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The papers [12], [16], [13], [21], [2], [3], [7], [17], [4], [5], [10], [18], [1], [14], [15],

[22], [23], [19], [6], [20], [8], [11], and [9] provide the notation and terminology

for this paper.

1. Preliminaries

The following four propositions are true:

(1) Let L be an add-associative right zeroed right complementable non

empty loop structure and p be a finite sequence of elements of the carrier

of L. If for every natural number i such that i ∈ dom p holds p(i) = 0L,

then
∑

p = 0L.

(2) Let V be an Abelian add-associative right zeroed non empty loop struc-

ture and p be a finite sequence of elements of the carrier of V . Then
∑

p =
∑
Rev(p).

(3) For every finite sequence p of elements of R holds
∑

p =
∑
Rev(p).

(4) For every finite sequence p of elements of N and for every natural number

i such that i ∈ dom p holds
∑

p  p(i).

Let D be a non empty set, let i be a natural number, and let p be a finite

sequence of elements of D. Then p↾i is a finite sequence of elements of D.

Let D be a non empty set and let a, b be elements of D. Then 〈a, b〉 is an

element of D2.

Let D be a non empty set, let k, n be natural numbers, let p be an element

of Dk, and let q be an element of Dn. Then p a q is an element of Dk+n.

Let D be a non empty set and let n be a natural number. One can check

that every finite sequence of elements of Dn is finite sequence yielding.
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Let D be a non empty set, let k, n be natural numbers, let p be a finite

sequence of elements of Dk, and let q be a finite sequence of elements of Dn.

Then p ⌢ q is an element of (Dk+n)∗.

In this article we present several logical schemes. The scheme NonUniqPiSe-

qExD deals with a non empty set A, a natural number B, and a binary predicate

P, and states that:

There exists a finite sequence p of elements ofA such that dom p =

SegB and for every natural number k such that k ∈ SegB holds

P[k, πkp]

provided the following condition is satisfied:

• For every natural number k such that k ∈ SegB there exists an

element d of A such that P[k, d].

The scheme SeqOfSeqLambdaD deals with a non empty set A, a natural

number B, a unary functor F yielding a natural number, and a binary functor

G yielding an element of A, and states that:

There exists a finite sequence p of elements of A∗ such that

(i) len p = B, and

(ii) for every natural number k such that k ∈ SegB holds

lenπkp = F(k) and for every natural number n such that n ∈

domπkp holds (πkp)(n) = G(k, n)

for all values of the parameters.

2. The Lexicographic Order of Finite Sequences

Let n be a natural number and let p, q be elements of N
n. The predicate

p < q is defined by the condition (Def. 1).

(Def. 1) There exists a natural number i such that i ∈ Seg n and p(i) < q(i) and

for every natural number k such that 1 ¬ k and k < i holds p(k) = q(k).

Let us note that the predicate p < q is antisymmetric. We introduce q > p as a

synonym of p < q.

Let n be a natural number and let p, q be elements of N
n. The predicate

p ¬ q is defined by:

(Def. 2) p < q or p = q.

Let us note that the predicate p ¬ q is reflexive. We introduce q  p as a

synonym of p ¬ q.

We now state three propositions:

(5) Let n be a natural number and p, q, r be elements of Nn. Then

(i) if p < q and q < r, then p < r, and

(ii) if p < q and q ¬ r or p ¬ q and q < r or p ¬ q and q ¬ r, then p ¬ r.
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(6) Let n be a natural number and p, q be elements of N
n. Suppose p 6= q.

Then there exists a natural number i such that i ∈ Segn and p(i) 6= q(i)

and for every natural number k such that 1 ¬ k and k < i holds p(k) =

q(k).

(7) For every natural number n and for all elements p, q of Nn holds p ¬ q

or p > q.

Let n be a natural number. The functor TuplesOrdern yielding an order in

N
n is defined by:

(Def. 3) For all elements p, q of Nn holds 〈〈p, q〉〉 ∈ TuplesOrdern iff p ¬ q.

Let n be a natural number. Note that TuplesOrdern is linear-order.

3. Decomposition of Natural Numbers

Let i be a non empty natural number and let n be a natural number. The

functor Decomp(n, i) yielding a finite sequence of elements of Ni is defined by:

(Def. 4) There exists a finite subset A of N
i such that Decomp(n, i) =

SgmX(TuplesOrder i, A) and for every element p of N
i holds p ∈ A iff

∑
p = n.

Let i be a non empty natural number and let n be a natural number. Note

that Decomp(n, i) is non empty one-to-one and finite sequence yielding.

The following propositions are true:

(8) For every natural number n holds lenDecomp(n, 1) = 1.

(9) For every natural number n holds lenDecomp(n, 2) = n + 1.

(10) For every natural number n holds Decomp(n, 1) = 〈〈n〉〉.

(11) For all natural numbers i, j, n, k1, k2 such that (Decomp(n, 2))(i) = 〈k1,

n−′ k1〉 and (Decomp(n, 2))(j) = 〈k2, n−
′ k2〉 holds i < j iff k1 < k2.

(12) For all natural numbers i, n, k1, k2 such that (Decomp(n, 2))(i) = 〈k1,

n−′ k1〉 and (Decomp(n, 2))(i + 1) = 〈k2, n−
′ k2〉 holds k2 = k1 + 1.

(13) For every natural number n holds (Decomp(n, 2))(1) = 〈0, n〉.

(14) For all natural numbers n, i such that i ∈ Seg(n + 1) holds

(Decomp(n, 2))(i) = 〈i−′ 1, (n + 1)−′ i〉.

Let L be a non empty groupoid, let p, q, r be sequences of L, and let t be a

finite sequence of elements of N
3. The functor prodTuples(p, q, r, t) yielding an

element of (the carrier of L)∗ is defined by:

(Def. 5) len prodTuples(p, q, r, t) = len t and for every natural number k such

that k ∈ Seg len t holds (prodTuples(p, q, r, t))(k) = p(π1πkt) · q(π2πkt) ·

r(π3πkt).

One can prove the following propositions:
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(15) Let L be a non empty groupoid, p, q, r be sequences of L, t be a finite

sequence of elements of N
3, P be a permutation of dom t, and t1 be a

finite sequence of elements of N3. If t1 = t ·P, then prodTuples(p, q, r, t1) =

prodTuples(p, q, r, t) · P.

(16) For every set D and for every finite sequence f of elements of D∗ and

for every natural number i holds f↾i = f ↾i.

(17) Let p be a finite sequence of elements of R and q be a finite sequence of

elements of N. If p = q, then for every natural number i holds p↾i = q↾i.

(18) For every finite sequence p of elements of N and for all natural numbers

i, j such that i ¬ j holds
∑

(p↾i) ¬
∑

(p↾j).

(19) Let p be a finite sequence of elements of R and i be a natural number.

If i < len p, then p↾(i + 1) = (p↾i) a 〈p(i + 1)〉.

(20) Let p be a finite sequence of elements of R and i be a natural number.

If i < len p, then
∑

(p↾(i + 1)) =
∑

(p↾i) + p(i + 1).

(21) Let p be a finite sequence of elements of N and i, j, k1, k2 be natural

numbers. Suppose i < len p and j < len p and p(i + 1) 6= 0 and p(j + 1) 6=

0 and 1 ¬ k1 and 1 ¬ k2 and k1 ¬ p(i + 1) and k2 ¬ p(j + 1) and
∑

(p↾i) + k1 =
∑

(p↾j) + k2. Then i = j and k1 = k2.

(22) Let D1, D2 be sets, f1 be a finite sequence of elements of D1
∗, f2 be a

finite sequence of elements of D2
∗, and i1, i2, j1, j2 be natural numbers.

Suppose i1 ∈ dom f1 and i2 ∈ dom f2 and j1 ∈ dom f1(i1) and j2 ∈

dom f2(i2) and f1 = f2 and
∑

(f1 ↾(i1 −
′ 1)) + j1 =

∑
(f2 ↾(i2 −

′ 1)) + j2.

Then i1 = i2 and j1 = j2.

4. Polynomials

Let L be a non empty zero structure. A Polynomial of L is an algebraic

sequence of L.

The following proposition is true

(23) Let L be a non empty zero structure, p be a Polynomial of L, and n be

a natural number. Then n  len p if and only if the length of p is at most

n.

Now we present two schemes. The scheme PolynomialLambda deals with a

non empty loop structureA, a natural number B, and a unary functor F yielding

an element of the carrier of A, and states that:

There exists a Polynomial p of A such that len p ¬ B and for

every natural number n such that n < B holds p(n) = F(n)

for all values of the parameters.
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The scheme ExDLoopStrSeq deals with a non empty loop structure A and a

unary functor F yielding an element of the carrier of A, and states that:

There exists a sequence S of A such that for every natural number

n holds S(n) = F(n)

for all values of the parameters.

Let L be a non empty loop structure and let p, q be sequences of L. The

functor p + q yielding a sequence of L is defined by:

(Def. 6) For every natural number n holds (p + q)(n) = p(n) + q(n).

Let L be a right zeroed non empty loop structure and let p, q be Polynomials

of L. Note that p + q is finite-Support.

One can prove the following two propositions:

(24) Let L be a right zeroed non empty loop structure, p, q be Polynomials

of L, and n be a natural number. Suppose the length of p is at most n and

the length of q is at most n. Then the length of p + q is at most n.

(25) For every right zeroed non empty loop structure L and for all Polyno-

mials p, q of L holds support(p + q) ⊆ support p ∪ support q.

Let L be an Abelian non empty loop structure and let p, q be sequences of

L. Let us note that the functor p + q is commutative.

One can prove the following proposition

(26) For every add-associative non empty loop structure L and for all sequ-

ences p, q, r of L holds (p + q) + r = p + (q + r).

Let L be a non empty loop structure and let p be a sequence of L. The

functor −p yielding a sequence of L is defined by:

(Def. 7) For every natural number n holds (−p)(n) = −p(n).

Let L be an add-associative right zeroed right complementable non empty

loop structure and let p be a Polynomial of L. Observe that −p is finite-Support.

Let L be a non empty loop structure and let p, q be sequences of L. The

functor p− q yields a sequence of L and is defined as follows:

(Def. 8) p− q = p +−q.

Let L be an add-associative right zeroed right complementable non empty

loop structure and let p, q be Polynomials of L. Note that p−q is finite-Support.

Next we state the proposition

(27) Let L be a non empty loop structure, p, q be sequences of L, and n be

a natural number. Then (p− q)(n) = p(n)− q(n).

Let L be a non empty zero structure. The functor 0. L yielding a sequence

of L is defined as follows:

(Def. 9) 0. L = N 7−→ 0L.

Let L be a non empty zero structure. One can check that 0. L is finite-

Support.

We now state three propositions:
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(28) For every non empty zero structure L and for every natural number n

holds (0. L)(n) = 0L.

(29) For every right zeroed non empty loop structure L and for every sequence

p of L holds p + 0. L = p.

(30) Let L be an add-associative right zeroed right complementable non

empty loop structure and p be a sequence of L. Then p− p = 0. L.

Let L be a non empty multiplicative loop with zero structure. The functor

1. L yielding a sequence of L is defined by:

(Def. 10) 1. L = 0. L +· (0,1L).

Let L be a non empty multiplicative loop with zero structure. Observe that

1. L is finite-Support.

Next we state the proposition

(31) Let L be a non empty multiplicative loop with zero structure. Then

(1. L)(0) = 1L and for every natural number n such that n 6= 0 holds

(1. L)(n) = 0L.

Let L be a non empty double loop structure and let p, q be sequences of L.

The functor p∗q yields a sequence of L and is defined by the condition (Def. 11).

(Def. 11) Let i be a natural number. Then there exists a finite sequence r of

elements of the carrier of L such that len r = i + 1 and (p ∗ q)(i) =
∑

r

and for every natural number k such that k ∈ dom r holds r(k) = p(k −′

1) · q((i + 1)−′ k).

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure and let p, q be Polynomials of L. Note that

p ∗ q is finite-Support.

Next we state three propositions:

(32) Let L be an Abelian add-associative right zeroed right complementable

right distributive non empty double loop structure and p, q, r be sequences

of L. Then p ∗ (q + r) = p ∗ q + p ∗ r.

(33) Let L be an Abelian add-associative right zeroed right complementable

left distributive non empty double loop structure and p, q, r be sequences

of L. Then (p + q) ∗ r = p ∗ r + q ∗ r.

(34) Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive non empty double loop structure and p, q,

r be sequences of L. Then (p ∗ q) ∗ r = p ∗ (q ∗ r).

Let L be an Abelian add-associative right zeroed commutative non empty

double loop structure and let p, q be sequences of L. Let us observe that the

functor p ∗ q is commutative.

We now state two propositions:

(35) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure and p be a sequence of L.
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Then p ∗ 0. L = 0. L.

(36) Let L be an add-associative right zeroed right unital right complementa-

ble right distributive non empty double loop structure and p be a sequence

of L. Then p ∗ 1. L = p.

5. The Ring of Polynomials

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure. The functor Polynom-RingL yields a strict

non empty double loop structure and is defined by the conditions (Def. 12).

(Def. 12)(i) For every set x holds x ∈ the carrier of Polynom-RingL iff x is a

Polynomial of L,

(ii) for all elements x, y of the carrier of Polynom-RingL and for all sequ-

ences p, q of L such that x = p and y = q holds x + y = p + q,

(iii) for all elements x, y of the carrier of Polynom-RingL and for all sequ-

ences p, q of L such that x = p and y = q holds x · y = p ∗ q,

(iv) 0Polynom-RingL = 0. L, and

(v) 1Polynom-RingL = 1. L.

Let L be an Abelian add-associative right zeroed right complementable di-

stributive non empty double loop structure. Observe that Polynom-RingL is

Abelian.

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure. One can check the following observations:

∗ Polynom-RingL is add-associative,

∗ Polynom-RingL is right zeroed, and

∗ Polynom-RingL is right complementable.

Let L be an Abelian add-associative right zeroed right complementable com-

mutative distributive non empty double loop structure. Note that Polynom-RingL

is commutative.

Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive non empty double loop structure. Observe that

Polynom-RingL is associative.

Let L be an add-associative right zeroed right complementable right unital

distributive non empty double loop structure. Observe that Polynom-RingL is

right unital.

Let L be an Abelian add-associative right zeroed right complementable di-

stributive non empty double loop structure. Note that Polynom-RingL is right

distributive and Polynom-RingL is left distributive.
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