 0.

(21) Let e, f be real numbers and A, B be compact subsets of R. Suppose A

misses B and A ⊆ [e, f ] and B ⊆ [e, f ]. Let S be a function from N into

2R. Suppose that for every natural number i holds S(i) is connected and

S(i) meets A and S(i) meets B. Then there exists a real number r such

that r ∈ [e, f ] and r /∈ A ∪B and for every natural number i there exists

a natural number k such that i ¬ k and r ∈ S(k).
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