The Ring of Polynomials

Robert Milewski
University of Białystok

MML Identifier: POLYNOM3.

The papers [12], [16], [13], [21], [2], [3], [7], [17], [4], [5], [10], [18], [1], [14], [15], [22], [23], [19], [6], [20], [8], [11], and [9] provide the notation and terminology for this paper.

1. Preliminaries

The following four propositions are true:
(1) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a finite sequence of elements of the carrier of L. If for every natural number i such that $i \in \operatorname{dom} p$ holds $p(i)=0_{L}$, then $\sum p=0_{L}$.
(2) Let V be an Abelian add-associative right zeroed non empty loop structure and p be a finite sequence of elements of the carrier of V. Then $\sum p=\sum \operatorname{Rev}(p)$.
(3) For every finite sequence p of elements of \mathbb{R} holds $\sum p=\sum \operatorname{Rev}(p)$.
(4) For every finite sequence p of elements of \mathbb{N} and for every natural number i such that $i \in \operatorname{dom} p$ holds $\sum p \geqslant p(i)$.
Let D be a non empty set, let i be a natural number, and let p be a finite sequence of elements of D. Then $p_{\upharpoonright i}$ is a finite sequence of elements of D.

Let D be a non empty set and let a, b be elements of D. Then $\langle a, b\rangle$ is an element of D^{2}.

Let D be a non empty set, let k, n be natural numbers, let p be an element of D^{k}, and let q be an element of D^{n}. Then $p^{\wedge} q$ is an element of D^{k+n}.

Let D be a non empty set and let n be a natural number. One can check that every finite sequence of elements of D^{n} is finite sequence yielding.

Let D be a non empty set, let k, n be natural numbers, let p be a finite sequence of elements of D^{k}, and let q be a finite sequence of elements of D^{n}. Then $p \frown q$ is an element of $\left(D^{k+n}\right)^{*}$.

In this article we present several logical schemes. The scheme NonUniqPiSe$q E x D$ deals with a non empty set \mathcal{A}, a natural number \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a finite sequence p of elements of \mathcal{A} such that $\operatorname{dom} p=$ $\operatorname{Seg} \mathcal{B}$ and for every natural number k such that $k \in \operatorname{Seg} \mathcal{B}$ holds $\mathcal{P}\left[k, \pi_{k} p\right]$
provided the following condition is satisfied:

- For every natural number k such that $k \in \operatorname{Seg} \mathcal{B}$ there exists an element d of \mathcal{A} such that $\mathcal{P}[k, d]$.
The scheme SeqOfSeqLambdaD deals with a non empty set \mathcal{A}, a natural number \mathcal{B}, a unary functor \mathcal{F} yielding a natural number, and a binary functor \mathcal{G} yielding an element of \mathcal{A}, and states that:

There exists a finite sequence p of elements of \mathcal{A}^{*} such that
(i) $\operatorname{len} p=\mathcal{B}$, and
(ii) for every natural number k such that $k \in \operatorname{Seg} \mathcal{B}$ holds len $\pi_{k} p=\mathcal{F}(k)$ and for every natural number n such that $n \in$ $\operatorname{dom} \pi_{k} p$ holds $\left(\pi_{k} p\right)(n)=\mathcal{G}(k, n)$
for all values of the parameters.

2. The Lexicographic Order of Finite Sequences

Let n be a natural number and let p, q be elements of \mathbb{N}^{n}. The predicate $p<q$ is defined by the condition (Def. 1).
(Def. 1) There exists a natural number i such that $i \in \operatorname{Seg} n$ and $p(i)<q(i)$ and for every natural number k such that $1 \leqslant k$ and $k<i$ holds $p(k)=q(k)$. Let us note that the predicate $p<q$ is antisymmetric. We introduce $q>p$ as a synonym of $p<q$.

Let n be a natural number and let p, q be elements of \mathbb{N}^{n}. The predicate $p \leqslant q$ is defined by:
(Def. 2) $p<q$ or $p=q$.
Let us note that the predicate $p \leqslant q$ is reflexive. We introduce $q \geqslant p$ as a synonym of $p \leqslant q$.

We now state three propositions:
(5) Let n be a natural number and p, q, r be elements of \mathbb{N}^{n}. Then
(i) if $p<q$ and $q<r$, then $p<r$, and
(ii) if $p<q$ and $q \leqslant r$ or $p \leqslant q$ and $q<r$ or $p \leqslant q$ and $q \leqslant r$, then $p \leqslant r$.
(6) Let n be a natural number and p, q be elements of \mathbb{N}^{n}. Suppose $p \neq q$. Then there exists a natural number i such that $i \in \operatorname{Seg} n$ and $p(i) \neq q(i)$ and for every natural number k such that $1 \leqslant k$ and $k<i$ holds $p(k)=$ $q(k)$.
(7) For every natural number n and for all elements p, q of \mathbb{N}^{n} holds $p \leqslant q$ or $p>q$.
Let n be a natural number. The functor TuplesOrder n yielding an order in \mathbb{N}^{n} is defined by:
(Def. 3) For all elements p, q of \mathbb{N}^{n} holds $\langle p, q\rangle \in \operatorname{TuplesOrder} n$ iff $p \leqslant q$.
Let n be a natural number. Note that TuplesOrder n is linear-order.

3. Decomposition of Natural Numbers

Let i be a non empty natural number and let n be a natural number. The functor $\operatorname{Decomp}(n, i)$ yielding a finite sequence of elements of \mathbb{N}^{i} is defined by: (Def. 4) There exists a finite subset A of \mathbb{N}^{i} such that $\operatorname{Decomp}(n, i)=$ $\operatorname{SgmX}($ TuplesOrder $i, A)$ and for every element p of \mathbb{N}^{i} holds $p \in A$ iff $\sum p=n$.
Let i be a non empty natural number and let n be a natural number. Note that $\operatorname{Decomp}(n, i)$ is non empty one-to-one and finite sequence yielding.

The following propositions are true:
(8) For every natural number n holds len $\operatorname{Decomp}(n, 1)=1$.
(9) For every natural number n holds len $\operatorname{Decomp}(n, 2)=n+1$.
(10) For every natural number n holds $\operatorname{Decomp}(n, 1)=\langle\langle n\rangle\rangle$.
(11) For all natural numbers i, j, n, k_{1}, k_{2} such that $(\operatorname{Decomp}(n, 2))(i)=\left\langle k_{1}\right.$, $\left.n-^{\prime} k_{1}\right\rangle$ and $(\operatorname{Decomp}(n, 2))(j)=\left\langle k_{2}, n-^{\prime} k_{2}\right\rangle$ holds $i<j$ iff $k_{1}<k_{2}$.
(12) For all natural numbers i, n, k_{1}, k_{2} such that $(\operatorname{Decomp}(n, 2))(i)=\left\langle k_{1}\right.$, $\left.n-^{\prime} k_{1}\right\rangle$ and $(\operatorname{Decomp}(n, 2))(i+1)=\left\langle k_{2}, n-^{\prime} k_{2}\right\rangle$ holds $k_{2}=k_{1}+1$.
(13) For every natural number n holds $(\operatorname{Decomp}(n, 2))(1)=\langle 0, n\rangle$.
(14) For all natural numbers n, i such that $i \in \operatorname{Seg}(n+1)$ holds $(\operatorname{Decomp}(n, 2))(i)=\left\langle i-^{\prime} 1,(n+1)-^{\prime} i\right\rangle$.
Let L be a non empty groupoid, let p, q, r be sequences of L, and let t be a finite sequence of elements of \mathbb{N}^{3}. The functor prodTuples (p, q, r, t) yielding an element of (the carrier of L)* is defined by:
(Def. 5) len $\operatorname{prodTuples}(p, q, r, t)=$ len t and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} t$ holds $(\operatorname{prodTuples}(p, q, r, t))(k)=p\left(\pi_{1} \pi_{k} t\right) \cdot q\left(\pi_{2} \pi_{k} t\right)$. $r\left(\pi_{3} \pi_{k} t\right)$.
One can prove the following propositions:
(15) Let L be a non empty groupoid, p, q, r be sequences of L, t be a finite sequence of elements of \mathbb{N}^{3}, P be a permutation of dom t, and t_{1} be a finite sequence of elements of \mathbb{N}^{3}. If $t_{1}=t \cdot P$, then $\operatorname{prodTuples}\left(p, q, r, t_{1}\right)=$ prodTuples $(p, q, r, t) \cdot P$.
(16) For every set D and for every finite sequence f of elements of D^{*} and for every natural number i holds $\overline{\overline{f \upharpoonright i}}=\overline{\bar{f}} \upharpoonright i$.
(17) Let p be a finite sequence of elements of \mathbb{R} and q be a finite sequence of elements of \mathbb{N}. If $p=q$, then for every natural number i holds $p \upharpoonright i=q \upharpoonright i$.
(18) For every finite sequence p of elements of \mathbb{N} and for all natural numbers i, j such that $i \leqslant j$ holds $\sum(p \upharpoonright i) \leqslant \sum(p \upharpoonright j)$.
(19) Let p be a finite sequence of elements of \mathbb{R} and i be a natural number. If $i<\operatorname{len} p$, then $p \upharpoonright(i+1)=(p \upharpoonright i)^{\wedge}\langle p(i+1)\rangle$.
(20) Let p be a finite sequence of elements of \mathbb{R} and i be a natural number. If $i<$ len p, then $\sum(p \upharpoonright(i+1))=\sum(p \upharpoonright i)+p(i+1)$.
(21) Let p be a finite sequence of elements of \mathbb{N} and i, j, k_{1}, k_{2} be natural numbers. Suppose $i<\operatorname{len} p$ and $j<\operatorname{len} p$ and $p(i+1) \neq 0$ and $p(j+1) \neq$ 0 and $1 \leqslant k_{1}$ and $1 \leqslant k_{2}$ and $k_{1} \leqslant p(i+1)$ and $k_{2} \leqslant p(j+1)$ and $\sum(p \upharpoonright i)+k_{1}=\sum(p \upharpoonright j)+k_{2}$. Then $i=j$ and $k_{1}=k_{2}$.
(22) Let D_{1}, D_{2} be sets, f_{1} be a finite sequence of elements of $D_{1}{ }^{*}, f_{2}$ be a finite sequence of elements of $D_{2}{ }^{*}$, and $i_{1}, i_{2}, j_{1}, j_{2}$ be natural numbers. Suppose $i_{1} \in \operatorname{dom} f_{1}$ and $i_{2} \in \operatorname{dom} f_{2}$ and $j_{1} \in \operatorname{dom} f_{1}\left(i_{1}\right)$ and $j_{2} \in$ $\operatorname{dom} f_{2}\left(i_{2}\right)$ and $\overline{\overline{f_{1}}}=\overline{\overline{f_{2}}}$ and $\sum\left(\overline{\overline{f_{1}}} \upharpoonright\left(i_{1}-^{\prime} 1\right)\right)+j_{1}=\sum\left(\overline{\overline{f_{2}}} \upharpoonright\left(i_{2}-^{\prime} 1\right)\right)+j_{2}$. Then $i_{1}=i_{2}$ and $j_{1}=j_{2}$.

4. Polynomials

Let L be a non empty zero structure. A Polynomial of L is an algebraic sequence of L.

The following proposition is true
(23) Let L be a non empty zero structure, p be a Polynomial of L, and n be a natural number. Then $n \geqslant$ len p if and only if the length of p is at most n.

Now we present two schemes. The scheme PolynomialLambda deals with a non empty loop structure \mathcal{A}, a natural number \mathcal{B}, and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A}, and states that:

There exists a Polynomial p of \mathcal{A} such that len $p \leqslant \mathcal{B}$ and for every natural number n such that $n<\mathcal{B}$ holds $p(n)=\mathcal{F}(n)$ for all values of the parameters.

The scheme ExDLoopStrSeq deals with a non empty loop structure \mathcal{A} and a unary functor \mathcal{F} yielding an element of the carrier of \mathcal{A}, and states that:

There exists a sequence S of \mathcal{A} such that for every natural number n holds $S(n)=\mathcal{F}(n)$
for all values of the parameters.
Let L be a non empty loop structure and let p, q be sequences of L. The functor $p+q$ yielding a sequence of L is defined by:
(Def. 6) For every natural number n holds $(p+q)(n)=p(n)+q(n)$.
Let L be a right zeroed non empty loop structure and let p, q be Polynomials of L. Note that $p+q$ is finite-Support.

One can prove the following two propositions:
(24) Let L be a right zeroed non empty loop structure, p, q be Polynomials of L, and n be a natural number. Suppose the length of p is at most n and the length of q is at most n. Then the length of $p+q$ is at most n.
(25) For every right zeroed non empty loop structure L and for all Polynomials p, q of L holds $\operatorname{support}(p+q) \subseteq \operatorname{support} p \cup \operatorname{support} q$.
Let L be an Abelian non empty loop structure and let p, q be sequences of L. Let us note that the functor $p+q$ is commutative.

One can prove the following proposition
(26) For every add-associative non empty loop structure L and for all sequences p, q, r of L holds $(p+q)+r=p+(q+r)$.
Let L be a non empty loop structure and let p be a sequence of L. The functor $-p$ yielding a sequence of L is defined by:
(Def. 7) For every natural number n holds $(-p)(n)=-p(n)$.
Let L be an add-associative right zeroed right complementable non empty loop structure and let p be a Polynomial of L. Observe that $-p$ is finite-Support.

Let L be a non empty loop structure and let p, q be sequences of L. The functor $p-q$ yields a sequence of L and is defined as follows:
(Def. 8) $\quad p-q=p+-q$.
Let L be an add-associative right zeroed right complementable non empty loop structure and let p, q be Polynomials of L. Note that $p-q$ is finite-Support.

Next we state the proposition
(27) Let L be a non empty loop structure, p, q be sequences of L, and n be a natural number. Then $(p-q)(n)=p(n)-q(n)$.
Let L be a non empty zero structure. The functor $\mathbf{0} . L$ yielding a sequence of L is defined as follows:
(Def. 9) 0. $L=\mathbb{N} \longmapsto 0_{L}$.
Let L be a non empty zero structure. One can check that $0 . L$ is finiteSupport.

We now state three propositions:
(28) For every non empty zero structure L and for every natural number n holds $(\mathbf{0} . L)(n)=0_{L}$.
(29) For every right zeroed non empty loop structure L and for every sequence p of L holds $p+\mathbf{0} . L=p$.
(30) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a sequence of L. Then $p-p=\mathbf{0} . L$.
Let L be a non empty multiplicative loop with zero structure. The functor 1. L yielding a sequence of L is defined by:
(Def. 10) 1. $L=\mathbf{0} . L+\cdot\left(0, \mathbf{1}_{L}\right)$.
Let L be a non empty multiplicative loop with zero structure. Observe that 1. L is finite-Support.

Next we state the proposition
(31) Let L be a non empty multiplicative loop with zero structure. Then $(\mathbf{1} . L)(0)=\mathbf{1}_{L}$ and for every natural number n such that $n \neq 0$ holds $(1 . L)(n)=0_{L}$.
Let L be a non empty double loop structure and let p, q be sequences of L. The functor $p * q$ yields a sequence of L and is defined by the condition (Def. 11).
(Def. 11) Let i be a natural number. Then there exists a finite sequence r of elements of the carrier of L such that len $r=i+1$ and $(p * q)(i)=\sum r$ and for every natural number k such that $k \in \operatorname{dom} r$ holds $r(k)=p\left(k-^{\prime}\right.$ 1) $\cdot q\left((i+1){ }^{\prime} k\right)$.

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure and let p, q be Polynomials of L. Note that $p * q$ is finite-Support.

Next we state three propositions:
(32) Let L be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure and p, q, r be sequences of L. Then $p *(q+r)=p * q+p * r$.
(33) Let L be an Abelian add-associative right zeroed right complementable left distributive non empty double loop structure and p, q, r be sequences of L. Then $(p+q) * r=p * r+q * r$.
(34) Let L be an Abelian add-associative right zeroed right complementable unital associative distributive non empty double loop structure and p, q, r be sequences of L. Then $(p * q) * r=p *(q * r)$.
Let L be an Abelian add-associative right zeroed commutative non empty double loop structure and let p, q be sequences of L. Let us observe that the functor $p * q$ is commutative.

We now state two propositions:
(35) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure and p be a sequence of L.

Then $p * \mathbf{0} . L=\mathbf{0} . L$.
(36) Let L be an add-associative right zeroed right unital right complementable right distributive non empty double loop structure and p be a sequence of L. Then $p * \mathbf{1}$. $L=p$.

5. The Ring of Polynomials

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure. The functor Polynom-Ring L yields a strict non empty double loop structure and is defined by the conditions (Def. 12).
(Def. 12)(i) For every set x holds $x \in$ the carrier of Polynom-Ring L iff x is a Polynomial of L,
(ii) for all elements x, y of the carrier of Polynom-Ring L and for all sequences p, q of L such that $x=p$ and $y=q$ holds $x+y=p+q$,
(iii) for all elements x, y of the carrier of Polynom-Ring L and for all sequences p, q of L such that $x=p$ and $y=q$ holds $x \cdot y=p * q$,
(iv) $0_{\text {Polynom-Ring } L}=\mathbf{0} . L$, and
(v) $\mathbf{1}_{\text {Polynom-Ring } L}=1 . L$.

Let L be an Abelian add-associative right zeroed right complementable distributive non empty double loop structure. Observe that Polynom-Ring L is Abelian.

Let L be an add-associative right zeroed right complementable distributive non empty double loop structure. One can check the following observations:

* Polynom-Ring L is add-associative,
* Polynom-Ring L is right zeroed, and
* Polynom-Ring L is right complementable.

Let L be an Abelian add-associative right zeroed right complementable commutative distributive non empty double loop structure. Note that Polynom-Ring L is commutative.

Let L be an Abelian add-associative right zeroed right complementable unital associative distributive non empty double loop structure. Observe that Polynom-Ring L is associative.

Let L be an add-associative right zeroed right complementable right unital distributive non empty double loop structure. Observe that Polynom-Ring L is right unital.

Let L be an Abelian add-associative right zeroed right complementable distributive non empty double loop structure. Note that Polynom-Ring L is right distributive and Polynom-Ring L is left distributive.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[10] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[12] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[16] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185-191, 1991.
[17] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

