The Ring of Polynomials

Robert Milewski University of Białystok

MML Identifier: POLYNOM3.

The papers [12], [16], [13], [21], [2], [3], [7], [17], [4], [5], [10], [18], [1], [14], [15], [22], [23], [19], [6], [20], [8], [11], and [9] provide the notation and terminology for this paper.

1. Preliminaries

The following four propositions are true:

- (1) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a finite sequence of elements of the carrier of L. If for every natural number i such that $i \in \text{dom } p$ holds $p(i) = 0_L$, then $\sum p = 0_L$.
- (2) Let V be an Abelian add-associative right zeroed non empty loop structure and p be a finite sequence of elements of the carrier of V. Then $\sum p = \sum \text{Rev}(p).$
- (3) For every finite sequence p of elements of \mathbb{R} holds $\sum p = \sum \text{Rev}(p)$.
- (4) For every finite sequence p of elements of \mathbb{N} and for every natural number i such that $i \in \text{dom } p$ holds $\sum p \ge p(i)$.

Let D be a non empty set, let i be a natural number, and let p be a finite sequence of elements of D. Then $p_{|i|}$ is a finite sequence of elements of D.

Let D be a non empty set and let a, b be elements of D. Then $\langle a, b \rangle$ is an element of D^2 .

Let D be a non empty set, let k, n be natural numbers, let p be an element of D^k , and let q be an element of D^n . Then $p \cap q$ is an element of D^{k+n} .

Let D be a non empty set and let n be a natural number. One can check that every finite sequence of elements of D^n is finite sequence yielding.

> C 2001 University of Białystok ISSN 1426-2630

Let D be a non empty set, let k, n be natural numbers, let p be a finite sequence of elements of D^k , and let q be a finite sequence of elements of D^n . Then $p \cap q$ is an element of $(D^{k+n})^*$.

In this article we present several logical schemes. The scheme NonUniqPiSe-qExD deals with a non empty set \mathcal{A} , a natural number \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

There exists a finite sequence p of elements of \mathcal{A} such that dom p =Seg \mathcal{B} and for every natural number k such that $k \in$ Seg \mathcal{B} holds $\mathcal{P}[k, \pi_k p]$

provided the following condition is satisfied:

• For every natural number k such that $k \in \text{Seg }\mathcal{B}$ there exists an element d of \mathcal{A} such that $\mathcal{P}[k, d]$.

The scheme SeqOfSeqLambdaD deals with a non empty set \mathcal{A} , a natural number \mathcal{B} , a unary functor \mathcal{F} yielding a natural number, and a binary functor \mathcal{G} yielding an element of \mathcal{A} , and states that:

There exists a finite sequence p of elements of \mathcal{A}^* such that

(i) $\operatorname{len} p = \mathcal{B}$, and

(ii) for every natural number k such that $k \in \operatorname{Seg} \mathcal{B}$ holds

len $\pi_k p = \mathcal{F}(k)$ and for every natural number n such that $n \in$ dom $\pi_k p$ holds $(\pi_k p)(n) = \mathcal{G}(k, n)$

for all values of the parameters.

2. The Lexicographic Order of Finite Sequences

Let n be a natural number and let p, q be elements of \mathbb{N}^n . The predicate p < q is defined by the condition (Def. 1).

(Def. 1) There exists a natural number *i* such that $i \in \text{Seg } n$ and p(i) < q(i) and for every natural number *k* such that $1 \leq k$ and k < i holds p(k) = q(k).

Let us note that the predicate p < q is antisymmetric. We introduce q > p as a synonym of p < q.

Let n be a natural number and let p, q be elements of \mathbb{N}^n . The predicate $p \leq q$ is defined by:

(Def. 2) p < q or p = q.

Let us note that the predicate $p \leq q$ is reflexive. We introduce $q \geq p$ as a synonym of $p \leq q$.

We now state three propositions:

- (5) Let n be a natural number and p, q, r be elements of \mathbb{N}^n . Then
- (i) if p < q and q < r, then p < r, and
- (ii) if p < q and $q \leq r$ or $p \leq q$ and q < r or $p \leq q$ and $q \leq r$, then $p \leq r$.

340

- (6) Let n be a natural number and p, q be elements of \mathbb{N}^n . Suppose $p \neq q$. Then there exists a natural number i such that $i \in \text{Seg } n$ and $p(i) \neq q(i)$ and for every natural number k such that $1 \leq k$ and k < i holds p(k) = q(k).
- (7) For every natural number n and for all elements p, q of \mathbb{N}^n holds $p \leq q$ or p > q.

Let n be a natural number. The functor Tuples Order n yielding an order in \mathbb{N}^n is defined by:

(Def. 3) For all elements p, q of \mathbb{N}^n holds $\langle p, q \rangle \in \text{TuplesOrder } n$ iff $p \leq q$. Let n be a natural number. Note that TuplesOrder n is linear-order.

3. Decomposition of Natural Numbers

Let *i* be a non empty natural number and let *n* be a natural number. The functor Decomp(n, i) yielding a finite sequence of elements of \mathbb{N}^i is defined by:

(Def. 4) There exists a finite subset A of \mathbb{N}^i such that $\operatorname{Decomp}(n,i) = \operatorname{SgmX}(\operatorname{TuplesOrder} i, A)$ and for every element p of \mathbb{N}^i holds $p \in A$ iff $\sum p = n$.

Let *i* be a non empty natural number and let *n* be a natural number. Note that Decomp(n, i) is non empty one-to-one and finite sequence yielding.

The following propositions are true:

- (8) For every natural number n holds len Decomp(n, 1) = 1.
- (9) For every natural number n holds len Decomp(n, 2) = n + 1.
- (10) For every natural number n holds $\text{Decomp}(n, 1) = \langle \langle n \rangle \rangle$.
- (11) For all natural numbers i, j, n, k_1, k_2 such that $(\text{Decomp}(n, 2))(i) = \langle k_1, n k_1 \rangle$ and $(\text{Decomp}(n, 2))(j) = \langle k_2, n k_2 \rangle$ holds i < j iff $k_1 < k_2$.
- (12) For all natural numbers i, n, k_1, k_2 such that $(\text{Decomp}(n, 2))(i) = \langle k_1, n-k_1 \rangle$ and $(\text{Decomp}(n, 2))(i+1) = \langle k_2, n-k_2 \rangle$ holds $k_2 = k_1 + 1$.
- (13) For every natural number n holds $(\text{Decomp}(n, 2))(1) = \langle 0, n \rangle$.
- (14) For all natural numbers n, i such that $i \in \text{Seg}(n + 1)$ holds $(\text{Decomp}(n, 2))(i) = \langle i 1, (n + 1) i \rangle.$

Let L be a non empty groupoid, let p, q, r be sequences of L, and let t be a finite sequence of elements of \mathbb{N}^3 . The functor $\operatorname{prodTuples}(p,q,r,t)$ yielding an element of (the carrier of L)^{*} is defined by:

(Def. 5) len prodTuples(p, q, r, t) = len t and for every natural number k such that $k \in \text{Seg len } t$ holds $(\text{prodTuples}(p, q, r, t))(k) = p(\pi_1 \pi_k t) \cdot q(\pi_2 \pi_k t) \cdot r(\pi_3 \pi_k t).$

One can prove the following propositions:

ROBERT MILEWSKI

- (15) Let L be a non empty groupoid, p, q, r be sequences of L, t be a finite sequence of elements of \mathbb{N}^3 , P be a permutation of dom t, and t_1 be a finite sequence of elements of \mathbb{N}^3 . If $t_1 = t \cdot P$, then $\operatorname{prodTuples}(p, q, r, t_1) = \operatorname{prodTuples}(p, q, r, t) \cdot P$.
- (16) For every set D and for every finite sequence f of elements of D^* and for every natural number i holds $\overline{\overline{f}\restriction i} = \overline{\overline{f}}\restriction i$.
- (17) Let p be a finite sequence of elements of \mathbb{R} and q be a finite sequence of elements of \mathbb{N} . If p = q, then for every natural number i holds $p \upharpoonright i = q \upharpoonright i$.
- (18) For every finite sequence p of elements of \mathbb{N} and for all natural numbers i, j such that $i \leq j$ holds $\sum (p \upharpoonright i) \leq \sum (p \upharpoonright j)$.
- (19) Let p be a finite sequence of elements of \mathbb{R} and i be a natural number. If i < len p, then $p \upharpoonright (i+1) = (p \upharpoonright i) \cap \langle p(i+1) \rangle$.
- (20) Let p be a finite sequence of elements of \mathbb{R} and i be a natural number. If i < len p, then $\sum (p \upharpoonright (i+1)) = \sum (p \upharpoonright i) + p(i+1)$.
- (21) Let p be a finite sequence of elements of \mathbb{N} and i, j, k_1, k_2 be natural numbers. Suppose $i < \operatorname{len} p$ and $j < \operatorname{len} p$ and $p(i+1) \neq 0$ and $p(j+1) \neq 0$ and $1 \leqslant k_1$ and $1 \leqslant k_2$ and $k_1 \leqslant p(i+1)$ and $k_2 \leqslant p(j+1)$ and $\sum (p \upharpoonright i) + k_1 = \sum (p \upharpoonright j) + k_2$. Then i = j and $k_1 = k_2$.
- (22) Let D_1 , D_2 be sets, f_1 be a finite sequence of elements of D_1^* , f_2 be a finite sequence of elements of D_2^* , and i_1 , i_2 , j_1 , j_2 be natural numbers. Suppose $i_1 \in \text{dom } f_1$ and $i_2 \in \text{dom } f_2$ and $j_1 \in \text{dom } f_1(i_1)$ and $j_2 \in \text{dom } f_2(i_2)$ and $\overline{f_1} = \overline{f_2}$ and $\sum(\overline{f_1} \upharpoonright (i_1 - i_1)) + j_1 = \sum(\overline{f_2} \upharpoonright (i_2 - i_1)) + j_2$. Then $i_1 = i_2$ and $j_1 = j_2$.

4. POLYNOMIALS

Let L be a non empty zero structure. A Polynomial of L is an algebraic sequence of L.

The following proposition is true

(23) Let L be a non empty zero structure, p be a Polynomial of L, and n be a natural number. Then $n \ge \ln p$ if and only if the length of p is at most n.

Now we present two schemes. The scheme *PolynomialLambda* deals with a non empty loop structure \mathcal{A} , a natural number \mathcal{B} , and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A} , and states that:

There exists a Polynomial p of \mathcal{A} such that $\operatorname{len} p \leq \mathcal{B}$ and for every natural number n such that $n < \mathcal{B}$ holds $p(n) = \mathcal{F}(n)$

for all values of the parameters.

342

The scheme ExDLoopStrSeq deals with a non empty loop structure \mathcal{A} and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A} , and states that:

There exists a sequence S of A such that for every natural number n holds $S(n) = \mathcal{F}(n)$

for all values of the parameters.

Let L be a non empty loop structure and let p, q be sequences of L. The functor p + q yielding a sequence of L is defined by:

(Def. 6) For every natural number n holds (p+q)(n) = p(n) + q(n).

Let L be a right zeroed non empty loop structure and let p, q be Polynomials of L. Note that p + q is finite-Support.

One can prove the following two propositions:

- (24) Let L be a right zeroed non empty loop structure, p, q be Polynomials of L, and n be a natural number. Suppose the length of p is at most n and the length of q is at most n. Then the length of p + q is at most n.
- (25) For every right zeroed non empty loop structure L and for all Polynomials p, q of L holds support $(p+q) \subseteq$ support $p \cup$ support q.

Let L be an Abelian non empty loop structure and let p, q be sequences of L. Let us note that the functor p + q is commutative.

One can prove the following proposition

(26) For every add-associative non empty loop structure L and for all sequences p, q, r of L holds (p+q) + r = p + (q+r).

Let L be a non empty loop structure and let p be a sequence of L. The functor -p yielding a sequence of L is defined by:

(Def. 7) For every natural number n holds (-p)(n) = -p(n).

Let L be an add-associative right zeroed right complementable non empty loop structure and let p be a Polynomial of L. Observe that -p is finite-Support.

Let L be a non empty loop structure and let p, q be sequences of L. The functor p - q yields a sequence of L and is defined as follows:

(Def. 8) p - q = p + -q.

Let L be an add-associative right zeroed right complementable non empty loop structure and let p, q be Polynomials of L. Note that p-q is finite-Support.

- Next we state the proposition
- (27) Let L be a non empty loop structure, p, q be sequences of L, and n be a natural number. Then (p-q)(n) = p(n) q(n).

Let L be a non empty zero structure. The functor **0**. L yielding a sequence of L is defined as follows:

(Def. 9) **0**. $L = \mathbb{N} \longmapsto 0_L$.

Let L be a non empty zero structure. One can check that $\mathbf{0}.L$ is finite-Support.

We now state three propositions:

ROBERT MILEWSKI

- (28) For every non empty zero structure L and for every natural number n holds $(\mathbf{0}, L)(n) = 0_L$.
- (29) For every right zeroed non empty loop structure L and for every sequence p of L holds p + 0. L = p.
- (30) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a sequence of L. Then p p = 0. L.

Let L be a non empty multiplicative loop with zero structure. The functor **1**. L yielding a sequence of L is defined by:

(Def. 10) **1**. L = 0. $L + (0, \mathbf{1}_L)$.

Let L be a non empty multiplicative loop with zero structure. Observe that **1**. L is finite-Support.

Next we state the proposition

(31) Let L be a non empty multiplicative loop with zero structure. Then $(\mathbf{1}, L)(0) = \mathbf{1}_L$ and for every natural number n such that $n \neq 0$ holds $(\mathbf{1}, L)(n) = 0_L$.

Let L be a non empty double loop structure and let p, q be sequences of L. The functor p * q yields a sequence of L and is defined by the condition (Def. 11).

(Def. 11) Let *i* be a natural number. Then there exists a finite sequence *r* of elements of the carrier of *L* such that len r = i + 1 and $(p * q)(i) = \sum r$ and for every natural number *k* such that $k \in \text{dom } r$ holds $r(k) = p(k - i) \cdot q((i + 1) - i) \cdot k$.

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure and let p, q be Polynomials of L. Note that p * q is finite-Support.

Next we state three propositions:

- (32) Let L be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure and p, q, r be sequences of L. Then p * (q + r) = p * q + p * r.
- (33) Let L be an Abelian add-associative right zeroed right complementable left distributive non empty double loop structure and p, q, r be sequences of L. Then (p+q) * r = p * r + q * r.
- (34) Let L be an Abelian add-associative right zeroed right complementable unital associative distributive non empty double loop structure and p, q, r be sequences of L. Then (p * q) * r = p * (q * r).

Let L be an Abelian add-associative right zeroed commutative non empty double loop structure and let p, q be sequences of L. Let us observe that the functor p * q is commutative.

We now state two propositions:

(35) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure and p be a sequence of L.

344

Then p * 0. L = 0. L.

(36) Let L be an add-associative right zeroed right unital right complementable right distributive non empty double loop structure and p be a sequence of L. Then $p * \mathbf{1}$. L = p.

5. The Ring of Polynomials

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure. The functor Polynom-Ring L yields a strict non empty double loop structure and is defined by the conditions (Def. 12).

- (Def. 12)(i) For every set x holds $x \in$ the carrier of Polynom-Ring L iff x is a Polynomial of L,
 - (ii) for all elements x, y of the carrier of Polynom-Ring L and for all sequences p, q of L such that x = p and y = q holds x + y = p + q,
 - (iii) for all elements x, y of the carrier of Polynom-Ring L and for all sequences p, q of L such that x = p and y = q holds $x \cdot y = p * q$,
 - (iv) $0_{\text{Polynom-Ring }L} = \mathbf{0}. L$, and
 - (v) $\mathbf{1}_{\text{Polynom-Ring }L} = \mathbf{1}.L.$

Let L be an Abelian add-associative right zeroed right complementable distributive non empty double loop structure. Observe that Polynom-Ring L is Abelian.

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure. One can check the following observations:

- * Polynom-Ring L is add-associative,
- * Polynom-Ring L is right zeroed, and
- * Polynom-Ring L is right complementable.

Let L be an Abelian add-associative right zeroed right complementable commutative distributive non empty double loop structure. Note that Polynom-Ring L is commutative.

Let L be an Abelian add-associative right zeroed right complementable unital associative distributive non empty double loop structure. Observe that Polynom-Ring L is associative.

Let L be an add-associative right zeroed right complementable right unital distributive non empty double loop structure. Observe that Polynom-Ring L is right unital.

Let L be an Abelian add-associative right zeroed right complementable distributive non empty double loop structure. Note that Polynom-Ring L is right distributive and Polynom-Ring L is left distributive.

ROBERT MILEWSKI

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661–668, 1990.
- [7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [9] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573–577, 1997.
- [10] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [12] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97–104, 1991.
- [13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95–110, 2001.
- [16] Wojciech Skaba and Michał Muzalewski. From double loops to fields. *Formalized Mathematics*, 2(1):185–191, 1991.
- [17] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [19] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received April 17, 2000