The Evaluation of Polynomials

Robert Milewski
University of Białystok

MML Identifier: POLYNOM4.

The articles [11], [15], [12], [3], [2], [17], [4], [18], [1], [13], [14], [9], [6], [7], [19], [16], [20], [5], [8], and [10] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:
(1) For every natural number n holds $0-^{\prime} n=0$.
(2) Let D be a set, p be a finite sequence of elements of D, and i be a natural number. If $i<\operatorname{len} p$, then $p \upharpoonright(i+1)=(p \upharpoonright i)^{\wedge}\langle p(i+1)\rangle$.
(3) Let D be a non empty set, p be a finite sequence of elements of D, and n be a natural number. If $1 \leqslant n$ and $n \leqslant \operatorname{len} p$, then $p=\left(p \upharpoonright\left(n-^{\prime} 1\right)\right)^{\wedge}$ $\langle p(n)\rangle$ ~ $\left(p_{\text {l }}\right)$.
(4) Let L be an add-associative right zeroed right complementable non empty loop structure and n be a natural number. Then $\sum\left(n \mapsto 0_{L}\right)=0_{L}$.

2. About Polynomials

The following propositions are true:
(5) Let L be an add-associative right zeroed right complementable left distributive non empty double loop structure and p be a sequence of L. Then 0. $L * p=\mathbf{0}$. L.
(6) For every non empty zero structure L holds len $\mathbf{0}$. $L=0$.
(7) For every non degenerated non empty multiplicative loop with zero structure L holds len 1. $L=1$.
(8) For every non empty zero structure L and for every Polynomial p of L such that len $p=0$ holds $p=\mathbf{0} . L$.
(9) Let L be a right zeroed non empty loop structure, p, q be Polynomials of L, and n be a natural number. If $n \geqslant \operatorname{len} p$ and $n \geqslant \operatorname{len} q$, then $n \geqslant$ $\operatorname{len}(p+q)$.
(10) Let L be an add-associative right zeroed right complementable non empty loop structure and p, q be Polynomials of L. If len $p \neq \operatorname{len} q$, then $\operatorname{len}(p+q)=\max (\operatorname{len} p, \operatorname{len} q)$.
(11) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a Polynomial of L. Then $\operatorname{len}(-p)=\operatorname{len} p$.
(12) Let L be an add-associative right zeroed right complementable non empty loop structure, p, q be Polynomials of L, and n be a natural number. If $n \geqslant \operatorname{len} p$ and $n \geqslant \operatorname{len} q$, then $n \geqslant \operatorname{len}(p-q)$.
(13) Let L be an add-associative right zeroed right complementable distributive commutative associative left unital field-like non empty double loop structure and p, q be Polynomials of L. If len $p>0$ and len $q>0$, then $\operatorname{len}(p * q)=(\operatorname{len} p+\operatorname{len} q)-1$.

3. Leading Monomials

Let L be a non empty zero structure and let p be a Polynomial of L. The functor Leading-Monomial p yielding a sequence of L is defined as follows:
(Def. 1) (Leading-Monomial $p)\left(\operatorname{len} p-^{\prime} 1\right)=p\left(\operatorname{len} p-^{\prime} 1\right)$ and for every natural number n such that $n \neq \operatorname{len} p-^{\prime} 1$ holds (Leading-Monomial $\left.p\right)(n)=0_{L}$.
The following proposition is true
(14) For every non empty zero structure L and for every Polynomial p of L holds Leading-Monomial $p=\mathbf{0} . L+\cdot\left(\operatorname{len} p-^{\prime} 1, p\left(\operatorname{len} p-^{\prime} 1\right)\right)$.
Let L be a non empty zero structure and let p be a Polynomial of L. Observe that Leading-Monomial p is finite-Support.

We now state several propositions:
(15) For every non empty zero structure L and for every Polynomial p of L such that len $p=0$ holds Leading-Monomial $p=\mathbf{0} . L$.
(16) For every non empty zero structure L holds Leading-Monomial $\mathbf{0} . L=$ 0. L.
(17) For every non degenerated non empty multiplicative loop with zero structure L holds Leading-Monomial 1. $L=1 . L$.
(18) For every non empty zero structure L and for every Polynomial p of L holds len Leading-Monomial $p=\operatorname{len} p$.
(19) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a Polynomial of L. Suppose len $p \neq 0$. Then there exists a Polynomial q of L such that $\operatorname{len} q<\operatorname{len} p$ and $p=q+$ Leading-Monomial p and for every natural number n such that $n<\operatorname{len} p-1$ holds $q(n)=p(n)$.

4. Evaluation of Polynomials

Let L be a unital non empty double loop structure, let p be a Polynomial of L, and let x be an element of the carrier of L. The functor $\operatorname{eval}(p, x)$ yields an element of L and is defined by the condition (Def. 2).
(Def. 2) There exists a finite sequence F of elements of the carrier of L such that $\operatorname{eval}(p, x)=\sum F$ and len $F=\operatorname{len} p$ and for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=p\left(n-^{\prime} 1\right) \cdot \operatorname{power}_{L}\left(x, n-^{\prime} 1\right)$.
Next we state several propositions:
(20) For every unital non empty double loop structure L and for every element x of the carrier of L holds eval $(\mathbf{0} . L, x)=0_{L}$.
(21) Let L be a well unital add-associative right zeroed right complementable associative non degenerated non empty double loop structure and x be an element of the carrier of L. Then $\operatorname{eval}(\mathbf{1} . L, x)=\mathbf{1}_{L}$.
(22) Let L be an Abelian add-associative right zeroed right complementable unital left distributive non empty double loop structure, p, q be Polynomials of L, and x be an element of the carrier of L. Then $\operatorname{eval}(p+q, x)=$ $\operatorname{eval}(p, x)+\operatorname{eval}(q, x)$.
(23) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p be a Polynomial of L, and x be an element of the carrier of L. Then $\operatorname{eval}(-p, x)=-\operatorname{eval}(p, x)$.
(24) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p, q be Polynomials of L, and x be an element of the carrier of L. Then $\operatorname{eval}(p-q, x)=$ $\operatorname{eval}(p, x)-\operatorname{eval}(q, x)$.
(25) Let L be an add-associative right zeroed right complementable right zeroed distributive unital non empty double loop structure, p be a Polynomial of L, and x be an element of the carrier of L. Then $\operatorname{eval}($ Leading-Monomial $p, x)=p\left(\operatorname{len} p-^{\prime} 1\right) \cdot \operatorname{power}_{L}\left(x, \operatorname{len} p-^{\prime} 1\right)$.
(26) Let L be an add-associative right zeroed right complementable distributive commutative associative field-like left unital non degenerated non
empty double loop structure, p, q be Polynomials of L, and x be an element of the carrier of L. Then $\operatorname{eval(Leading-Monomial~} p * q, x)=$ $\operatorname{eval}($ Leading-Monomial $p, x) \cdot \operatorname{eval}(q, x)$.
(27) Let L be a field, p, q be Polynomials of L, and x be an element of the carrier of L. Then $\operatorname{eval}(p * q, x)=\operatorname{eval}(p, x) \cdot \operatorname{eval}(q, x)$.

5. Evaluation Homomorphism

Let L be an add-associative right zeroed right complementable distributive unital non empty double loop structure and let x be an element of the carrier of L. The functor Polynom-Evaluation (L, x) yields a map from Polynom-Ring L into L and is defined by:
(Def. 3) For every Polynomial p of L holds (Polynom-Evaluation $(L, x))(p)=$ $\operatorname{eval}(p, x)$.
Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated non empty double loop structure and let x be an element of the carrier of L. One can verify that Polynom-Evaluation (L, x) is unity-preserving.

Let L be an Abelian add-associative right zeroed right complementable distributive unital non empty double loop structure and let x be an element of the carrier of L. One can verify that Polynom-Evaluation (L, x) is additive.

Let L be a field and let x be an element of the carrier of L. Observe that Polynom-Evaluation (L, x) is multiplicative.

Let L be a field and let x be an element of the carrier of L. Note that Polynom-Evaluation (L, x) is ring homomorphism.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[11] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[14] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001
[15] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185-191, 1991.
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[17] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

