The Properties of Instructions of SCM over Ring

Artur Korniłowicz
University of Białystok

MML Identifier: SCMRING3.

The papers $[16],[9],[11],[12],[15],[19],[2],[3],[5],[6],[4],[1],[20],[21],[17]$, [8], [7], [13], [18], [14], and [10] provide the terminology and notation for this paper.

For simplicity, we adopt the following convention: R denotes a good ring, r denotes an element of the carrier of R, a, b denote Data-Locations of R, i_{1}, i_{2}, i_{3} denote instruction-locations of $\mathbf{S C M}(R), I$ denotes an instruction of $\mathbf{S C M}(R)$, s_{1}, s_{2} denote states of $\operatorname{SCM}(R), T$ denotes an instruction type of $\mathbf{S C M}(R)$, and k denotes a natural number.

Let us note that \mathbb{Z} is infinite.
One can verify that INT.Ring is infinite and good.
Let us mention that there exists a 1-sorted structure which is strict and infinite.

Let us mention that there exists a ring which is strict, infinite, and good.
We now state the proposition
(1) $\operatorname{ObjectKind}(a)=$ the carrier of R.

Let R be a good ring, let l_{1}, l_{2} be Data-Locations of R, and let a, b be elements of R. Then $\left[l_{1} \longmapsto a, l_{2} \longmapsto b\right]$ is a finite partial state of $\operatorname{SCM}(R)$.

We now state a number of propositions:
(2) $\quad a \notin$ the instruction locations of $\operatorname{SCM}(R)$.
(3) $a \neq \mathbf{I C}_{\mathbf{S C M}(R)}$.
(4) Data-Loc ${ }_{S C M} \neq$ the instruction locations of $\mathbf{S C M}(R)$.
(5) For every object o of $\mathbf{S C M}(R)$ holds $o=\mathbf{I C}_{\mathbf{S C M}(R)}$ or $o \in$ the instruction locations of $\operatorname{SCM}(R)$ or o is a Data-Location of R.
(6) If $i_{2} \neq i_{3}$, then $\operatorname{Next}\left(i_{2}\right) \neq \operatorname{Next}\left(i_{3}\right)$.
(7) If s_{1} and s_{2} are equal outside the instruction locations of $\operatorname{SCM}(R)$, then $s_{1}(a)=s_{2}(a)$.
(8) \quad InsCode $\left(\right.$ halt $\left._{\mathbf{S C M}(R)}\right)=0$.
(9) $\operatorname{InsCode}(a:=b)=1$.
(10) $\operatorname{InsCode}(\operatorname{AddTo}(a, b))=2$.
(11) $\operatorname{InsCode}(\operatorname{SubFrom}(a, b))=3$.
(12) $\operatorname{InsCode}(\operatorname{MultBy}(a, b))=4$.
(13) $\operatorname{InsCode}(a:=r)=5$.
(14) InsCode(goto $\left.i_{2}\right)=6$.
(15) $\operatorname{InsCode}\left(\right.$ if $a=0$ goto $\left.i_{2}\right)=7$.
(16) $\operatorname{If} \operatorname{InsCode}(I)=0$, then $I=\operatorname{halt}_{\mathbf{S C M}(R)}$.
(17) If $\operatorname{InsCode}(I)=1$, then there exist a, b such that $I=a:=b$.
(18) If $\operatorname{InsCode}(I)=2$, then there exist a, b such that $I=\operatorname{AddTo}(a, b)$.
(19) If $\operatorname{InsCode}(I)=3$, then there exist a, b such that $I=\operatorname{SubFrom}(a, b)$.
(20) If $\operatorname{InsCode}(I)=4$, then there exist a, b such that $I=\operatorname{MultBy}(a, b)$.
(21) If $\operatorname{InsCode}(I)=5$, then there exist a, r such that $I=a:=r$.
(22) If $\operatorname{InsCode}(I)=6$, then there exists i_{3} such that $I=$ goto i_{3}.
(23) If $\operatorname{InsCode}(I)=7$, then there exist a, i_{2} such that $I=$ if $a=0$ goto i_{2}.
(24) \quad AddressPart $\left(\boldsymbol{h a l t}_{\mathbf{S C M}(R)}\right)=\varepsilon$.
(25) AddressPart $(a:=b)=\langle a, b\rangle$.
(26) $\operatorname{AddressPart}(\operatorname{AddTo}(a, b))=\langle a, b\rangle$.
(27) $\operatorname{AddressPart(SubFrom}(a, b))=\langle a, b\rangle$.
(28) $\operatorname{AddressPart}(\operatorname{MultBy}(a, b))=\langle a, b\rangle$.
(29) AddressPart $(a:=r)=\langle a, r\rangle$.
(30) AddressPart (goto $\left.i_{2}\right)=\left\langle i_{2}\right\rangle$.
(31) AddressPart(if $a=0$ goto $\left.i_{2}\right)=\left\langle i_{2}, a\right\rangle$.
(32) If $T=0$, then AddressParts $T=\{0\}$.

Let us consider R, T. Observe that AddressParts T is non empty.
We now state a number of propositions:
(33) If $T=1$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(34) If $T=2$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(35) If $T=3$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(36) If $T=4$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(37) If $T=5$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(38) If $T=6$, then dom $\prod_{\text {AddressParts } T}=\{1\}$.
(39) If $T=7$, then dom $\prod_{\text {AddressParts } T}=\{1,2\}$.
(40) $\prod_{\text {AddressParts InsCode }(a:=b)}(1)=$ Data-LocsCM .
(41) $\prod_{\text {AddressParts } \operatorname{InsCode}(a:=b)}(2)=$ Data-Locscm .
(42) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{AddTo}(a, b))}(1)=$ Data-Locscm .
(43) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{AddTo}(a, b))}(2)=$ Data-Locscm .
(44) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{SubFrom}(a, b))}(1)=$ Data-Locscm $_{\text {SCM }}$.
(45) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{SubFrom}(a, b))}(2)=$ Data-LocsCM .
(46) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{MultBy}(a, b))}(1)=$ Data-Locscm.
(47) $\prod_{\text {AddressParts } \operatorname{InsCode}(\operatorname{MultBy}(a, b))}(2)=$ Data-LocsCM .
(48) $\prod_{\text {AddressParts } \operatorname{InsCode}(a:=r)}(1)=$ Data-Locscm .
(49) $\prod_{\text {AddressPartsInsCode }(a:=r)}(2)=$ the carrier of R.
(50) $\prod_{\text {AddressParts } \operatorname{InsCode}\left(\text { goto } i_{2}\right)}(1)=$ the instruction locations of $\operatorname{SCM}(R)$.
(51) $\prod_{\left.\text {AddressParts InsCode(if } a=0 \text { goto } i_{2}\right)}(1)=$ the instruction locations of $\operatorname{SCM}(R)$.
(52) $\prod_{\text {AddressParts InsCode }\left(\mathbf{i f} a=0 \text { goto } i_{2}\right)}(2)=$ Data-Locscm.
(53) $\operatorname{NIC}\left(\right.$ halt $\left._{\mathbf{S C M}(R)}, i_{1}\right)=\left\{i_{1}\right\}$.

Let us consider R. One can check that $\operatorname{JUMP}\left(\right.$ halt $\left._{\mathbf{S C M}(R)}\right)$ is empty.
Next we state the proposition
(54) $\operatorname{NIC}\left(a:=b, i_{1}\right)=\left\{\operatorname{Next}\left(i_{1}\right)\right\}$.

Let us consider R, a, b. Observe that $\operatorname{JUMP}(a:=b)$ is empty.
We now state the proposition
(55) $\operatorname{NIC}\left(\operatorname{AddTo}(a, b), i_{1}\right)=\left\{\operatorname{Next}\left(i_{1}\right)\right\}$.

Let us consider R, a, b. One can check that $\operatorname{JUMP}(\operatorname{AddTo}(a, b))$ is empty. One can prove the following proposition
(56) $\operatorname{NIC}\left(\operatorname{SubFrom}(a, b), i_{1}\right)=\left\{\operatorname{Next}\left(i_{1}\right)\right\}$.

Let us consider R, a, b. Note that $\operatorname{JUMP}(\operatorname{SubFrom}(a, b))$ is empty.
Next we state the proposition
(57) $\operatorname{NIC}\left(\operatorname{MultBy}(a, b), i_{1}\right)=\left\{\operatorname{Next}\left(i_{1}\right)\right\}$.

Let us consider R, a, b. One can verify that $\operatorname{JUMP}(\operatorname{MultBy}(a, b))$ is empty. One can prove the following proposition
(58) $\operatorname{NIC}\left(a:=r, i_{1}\right)=\left\{\operatorname{Next}\left(i_{1}\right)\right\}$.

Let us consider R, a, r. Note that $\operatorname{JUMP}(a:=r)$ is empty.
The following propositions are true:

(60) $\operatorname{JUMP}\left(\right.$ goto $\left.i_{2}\right)=\left\{i_{2}\right\}$.

Let us consider R, i_{2}. Note that $\operatorname{JUMP}\left(\right.$ goto $\left.i_{2}\right)$ is non empty and trivial. We now state two propositions:
(61) $i_{2} \in \operatorname{NIC}\left(\mathbf{i f} a=0\right.$ goto $\left.i_{2}, i_{1}\right)$ and $\operatorname{NIC(if~} a=0$ goto $\left.i_{2}, i_{1}\right) \subseteq$ $\left\{i_{2}, \operatorname{Next}\left(i_{1}\right)\right\}$.
(62) $\operatorname{JUMP}\left(\right.$ if $a=0$ goto $\left.i_{2}\right)=\left\{i_{2}\right\}$.

Let us consider R, a, i_{2}. Observe that $\operatorname{JUMP}\left(\right.$ if $a=0$ goto $\left.i_{2}\right)$ is non empty and trivial.

One can prove the following two propositions:
(63) $\operatorname{SUCC}\left(i_{1}\right)=\left\{i_{1}, \operatorname{Next}\left(i_{1}\right)\right\}$.
(64) Let f be a function from \mathbb{N} into the instruction locations of $\operatorname{SCM}(R)$. Suppose that for every natural number k holds $f(k)=\mathbf{i}_{k}$. Then
(i) $\quad f$ is bijective, and
(ii) for every natural number k holds $f(k+1) \in \operatorname{SUCC}(f(k))$ and for every natural number j such that $f(j) \in \operatorname{SUCC}(f(k))$ holds $k \leqslant j$.
Let us consider R. Note that $\operatorname{SCM}(R)$ is standard.
Next we state three propositions:
(65) $\mathrm{il}_{\operatorname{SCM}(R)}(k)=\mathbf{i}_{k}$.

(67) $\operatorname{Next}\left(i_{1}\right)=\operatorname{NextLoc} i_{1}$.

Let R be a good ring and let k be a natural number. The functor $\mathrm{dl}_{R}(k)$ yields a Data-Location of R and is defined as follows:
(Def. 1) $\mathrm{dl}_{R}(k)=\mathbf{d}_{k}$.
Let us consider R. Observe that $\operatorname{InsCode}\left(\right.$ halt $\left._{\mathbf{S C M}(R)}\right)$ is jump-only.
Let us consider R. Note that halt $\mathbf{S C M}(R)$ is jump-only.
Let us consider R, i_{2}. Note that InsCode(goto i_{2}) is jump-only.
Let us consider R, i_{2}. One can check that goto i_{2} is jump-only.
Let us consider R, a, i_{2}. Observe that $\operatorname{InsCode}\left(\mathbf{i f} a=0\right.$ goto $\left.i_{2}\right)$ is jumponly.

Let us consider R, a, i_{2}. Note that if $a=0$ goto i_{2} is jump-only.
In the sequel S denotes a non trivial good ring, p, q denote Data-Locations of S, and w denotes an element of the carrier of S.

Let us consider S, p, q. One can check that $\operatorname{InsCode}(p:=q)$ is non jump-only.
Let us consider S, p, q. One can check that $p:=q$ is non jump-only.
Let us consider S, p, q. Observe that $\operatorname{InsCode}(\operatorname{AddTo}(p, q))$ is non jump-only.
Let us consider S, p, q. Note that $\operatorname{AddTo}(p, q)$ is non jump-only.
Let us consider S, p, q. Note that $\operatorname{InsCode}(\operatorname{SubFrom}(p, q))$ is non jump-only.
Let us consider S, p, q. Note that $\operatorname{SubFrom}(p, q)$ is non jump-only.
Let us consider S, p, q. Observe that $\operatorname{InsCode}(\operatorname{MultBy}(p, q))$ is non jumponly.

Let us consider S, p, q. One can verify that $\operatorname{MultBy}(p, q)$ is non jump-only.
Let us consider S, p, w. Note that $\operatorname{InsCode}(p:=w)$ is non jump-only.
Let us consider S, p, w. Note that $p:=w$ is non jump-only.
Let us consider R, a, b. Observe that $a:=b$ is sequential.
Let us consider R, a, b. Observe that $\operatorname{AddTo}(a, b)$ is sequential.
Let us consider R, a, b. Note that $\operatorname{SubFrom}(a, b)$ is sequential.

Let us consider R, a, b. One can verify that $\operatorname{MultBy}(a, b)$ is sequential.
Let us consider R, a, r. Note that $a:=r$ is sequential.
Let us consider R, i_{2}. One can check that goto i_{2} is non sequential.
Let us consider R, a, i_{2}. Observe that if $a=0$ goto i_{2} is non sequential.
Let us consider R, i_{2}. Note that goto i_{2} is non instruction location free.
Let us consider R, a, i_{2}. Note that if $a=0$ goto i_{2} is non instruction location free.

Let us consider R. One can check that $\mathbf{S C M}(R)$ is homogeneous and explicit-jump-instruction and has ins-loc-in-jump.

Let us consider R. Observe that $\mathbf{S C M}(R)$ is regular.
Next we state two propositions:

(69) $\operatorname{IncAddr}\left(\mathbf{i f} a=0\right.$ goto $\left.i_{2}, k\right)=$ if $a=0$ goto il $_{\mathbf{S C M}(R)}\left(\operatorname{locnum}\left(i_{2}\right)+k\right)$.

Let us consider R. One can check that $\operatorname{SCM}(R)$ is IC-good and Execpreserving.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Artur Korniłowicz. The basic properties of SCM over ring. Formalized Mathematics, 7(2):301-305, 1998.
[8] Artur Korniłowicz. The construction of SCM over ring. Formalized Mathematics, 7(2):295-300, 1998.
[9] Artur Korniłowicz. On the composition of macro instructions of standard computers. Formalized Mathematics, 9(2):303-316, 2001.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[13] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, 1996.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[16] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruction locations. Formalized Mathematics, 9(2):291-301, 2001.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 14, 2000

