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Summary. In this paper we prove the well-known binomial theorem for
algebraic structures. In doing so we tried to be as modest as possible concerning

the algebraic properties of the underlying structure. Consequently, we proved the

binomial theorem for “commutative rings” in which the existence of an inverse

with respect to addition is replaced by a weaker property of cancellation.

MML Identifier: BINOM.

The articles [5], [7], [2], [3], [8], [1], [6], [11], [9], [10], and [4] provide the termi-

nology and notation for this paper.

1. Preliminaries

Let L be a non empty loop structure. We say that L is add-left-cancelable

if and only if:

(Def. 1) For all elements a, b, c of L such that a + b = a + c holds b = c.

We say that L is add-right-cancelable if and only if:

(Def. 2) For all elements a, b, c of L such that b + a = c + a holds b = c.

We say that L is add-cancelable if and only if:

(Def. 3) For all elements a, b, c of L holds if a + b = a + c, then b = c and if

b + a = c + a, then b = c.

One can check the following observations:

∗ there exists a non empty loop structure which is add-left-cancelable,
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∗ there exists a non empty loop structure which is add-right-cancelable,

and

∗ there exists a non empty loop structure which is add-cancelable.

Let us note that every non empty loop structure which is add-left-cancelable

and add-right-cancelable is also add-cancelable and every non empty loop struc-

ture which is add-cancelable is also add-left-cancelable and add-right-cancelable.

One can verify that every non empty loop structure which is Abelian and

add-right-cancelable is also add-left-cancelable and every non empty loop struc-

ture which is Abelian and add-left-cancelable is also add-right-cancelable.

Let us observe that every non empty loop structure which is right zeroed,

right complementable, and add-associative is also add-right-cancelable.

Let us observe that there exists a non empty double loop structure which

is Abelian, add-associative, left zeroed, right zeroed, commutative, associative,

add-cancelable, distributive, and unital.

We now state two propositions:

(1) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure and a be an element of R. Then 0R · a = 0R.

(2) Let R be a left zeroed add-right-cancelable right distributive non empty

double loop structure and a be an element of R. Then a · 0R = 0R.

In this article we present several logical schemes. The scheme Ind2 deals

with a natural number A and a unary predicate P, and states that:

For every natural number i such that A ¬ i holds P[i]

provided the following conditions are satisfied:

• P[A], and

• For every natural number j such that A ¬ j holds if P[j], then

P[j + 1].

The scheme RecDef1 deals with a non empty set A, an element B of A, and

a binary operation C on A, and states that:

There exists a function g from [: N, A :] into A such that for every

element a of A holds

g(0, a) = B and for every natural number n holds g(n + 1,

a) = C(a, g(n, a))

for all values of the parameters.

The scheme RecDef2 deals with a non empty set A, an element B of A, and

a binary operation C on A, and states that:

There exists a function g from [:A, N :] into A such that for every

element a of A holds

g(a, 0) = B and for every natural number n holds g(a, n+1) =

C(g(a, n), a)

for all values of the parameters.
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2. On Finite Sequences

One can prove the following propositions:

(3) For every left zeroed non empty loop structure L and for every element

a of L holds
∑

〈a〉 = a.

(4) Let R be a left zeroed add-right-cancelable right distributive non empty

double loop structure, a be an element of R, and p be a finite sequence of

elements of the carrier of R. Then
∑

(a · p) = a ·
∑

p.

(5) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure, a be an element of R, and p be a finite sequence of

elements of the carrier of R. Then
∑

(p · a) =
∑

p · a.

(6) Let R be a commutative non empty double loop structure, a be an

element of R, and p be a finite sequence of elements of the carrier of R.

Then
∑

(p · a) =
∑

(a · p).

Let R be a non empty loop structure and let p, q be finite sequences of

elements of the carrier of R. Let us assume that dom p = dom q. The functor

p + q yields a finite sequence of elements of the carrier of R and is defined by:

(Def. 4) dom(p + q) = dom p and for every natural number i such that 1 ¬ i and

i ¬ len(p + q) holds (p + q)i = pi + qi.

The following proposition is true

(7) Let R be an Abelian right zeroed add-associative non empty loop struc-

ture and p, q be finite sequences of elements of the carrier of R. If

dom p = dom q, then
∑

(p + q) =
∑

p +
∑

q.

3. On Powers in Rings

Let R be a unital non empty groupoid, let a be an element of R, and let

n be a natural number. The functor an yielding an element of R is defined as

follows:

(Def. 5) an = powerR(a, n).

We now state several propositions:

(8) For every unital non empty groupoid R and for every element a of R

holds a0 = 1R and a1 = a.

(9) For every unital non empty groupoid R and for every element a of R

and for every natural number n holds an+1 = an · a.

(10) Let R be a unital associative commutative non empty groupoid, a, b be

elements of R, and n be a natural number. Then (a · b)n = an · bn.
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(11) Let R be a unital associative non empty groupoid, a be an element of

R, and n, m be natural numbers. Then an+m = an · am.

(12) Let R be a unital associative non empty groupoid, a be an element of

R, and n, m be natural numbers. Then (an)m = an·m.

4. On Natural Products in Rings

Let R be a non empty loop structure. The functor Nat-mult-leftR yielding

a function from [: N, the carrier of R :] into the carrier of R is defined by:

(Def. 6) For every element a of R holds (Nat-mult-leftR)(0, a) = 0R and

for every natural number n holds (Nat-mult-leftR)(n + 1, a) = a +

(Nat-mult-leftR)(n, a).

The functor Nat-mult-rightR yields a function from [: the carrier of R, N :] into

the carrier of R and is defined by:

(Def. 7) For every element a of R holds (Nat-mult-rightR)(a, 0) = 0R and

for every natural number n holds (Nat-mult-rightR)(a, n + 1) =

(Nat-mult-rightR)(a, n) + a.

Let R be a non empty loop structure, let a be an element of R, and let n be

a natural number. The functor n · a yields an element of R and is defined by:

(Def. 8) n · a = (Nat-mult-leftR)(n, a).

The functor a · n yields an element of R and is defined as follows:

(Def. 9) a · n = (Nat-mult-rightR)(a, n).

One can prove the following propositions:

(13) For every non empty loop structure R and for every element a of R holds

0 · a = 0R and a · 0 = 0R.

(14) For every right zeroed non empty loop structure R and for every element

a of R holds 1 · a = a.

(15) For every left zeroed non empty loop structure R and for every element

a of R holds a · 1 = a.

(16) Let R be a left zeroed add-associative non empty loop structure, a be an

element of R, and n, m be natural numbers. Then (n+m) ·a = n ·a+m ·a.

(17) Let R be a right zeroed add-associative non empty loop structure, a be an

element of R, and n, m be natural numbers. Then a ·(n+m) = a ·n+a ·m.

(18) Let R be a left zeroed right zeroed add-associative non empty loop struc-

ture, a be an element of R, and n be a natural number. Then n · a = a ·n.

(19) Let R be an Abelian non empty loop structure, a be an element of R,

and n be a natural number. Then n · a = a · n.
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(20) Let R be a left zeroed right zeroed add-left-cancelable add-associative

left distributive non empty double loop structure, a, b be elements of R,

and n be a natural number. Then (n · a) · b = n · (a · b).

(21) Let R be a left zeroed right zeroed add-right-cancelable add-associative

distributive non empty double loop structure, a, b be elements of R, and

n be a natural number. Then b · (n · a) = (b · a) · n.

(22) Let R be a left zeroed right zeroed add-associative add-cancelable distri-

butive non empty double loop structure, a, b be elements of R, and n be

a natural number. Then (a · n) · b = a · (n · b).

5. The Binomial Theorem

Let k, n be natural numbers. Then
(

n

k

)

is a natural number.

Let R be a unital non empty double loop structure, let a, b be elements of

R, and let n be a natural number. The functor 〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉 yields a

finite sequence of elements of the carrier of R and is defined by the conditions

(Def. 10).

(Def. 10)(i) len〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉 = n + 1, and

(ii) for all natural numbers i, l, m such that i ∈ dom〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉

and m = i− 1 and l = n−m holds 〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉i =
(

n

m

)

· al · bm.

The following four propositions are true:

(23) For every right zeroed unital non empty double loop structure R and for

all elements a, b of R holds 〈
(

0

0

)

a0b0, . . . ,
(

0

0

)

a0b0〉 = 〈1R〉.

(24) Let R be a right zeroed unital non empty double loop struc-

ture, a, b be elements of R, and n be a natural number. Then

〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉(1) = an.

(25) Let R be a right zeroed unital non empty double loop structure, a, b be

elements ofR, and n be a natural number. Then 〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉(n+

1) = bn.

(26) Let R be an Abelian add-associative left zeroed right zeroed commu-

tative associative add-cancelable distributive unital non empty double

loop structure, a, b be elements of R, and n be a natural number. Then

(a + b)n =
∑

〈
(

n

0

)

a0bn, . . . ,
(

n

n

)

anb0〉.
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