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The articles [5], [6], [10], [1], [15], [11], [17], [16], [12], [14], [8], [3], [4], [9], [2],

and [13] provide the notation and terminology for this paper.

One can prove the following propositions:

(1) For every complete lattice L and for every net N in L holds inf N ¬

lim inf N.

(2) Let L be a complete lattice, N be a net in L, and x be an element

of L. Suppose that for every subnet M of N holds x = lim infM. Then

x = lim inf N and for every subnet M of N holds x  infM.

(3) Let L be a complete lattice, N be a net in L, and x be an element of

L. Suppose N ∈ NetUniv(L). Suppose that for every subnet M of N such

that M ∈ NetUniv(L) holds x = lim infM. Then x = lim inf N and for

every subnet M of N such that M ∈ NetUniv(L) holds x  infM.

Let N be a non empty relational structure and let f be a map from N into

N . We say that f is greater or equal to id if and only if:

(Def. 1) For every element j of the carrier of N holds j ¬ f(j).

We now state three propositions:

(4) For every reflexive non empty relational structure N holds idN is greater

or equal to id.

(5) Let N be a directed non empty relational structure and x, y be elements

of N . Then there exists an element z of N such that x ¬ z and y ¬ z.

(6) For every directed non empty relational structure N holds there exists

a map from N into N which is greater or equal to id.
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Let N be a directed non empty relational structure. One can verify that

there exists a map from N into N which is greater or equal to id.

Let N be a reflexive non empty relational structure. Observe that there

exists a map from N into N which is greater or equal to id.

Let L be a non empty 1-sorted structure, let N be a non empty net structure

over L, and let f be a map from N into N . The functor N · f yielding a strict

non empty net structure over L is defined by the conditions (Def. 2).

(Def. 2)(i) The relational structure of N · f = the relational structure of N , and

(ii) the mapping of N · f = (the mapping of N) · f.

The following propositions are true:

(7) Let L be a non empty 1-sorted structure,N be a non empty net structure

over L, and f be a map from N into N . Then the carrier of N · f = the

carrier of N .

(8) Let L be a non empty 1-sorted structure,N be a non empty net structure

over L, and f be a map from N into N . Then N · f = 〈the carrier of N ,

the internal relation of N , (the mapping of N) · f〉.

(9) Let L be a non empty 1-sorted structure, N be a transitive directed non

empty relational structure, and f be a function from the carrier of N into

the carrier of L. Then 〈the carrier of N , the internal relation of N , f〉 is

a net in L.

Let L be a non empty 1-sorted structure, let N be a transitive directed non

empty relational structure, and let f be a function from the carrier of N into

the carrier of L. Note that 〈the carrier of N , the internal relation of N , f〉 is

transitive directed and non empty.

We now state the proposition

(10) Let L be a non empty 1-sorted structure, N be a net in L, and p be a

map from N into N . Then N · p is a net in L.

Let L be a non empty 1-sorted structure, let N be a net in L, and let p be

a map from N into N . Note that N · p is transitive and directed.

Next we state two propositions:

(11) Let L be a non empty 1-sorted structure, N be a net in L, and p be a

map from N into N . If N ∈ NetUniv(L), then N · p ∈ NetUniv(L).

(12) Let L be a non empty 1-sorted structure and N ,M be nets in L. Suppose

the net structure of N = the net structure of M . Then M is a subnet of

N .

Let L be a non empty 1-sorted structure and let N be a net in L. Note that

there exists a subnet of N which is strict.

The following proposition is true

(13) Let L be a non empty 1-sorted structure, N be a net in L, and p be a

greater or equal to id map from N into N . Then N · p is a subnet of N .
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Let L be a non empty 1-sorted structure, let N be a net in L, and let p be

a greater or equal to id map from N into N . Then N · p is a strict subnet of N .

One can prove the following two propositions:

(14) Let L be a complete lattice, N be a net in L, and x be an element of L.

Suppose N ∈ NetUniv(L). Suppose x = lim inf N and for every subnet M

of N such thatM ∈ NetUniv(L) holds x  infM. Then x = lim inf N and

for every greater or equal to id map p from N into N holds x  inf(N ·p).

(15) Let L be a complete lattice, N be a net in L, and x be an element of L.

Suppose x = lim inf N and for every greater or equal to id map p from N

into N holds x  inf(N · p). Let M be a subnet of N . Then x = lim infM.

Let L be a non empty relational structure. The lim inf convergence of L is

a convergence class of L and is defined by the condition (Def. 3).

(Def. 3) Let N be a net in L. Suppose N ∈ NetUniv(L). Let x be an element of

the carrier of L. Then 〈〈N, x〉〉 ∈ the lim inf convergence of L if and only if

for every subnet M of N holds x = lim infM.

We now state two propositions:

(16) Let L be a complete lattice, N be a net in L, and x be an element of

L. Suppose N ∈ NetUniv(L). Then 〈〈N, x〉〉 ∈ the lim inf convergence of L

if and only if for every subnet M of N such that M ∈ NetUniv(L) holds

x = lim infM.

(17) Let L be a non empty relational structure, N be a constant net in L,

and M be a subnet of N . Then M is constant and the value of N = the

value of M .

Let L be a non empty relational structure. The functor ξ(L) yielding a family

of subsets of L is defined as follows:

(Def. 4) ξ(L) = the topology of ConvergenceSpace(the lim inf convergence of L).

The following propositions are true:

(18) For every complete lattice L holds the lim inf convergence of L has

(CONSTANTS) property.

(19) For every non empty relational structure L holds the lim inf convergence

of L has (SUBNETS) property.

(20) For every continuous complete lattice L holds the lim inf convergence of

L has (DIVERGENCE) property.

(21) Let L be a non empty relational structure and N , x be sets. If 〈〈N,

x〉〉 ∈ the lim inf convergence of L, then N ∈ NetUniv(L).

(22) Let L be a non empty 1-sorted structure and C1, C2 be convergence

classes of L. If C1 ⊆ C2, then the topology of ConvergenceSpace(C2) ⊆ the

topology of ConvergenceSpace(C1).
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(23) Let L be a non empty reflexive relational structure. Then the lim inf

convergence of L ⊆ the Scott convergence of L.

(24) For all sets X, Y such that X ⊆ Y holds X ∈ the universe of Y .

(25) Let L be a non empty transitive reflexive relational structure and D be

a directed non empty subset of L. Then NetStr(D) ∈ NetUniv(L).

(26) For every complete lattice L and for every directed non empty subset D

of L and for every subnet M of NetStr(D) holds lim infM = supD.

(27) Let L be a non empty complete lattice and D be a directed non empty

subset of L. Then 〈〈NetStr(D), supD〉〉 ∈ the lim inf convergence of L.

(28) For every complete lattice L and for every subset U1 of L such that

U1 ∈ ξ(L) holds U1 is property(S).

(29) For every non empty reflexive relational structure L and for every subset

A of L such that A ∈ σ(L) holds A ∈ ξ(L).

(30) For every complete lattice L and for every subset A of L such that A is

upper holds if A ∈ ξ(L), then A ∈ σ(L).

(31) Let L be a complete lattice and A be a subset of L. Suppose A is lower.

Then −A ∈ ξ(L) if and only if A is closed under directed sups.
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