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Summary. In this paper the concept of partial line spaces is presented.
We also construct the Segre’s product for a family of partial line spaces indexed
by an arbitrary nonempty set.

MML Identifier: PENCIL 1.

The terminology and notation used in this paper have been introduced in the

following articles: [16], [1], [2], [7], [14], [6], [13], [11], [9], [10], [8], [5], [17], [15],

[12], [4], and [3].

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g such that
∏

f =
∏

g holds if f is non-empty, then

g is non-empty.

(2) For every set X holds 2 ⊆ X iff there exist sets x, y such that x ∈ X

and y ∈ X and x 6= y.

(3) For every set X such that 2 ⊆ X and for every set x there exists a set

y such that y ∈ X and x 6= y.

(4) For every set X holds 2 ⊆ X iff X is non trivial.

(5) For every set X holds 3 ⊆ X iff there exist sets x, y, z such that x ∈ X

and y ∈ X and z ∈ X and x 6= y and x 6= z and y 6= z.

(6) For every set X such that 3 ⊆ X and for all sets x, y there exists a set

z such that z ∈ X and x 6= z and y 6= z.
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2. Partial Line Spaces

Let S be a topological structure. A block of S is an element of the topology

of S.

Let S be a topological structure and let x, y be points of S. We say that x,

y are collinear if and only if:

(Def. 1) x = y or there exists a block l of S such that {x, y} ⊆ l.

Let S be a topological structure and let T be a subset of the carrier of S.

We say that T is closed under lines if and only if:

(Def. 2) For every block l of S such that 2 ⊆ l ∩ T holds l ⊆ T.

We say that T is strong if and only if:

(Def. 3) For all points x, y of S such that x ∈ T and y ∈ T holds x, y are collinear.

Let S be a topological structure. We say that S is void if and only if:

(Def. 4) The topology of S is empty.

We say that S is degenerated if and only if:

(Def. 5) The carrier of S is a block of S.

We say that S has non trivial blocks if and only if:

(Def. 6) For every block k of S holds 2 ⊆ k .

We say that S is identifying close blocks if and only if:

(Def. 7) For all blocks k, l of S such that 2 ⊆ k ∩ l holds k = l.

We say that S is truly-partial if and only if:

(Def. 8) There exist points x, y of S such that x, y are not collinear.

We say that S has no isolated points if and only if:

(Def. 9) For every point x of S there exists a block l of S such that x ∈ l.

We say that S is connected if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let x, y be points of S. Then there exists a finite sequence f of elements

of the carrier of S such that

(i) x = f(1),

(ii) y = f(len f), and

(iii) for every natural number i such that 1 ¬ i and i < len f and for all

points a, b of S such that a = f(i) and b = f(i+1) holds a, b are collinear.

We say that S is strongly connected if and only if the condition (Def. 11) is

satisfied.

(Def. 11) Let x be a point of S and X be a subset of the carrier of S. Suppose X

is closed under lines and strong. Then there exists a finite sequence f of

elements of 2the carrier of S such that

(i) X = f(1),

(ii) x ∈ f(len f),



on segre’s product of partial line spaces 385

(iii) for every subset W of the carrier of S such that W ∈ rng f holds W is

closed under lines and strong, and

(iv) for every natural number i such that 1 ¬ i and i < len f holds 2 ⊆

f(i) ∩ f(i + 1) .

One can prove the following propositions:

(7) Let X be a non empty set. Suppose 3 ⊆ X . Let S be a topological

structure. Suppose the carrier of S = X and the topology of S = {L; L

ranges over subsets of X: 2 = L}. Then S is non empty, non void, non

degenerated, non truly-partial, and identifying close blocks and has non

trivial blocks and no isolated points.

(8) Let X be a non empty set. Suppose 3 ⊆ X . Let K be a subset of X.

Suppose K = 2. Let S be a topological structure. Suppose the carrier

of S = X and the topology of S = {L; L ranges over subsets of X: 2 =

L} \ {K}. Then S is non empty, non void, non degenerated, truly-partial,

and identifying close blocks and has non trivial blocks and no isolated

points.

One can verify that there exists a topological structure which is strict, non

empty, non void, non degenerated, non truly-partial, and identifying close blocks

and has non trivial blocks and no isolated points and there exists a topological

structure which is strict, non empty, non void, non degenerated, truly-partial,

and identifying close blocks and has non trivial blocks and no isolated points.

Let S be a non void topological structure. Note that the topology of S is

non empty.

Let S be a topological structure with no isolated points and let x, y be points

of S. Let us observe that x, y are collinear if and only if:

(Def. 12) There exists a block l of S such that {x, y} ⊆ l.

A PLS is a non empty non void non degenerated identifying close blocks

topological structure with non trivial blocks.

Let F be a binary relation. We say that F is TopStruct-yielding if and only

if:

(Def. 13) For every set x such that x ∈ rngF holds x is a topological structure.

Let us mention that every function which is TopStruct-yielding is also 1-

sorted yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is TopStruct-yielding.

Let us note that there exists a function which is TopStruct-yielding.

Let F be a binary relation. We say that F is non-void-yielding if and only

if:

(Def. 14) For every topological structure S such that S ∈ rngF holds S is non

void.
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Let F be a TopStruct-yielding function. Let us observe that F is non-void-

yielding if and only if:

(Def. 15) For every set i such that i ∈ rngF holds i is a non void topological

structure.

Let F be a binary relation. We say that F is trivial-yielding if and only if:

(Def. 16) For every set S such that S ∈ rngF holds S is trivial.

Let F be a binary relation. We say that F is non-Trivial-yielding if and only

if:

(Def. 17) For every 1-sorted structure S such that S ∈ rngF holds S is non trivial.

Let us observe that every binary relation which is non-Trivial-yielding is also

nonempty.

Let F be a 1-sorted yielding function. Let us observe that F is non-Trivial-

yielding if and only if:

(Def. 18) For every set i such that i ∈ rngF holds i is a non trivial 1-sorted

structure.

Let I be a non empty set, let A be a TopStruct-yielding many sorted set

indexed by I, and let j be an element of I. Then A(j) is a topological structure.

Let F be a binary relation. We say that F is PLS-yielding if and only if:

(Def. 19) For every set x such that x ∈ rngF holds x is a PLS.

One can verify the following observations:

∗ every function which is PLS-yielding is also nonempty and TopStruct-

yielding,

∗ every TopStruct-yielding function which is PLS-yielding is also non-void-

yielding, and

∗ every TopStruct-yielding function which is PLS-yielding is also non-

Trivial-yielding.

Let I be a set. One can check that there exists a many sorted set indexed

by I which is PLS-yielding.

Let I be a non empty set, let A be a PLS-yielding many sorted set indexed

by I, and let j be an element of I. Then A(j) is a PLS.

Let I be a set and let A be a many sorted set indexed by I. We say that A

is Segre-like if and only if:

(Def. 20) There exists an element i of I such that for every element j of I such

that i 6= j holds A(j) is non empty and trivial.

Let I be a set and let A be a many sorted set indexed by I. Note that {A}

is trivial-yielding.

The following proposition is true

(9) Let I be a non empty set, A be a many sorted set indexed by I, i be an
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element of I, and S be a non trivial set. Then A +· (i, S) is non trivial-

yielding.

Let I be a non empty set and let A be a many sorted set indexed by I.

Observe that {A} is Segre-like.

We now state two propositions:

(10) For every non empty set I and for every many sorted set A indexed by

I and for all sets i, S holds {A}+· (i, S) is Segre-like.

(11) Let I be a non empty set, A be a nonempty 1-sorted yielding many

sorted set indexed by I, and B be an element of the support of A. Then

{B} is a many sorted subset indexed by the support of A.

Let I be a non empty set and let A be a nonempty 1-sorted yielding many

sorted set indexed by I. One can check that there exists a many sorted subset

indexed by the support of A which is Segre-like, trivial-yielding, and non-empty.

Let I be a non empty set and let A be a non-Trivial-yielding 1-sorted yielding

many sorted set indexed by I. Note that there exists a many sorted subset

indexed by the support of A which is Segre-like, non trivial-yielding, and non-

empty.

Let I be a non empty set. Observe that there exists a many sorted set indexed

by I which is Segre-like and non trivial-yielding.

Let I be a non empty set and let B be a Segre-like non trivial-yielding many

sorted set indexed by I. The functor index(B) yielding an element of I is defined

by:

(Def. 21) B(index(B)) is non trivial.

Next we state the proposition

(12) Let I be a non empty set, A be a Segre-like non trivial-yielding many

sorted set indexed by I, and i be an element of I. If i 6= index(A), then

A(i) is non empty and trivial.

Let I be a non empty set. Note that every many sorted set indexed by I

which is Segre-like and non trivial-yielding is also non-empty.

One can prove the following proposition

(13) Let I be a non empty set and A be a many sorted set indexed by I.

Then 2 ⊆
∏

A if and only if A is non-empty and non trivial-yielding.

Let I be a non empty set and let B be a Segre-like non trivial-yielding many

sorted set indexed by I. Note that
∏

B is non trivial.
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3. Segre’s Product

Let I be a non empty set and let A be a nonempty TopStruct-yielding many

sorted set indexed by I. The functor Segre BlocksA yields a family of subsets

of
∏
(the support of A) and is defined by the condition (Def. 22).

(Def. 22) Let x be a set. Then x ∈ Segre BlocksA if and only if there exists a

Segre-like many sorted subset B indexed by the support of A such that

x =
∏

B and there exists an element i of I such that B(i) is a block of

A(i).

Let I be a non empty set and let A be a nonempty TopStruct-yielding many

sorted set indexed by I. The functor Segre ProductA yielding a non empty

topological structure is defined as follows:

(Def. 23) Segre ProductA = 〈
∏
(the support of A),Segre BlocksA〉.

The following propositions are true:

(14) Let I be a non empty set and A be a nonempty TopStruct-yielding many

sorted set indexed by I. Then every point of Segre ProductA is a many

sorted set indexed by I.

(15) Let I be a non empty set and A be a nonempty TopStruct-yielding many

sorted set indexed by I. If there exists an element i of I such that A(i) is

non void, then Segre ProductA is non void.

(16) Let I be a non empty set and A be a nonempty TopStruct-yielding many

sorted set indexed by I. Suppose that for every element i of I holds A(i)

is non degenerated and there exists an element i of I such that A(i) is non

void. Then Segre ProductA is non degenerated.

(17) Let I be a non empty set and A be a nonempty TopStruct-yielding many

sorted set indexed by I. Suppose that for every element i of I holds A(i)

has non trivial blocks and there exists an element i of I such that A(i) is

non void. Then Segre ProductA has non trivial blocks.

(18) Let I be a non empty set and A be a nonempty TopStruct-yielding

many sorted set indexed by I. Suppose that for every element i of I holds

A(i) is identifying close blocks and has non trivial blocks and there exists

an element i of I such that A(i) is non void. Then Segre ProductA is

identifying close blocks.

Let I be a non empty set and let A be a PLS-yielding many sorted set

indexed by I. Then Segre ProductA is a PLS.

One can prove the following propositions:

(19) Let T be a topological structure and S be a subset of the carrier of T .

If S is trivial, then S is strong and closed under lines.
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(20) Let S be an identifying close blocks topological structure, l be a block of

S, and L be a subset of the carrier of S. If L = l, then L is closed under

lines.

(21) Let S be a topological structure, l be a block of S, and L be a subset of

the carrier of S. If L = l, then L is strong.

(22) For every non void topological structure S holds ΩS is closed under lines.

(23) Let I be a non empty set, A be a Segre-like non trivial-yielding many

sorted set indexed by I, and x, y be many sorted sets indexed by I. If

x ∈
∏

A and y ∈
∏

A, then for every set i such that i 6= index(A) holds

x(i) = y(i).

(24) Let I be a non empty set, A be a PLS-yielding many sorted set indexed

by I, and x be a set. Then x is a block of Segre ProductA if and only if

there exists a Segre-like non trivial-yielding many sorted subset L indexed

by the support of A such that x =
∏

L and L(index(L)) is a block of

A(index(L)).

(25) Let I be a non empty set, A be a PLS-yielding many sorted set indexed

by I, and P be a many sorted set indexed by I. Suppose P is a point of

Segre ProductA. Let i be an element of I and p be a point of A(i). Then

P +· (i, p) is a point of Segre ProductA.

(26) Let I be a non empty set and A, B be Segre-like non trivial-yielding

many sorted sets indexed by I. Suppose 2 ⊆
∏

A ∩
∏

B. Then index(A) =

index(B) and for every set i such that i 6= index(A) holds A(i) = B(i).

(27) Let I be a non empty set, A be a Segre-like non trivial-yielding many

sorted set indexed by I, andN be a non trivial set. ThenA+·(index(A), N)

is Segre-like and non trivial-yielding.

(28) Let S be a non empty non void identifying close blocks topological struc-

ture with no isolated points. If S is strongly connected, then S is connected.

(29) Let I be a non empty set, A be a PLS-yielding many sorted set indexed

by I, and S be a subset of the carrier of Segre ProductA. Then S is non

trivial, strong, and closed under lines if and only if there exists a Segre-

like non trivial-yielding many sorted subset B indexed by the support of

A such that S =
∏

B and for every subset C of the carrier of A(index(B))

such that C = B(index(B)) holds C is strong and closed under lines.
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