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Summary. If a loop-invariant exists in a loop program, computing its
result by loop-invariant is simpler and easier than computing its result by the

inductive method. For this purpose, the article describes the premise and the final

computation result of the program such as “while<0”, “while>0”, “while<>0”

by loop-invariant. To test the effectiveness of the computation method given

in this article, by using loop-invariant of the loop programs mentioned above,

we justify the correctness of the following three examples: Summing n integers

(used for testing “while>0”), Fibonacci sequence (used for testing “while<0”),

Greatest Common Divisor, i.e. Euclide algorithm (used for testing “while<>0”).

MML Identifier: SCPINVAR.

The notation and terminology used here have been introduced in the following

papers: [18], [22], [19], [1], [3], [4], [6], [7], [24], [23], [2], [5], [16], [26], [27], [12],

[8], [11], [9], [10], [13], [15], [14], [21], [25], [20], and [17].

1. Preliminaries

For simplicity, we adopt the following rules: m, n are natural numbers, i, j

are instructions of SCMPDS, I is a Program-block, and a is an Int position.

One can prove the following propositions:

(1) For all natural numbers n, m, l such that n | m and n | l holds n | m− l.
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(2) m | n iff m | n qua integer.

(3) gcd(m,n) = gcd(m, |n−m|).

(4) For all integers a, b such that a ­ 0 and b ­ 0 holds a gcd b = a gcd b−a.

(5) (i; j; I)(inspos 0) = i and (i; j; I)(inspos 1) = j.

(6) Let a, b be Int positions. Then there exists a function f from
∏
(the

object kind of SCMPDS) into N such that for every state s of SCMPDS

holds

(i) if s(a) = s(b), then f(s) = 0, and

(ii) if s(a) 6= s(b), then f(s) = max(|s(a)|, |s(b)|).

(7) There exists a function f from
∏
(the object kind of SCMPDS) into N

such that for every state s of SCMPDS holds

(i) if s(a) ­ 0, then f(s) = 0, and

(ii) if s(a) < 0, then f(s) = −s(a).

2. Computing Directly the Result of “while<0” Program by

Loop-Invariant

The scheme WhileLEnd deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while <

0(C,D,B),A)) = 0 but P[Dstate IExec(while < 0(C,D,B),A)]

provided the parameters satisfy the following conditions:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds

F(Dstate t) = 0 iff t(DataLoc(A(C),D)) ­ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

3. An Example: Summing Directly n Integers by Loop-Invariant

Let n, p0 be natural numbers. The functor sum(n, p0) yields a Program-block

and is defined as follows:

(Def. 1) sum(n, p0) = (GBP :=0); (intpos 1:=0); (intpos 2:=−n); (intpos 3:=p0 +

1); while < 0(GBP, 2,AddTo(GBP, 1, intpos 3, 0); AddTo(GBP, 2, 1);

AddTo(GBP, 3, 1)).
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We now state the proposition

(8) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, b, c be Int positions, n, i, p0 be natural numbers, and f be a finite

sequence of elements of Z. Suppose that card I > 0 and f is FinSequence

on s, p0 and len f = n and s(b) = 0 and s(a) = 0 and s(intpos i) = −n

and s(c) = p0 + 1 and for every state t of SCMPDS such that there exists

a finite sequence g of elements of Z such that g is FinSequence on s, p0

and len g = t(intpos i) + n and t(b) =
∑

g and t(c) = p0 + 1 + len g and

t(a) = 0 and t(intpos i) < 0 and for every natural number i such that

i > p0 holds t(intpos i) = s(intpos i) holds (IExec(I, t))(a) = 0 and I is

closed on t and halting on t and (IExec(I, t))(intpos i) = t(intpos i)+1 and

there exists a finite sequence g of elements of Z such that g is FinSequence

on s, p0 and len g = t(intpos i) + n + 1 and (IExec(I, t))(c) = p0 + 1 +

len g and (IExec(I, t))(b) =
∑

g and for every natural number i such that

i > p0 holds (IExec(I, t))(intpos i) = s(intpos i). Then (IExec(while <

0(a, i, I), s))(b) =
∑

f and while < 0(a, i, I) is closed on s and while <

0(a, i, I) is halting on s.

One can prove the following proposition

(9) Let s be a state of SCMPDS, n, p0 be natural numbers, and f be a

finite sequence of elements of Z. Suppose p0 ­ 3 and f is FinSequence

on s, p0 and len f = n. Then (IExec(sum(n, p0), s))(intpos 1) =
∑

f and

sum(n, p0) is parahalting.

4. Computing Directly the Result of “while>0” Program by

Loop-Invariant

The scheme WhileGEnd deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while >

0(C,D,B),A)) = 0 but P[Dstate IExec(while > 0(C,D,B),A)]

provided the parameters meet the following requirements:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds

F(Dstate t) = 0 iff t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
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5. An Example: Computing Directly Fibonacci Sequence by

Loop-Invariant

Let n be a natural number. The functor Fib-macron yields a Program-block

and is defined by:

(Def. 2) Fib-macron = (GBP :=0); (intpos 1:=0); (intpos 2:=1); (intpos 3:=n);

while > 0(GBP, 3, ((GBP, 4) := (GBP, 2)); AddTo(GBP, 2,GBP, 1);

((GBP, 1) := (GBP, 4)); AddTo(GBP, 3,−1)).

We now state the proposition

(10) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, f0, f1 be Int positions, and n, i be natural numbers. Suppose

that

(i) card I > 0,

(ii) s(a) = 0,

(iii) s(f0) = 0,

(iv) s(f1) = 1,

(v) s(intpos i) = n, and

(vi) for every state t of SCMPDS and for every natural number k such

that n = t(intpos i) + k and t(f0) = Fib(k) and t(f1) = Fib(k + 1) and

t(a) = 0 and t(intpos i) > 0 holds (IExec(I, t))(a) = 0 and I is closed

on t and halting on t and (IExec(I, t))(intpos i) = t(intpos i) − 1 and

(IExec(I, t))(f0) = Fib(k + 1) and (IExec(I, t))(f1) = Fib(k + 1 + 1).

Then (IExec(while > 0(a, i, I), s))(f0) = Fib(n) and (IExec(while >

0(a, i, I), s))(f1) = Fib(n + 1) and while > 0(a, i, I) is closed on s and

while > 0(a, i, I) is halting on s.

One can prove the following proposition

(11) For every state s of SCMPDS and for every natural number n holds

(IExec(Fib-macron, s))(intpos 1) = Fib(n) and (IExec(Fib-macron, s))

(intpos 2) = Fib(n + 1) and Fib-macron is parahalting.

6. The Construction of “while<>0” Loop Program

Let a be an Int position, let i be an integer, and let I be a Program-block.

The functor while <> 0(a, i, I) yields a Program-block and is defined as follows:

(Def. 3) while <> 0(a, i, I) = ((a, i) <> 0 goto2); goto (card I + 2); I;

goto (−(card I + 2)).
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7. The Basic Property of “while<>0” Program

One can prove the following propositions:

(12) For every Int position a and for every integer i and for every Program-

block I holds cardwhile <> 0(a, i, I) = card I + 3.

(13) Let a be an Int position, i be an integer, m be a natural number, and

I be a Program-block. Then m < card I + 3 if and only if insposm ∈

domwhile <> 0(a, i, I).

(14) For every Int position a and for every integer i and for every Program-

block I holds inspos 0 ∈ domwhile <> 0(a, i, I) and inspos 1 ∈

domwhile <> 0(a, i, I).

(15) Let a be an Int position, i be an integer, and I be a Program-

block. Then (while <> 0(a, i, I))(inspos 0) = (a, i) <> 0 goto2 and

(while <> 0(a, i, I))(inspos 1) = goto (card I + 2) and (while <>

0(a, i, I))(inspos card I + 2) = goto (−(card I + 2)).

(16) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) = 0, then while <> 0(a, i, I) is

closed on s and while <> 0(a, i, I) is halting on s.

(17) Let s be a state of SCMPDS, I be a Program-block, a, c be Int positions,

and i be an integer. If s(DataLoc(s(a), i)) = 0, then IExec(while <>

0(a, i, I), s) = s+·Start-At(inspos card I + 3).

(18) Let s be a state of SCMPDS, I be a Program-block, a be an

Int position, and i be an integer. If s(DataLoc(s(a), i)) = 0, then

ICIExec(while<>0(a,i,I),s) = inspos card I + 3.

(19) Let s be a state of SCMPDS, I be a Program-block, a, b be Int positions,

and i be an integer. If s(DataLoc(s(a), i)) = 0, then (IExec(while <>

0(a, i, I), s))(b) = s(b).

Let I be a shiftable Program-block, let a be an Int position, and let i be an

integer. Observe that while <> 0(a, i, I) is shiftable.

Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while <> 0(a, i, I) is No-StopCode.

8. Computing Directly the Result of “while<>0” Program by

Loop-Invariant

Now we present three schemes. The scheme WhileNHalt deals with a unary

functor F yielding a natural number, a state A of SCMPDS, a No-StopCode
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shiftable Program-block B, an Int position C, an integerD, and a unary predicate

P, and states that:

F(A) = F(A) or P[A] but while <> 0(C,D,B) is closed on A

but while <> 0(C,D,B) is halting on A

provided the following conditions are satisfied:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) = 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

The scheme WhileNExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while <> 0(C,D,B),A) =

IExec(while <> 0(C,D,B), IExec(B,A))

provided the parameters meet the following conditions:

• cardB > 0,

• A(DataLoc(A(C),D)) 6= 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) = 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

The scheme WhileNEnd deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while <>

0(C,D,B),A)) = 0 but P[Dstate IExec(while <> 0(C,D,B),A)]

provided the parameters satisfy the following conditions:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds

F(Dstate t) = 0 iff t(DataLoc(A(C),D)) = 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
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We now state the proposition

(20) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, b, c be Int positions, and i, d be integers. Suppose that

(i) card I > 0,

(ii) s(a) = d,

(iii) s(b) > 0,

(iv) s(c) > 0,

(v) s(DataLoc(d, i)) = s(b)− s(c), and

(vi) for every state t of SCMPDS such that t(b) > 0 and t(c) > 0

and t(a) = d and t(DataLoc(d, i)) = t(b) − t(c) and t(b) 6= t(c) holds

(IExec(I, t))(a) = d and I is closed on t and halting on t and if t(b) > t(c),

then (IExec(I, t))(b) = t(b) − t(c) and (IExec(I, t))(c) = t(c) and if

t(b) ¬ t(c), then (IExec(I, t))(c) = t(c) − t(b) and (IExec(I, t))(b) = t(b)

and (IExec(I, t))(DataLoc(d, i)) = (IExec(I, t))(b)− (IExec(I, t))(c).

Then while <> 0(a, i, I) is closed on s and while <> 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) 6= 0, then IExec(while <> 0(a, i, I), s) =

IExec(while <> 0(a, i, I), IExec(I, s)).

9. An Example: Computing Greatest Common Divisor (Euclide

Algorithm) by Loop-Invariant

The Program-block GCD-Algorithm is defined by:

(Def. 4) GCD-Algorithm = (GBP :=0); ((GBP, 3) := (GBP, 1));

SubFrom(GBP, 3,GBP, 2); while <> 0(GBP, 3, (if GBP > 3 then

Load(SubFrom(GBP, 1,GBP, 2)) else Load(SubFrom(GBP, 2,GBP, 1)));

((GBP, 3) := (GBP, 1)); SubFrom(GBP, 3,GBP, 2)).

Next we state the proposition

(21) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, b, c be Int positions, and i, d be integers. Suppose that

(i) card I > 0,

(ii) s(a) = d,

(iii) s(b) > 0,

(iv) s(c) > 0,

(v) s(DataLoc(d, i)) = s(b)− s(c), and

(vi) for every state t of SCMPDS such that t(b) > 0 and t(c) > 0

and t(a) = d and t(DataLoc(d, i)) = t(b) − t(c) and t(b) 6= t(c) holds

(IExec(I, t))(a) = d and I is closed on t and halting on t and if t(b) > t(c),

then (IExec(I, t))(b) = t(b) − t(c) and (IExec(I, t))(c) = t(c) and if

t(b) ¬ t(c), then (IExec(I, t))(c) = t(c) − t(b) and (IExec(I, t))(b) = t(b)

and (IExec(I, t))(DataLoc(d, i)) = (IExec(I, t))(b)− (IExec(I, t))(c).
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Then (IExec(while <> 0(a, i, I), s))(b) = s(b) gcd s(c) and (IExec(while <>

0(a, i, I), s))(c) = s(b) gcd s(c).

We now state the proposition

(22) cardGCD-Algorithm = 12.

The following proposition is true

(23) Let s be a state of SCMPDS and x, y be integers. Sup-

pose s(intpos 1) = x and s(intpos 2) = y and x > 0 and

y > 0. Then (IExec(GCD-Algorithm, s))(intpos 1) = x gcd y and

(IExec(GCD-Algorithm, s))(intpos 2) = x gcd y and GCD-Algorithm is

closed on s and GCD-Algorithm is halting on s.
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