Definition of Integrability for Partial Functions from \mathbb{R} to \mathbb{R} and Integrability for Continuous Functions

Noboru Endou
Shinshu University
Nagano

Katsumi Wasaki
Shinshu University
Nagano

Yasunari Shidama
Shinshu University
Nagano

Summary. In this article, we defined the Riemann definite integral of partial function from \mathbb{R} to \mathbb{R}. Then we have proved the integrability for the continuous function and differentiable function. Moreover, we have proved an elementary theorem of calculus.

MML Identifier: INTEGRA5.

The articles [12], [13], [1], [2], [6], [3], [5], [14], [7], [16], [9], [10], [4], [11], [8], and [15] provide the notation and terminology for this paper.

1. Some Useful Properties of Finite Sequence

For simplicity, we adopt the following convention: i denotes a natural number, a, b, r_{1}, r_{2} denote real numbers, A denotes a closed-interval subset of \mathbb{R}, C denotes a non empty set, and X denotes a set.

One can prove the following propositions:
(1) Let F, F_{1}, F_{2} be finite sequences of elements of \mathbb{R} and given r_{1}, r_{2}. If $F_{1}=\left\langle r_{1}\right\rangle^{\wedge} F$ or $F_{1}=F^{\wedge}\left\langle r_{1}\right\rangle$ and if $F_{2}=\left\langle r_{2}\right\rangle^{\wedge} F$ or $F_{2}=F^{\wedge}\left\langle r_{2}\right\rangle$, then $\sum\left(F_{1}-F_{2}\right)=r_{1}-r_{2}$.
(2) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{R}. If len $F_{1}=\operatorname{len} F_{2}$, then $\operatorname{len}\left(F_{1}+F_{2}\right)=\operatorname{len} F_{1}$ and $\operatorname{len}\left(F_{1}-F_{2}\right)=\operatorname{len} F_{1}$ and $\sum\left(F_{1}+F_{2}\right)=$ $\sum F_{1}+\sum F_{2}$ and $\sum\left(F_{1}-F_{2}\right)=\sum F_{1}-\sum F_{2}$.
(3) Let F_{1}, F_{2} be finite sequences of elements of \mathbb{R}. If len $F_{1}=\operatorname{len} F_{2}$ and for every i such that $i \in \operatorname{dom} F_{1}$ holds $F_{1}(i) \leqslant F_{2}(i)$, then $\sum F_{1} \leqslant \sum F_{2}$.

2. Integrability for Partial Function of \mathbb{R}, \mathbb{R}

Let C be a non empty subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R}. The functor $f \upharpoonright C$ yielding a partial function from C to \mathbb{R} is defined as follows: (Def. 1) $\quad f \upharpoonright C=f \upharpoonright C$.

Next we state two propositions:
(4) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $(f \upharpoonright C)(g \upharpoonright C)=(f g) \upharpoonright C$.
(5) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $(f+g) \upharpoonright C=f \upharpoonright C+g \upharpoonright C$.
Let A be a closed-interval subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R}. We say that f is integrable on A if and only if:
(Def. 2) $f \upharpoonright A$ is integrable on A.
Let A be a closed-interval subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R}. The functor $\int_{A} f(x) d x$ yields a real number and is defined by:
(Def. 3) $\int_{A} f(x) d x=$ integral $f \upharpoonright A$.
The following propositions are true:
(6) For every partial function f from \mathbb{R} to \mathbb{R} such that $A \subseteq \operatorname{dom} f$ holds $f \upharpoonright A$ is total.
(7) For every partial function f from \mathbb{R} to \mathbb{R} such that f is upper bounded on A holds $f \upharpoonright A$ is upper bounded on A.
(8) For every partial function f from \mathbb{R} to \mathbb{R} such that f is lower bounded on A holds $f \upharpoonright A$ is lower bounded on A.
(9) For every partial function f from \mathbb{R} to \mathbb{R} such that f is bounded on A holds $f \upharpoonright A$ is bounded on A.

3. Integrability for Continuous Function

The following propositions are true:
(10) For every partial function f from \mathbb{R} to \mathbb{R} such that f is continuous on A holds f is bounded on A.
(11) For every partial function f from \mathbb{R} to \mathbb{R} such that f is continuous on A holds f is integrable on A.
(12) Let f be a partial function from \mathbb{R} to \mathbb{R} and D be an element of divs A. Suppose $A \subseteq X$ and f is differentiable on X and $f_{\Gamma X}^{\prime}$ is bounded on A. Then lower_sum $\left(f_{\mid X}^{\prime} \upharpoonright A, D\right) \leqslant f(\sup A)-f(\inf A)$ and $f(\sup A)-$ $f(\inf A) \leqslant \operatorname{upper}_{-\operatorname{sum}}\left(f_{\mid X}^{\prime} \upharpoonright A, D\right)$.
(13) Let f be a partial function from \mathbb{R} to \mathbb{R}. Suppose $A \subseteq X$ and f is differentiable on X and $f_{\uparrow X}^{\prime}$ is integrable on A and $f_{\uparrow X}^{\prime}$ is bounded on A. Then $\int_{A} f_{\lceil X}^{\prime}(x) d x=f(\sup A)-f(\inf A)$.
(14) For every partial function f from \mathbb{R} to \mathbb{R} such that f is non-decreasing on A and $A \subseteq \operatorname{dom} f$ holds $\operatorname{rng}(f\lceil A)$ is bounded.
(15) Let f be a partial function from \mathbb{R} to \mathbb{R}. If f is non-decreasing on A and $A \subseteq \operatorname{dom} f$, then $\inf \operatorname{rng}(f \upharpoonright A)=f(\inf A)$ and $\sup \operatorname{rng}(f \upharpoonright A)=f(\sup A)$.
(16) For every partial function f from \mathbb{R} to \mathbb{R} such that f is monotone on A and $A \subseteq \operatorname{dom} f$ holds f is integrable on A.
(17) Let f be a partial function from \mathbb{R} to \mathbb{R} and A, B be closed-interval subsets of \mathbb{R}. If f is continuous on A and $B \subseteq A$, then f is integrable on B.
(18) Let f be a partial function from \mathbb{R} to \mathbb{R}, A, B, C be closed-interval subsets of \mathbb{R}, and given X. Suppose $A \subseteq X$ and f is differentiable on X and $f_{\lceil X}^{\prime}$ is continuous on A and $\inf A=\inf B$ and $\sup B=\inf C$ and $\sup C=\sup A$. Then $B \subseteq A$ and $C \subseteq A$ and $\int_{A} f_{\upharpoonright X}^{\prime}(x) d x=\int_{B} f_{\uparrow X}^{\prime}(x) d x+$ $\int_{C} f_{\lceil X}^{\prime}(x) d x$.
Let a, b be elements of \mathbb{R}. Let us assume that $a \leqslant b$. The functor [' $\left.a, b^{\prime}\right]$ yields a closed-interval subset of \mathbb{R} and is defined as follows:
(Def. 4) $\quad\left[^{\prime} a, b^{\prime}\right]=[a, b]$.
Let a, b be elements of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R}. The functor $\int_{a}^{b} f(x) d x$ yields a real number and is defined by:
(Def. 5) $\int_{a}^{b} f(x) d x=\left\{\begin{array}{l}\int_{\left[{ }^{\prime} a, b^{\prime}\right]} f(x) d x, \text { if } a \leqslant b, \\ -\int_{\left[{ }^{\prime} b, a^{\prime}\right]} f(x) d x, \text { otherwise. }\end{array}\right.$
We now state three propositions:
(19) Let f be a partial function from \mathbb{R} to \mathbb{R}, A be a closed-interval subset of \mathbb{R}, and given a, b. If $A=[a, b]$, then $\int_{A} f(x) d x=\int_{a}^{b} f(x) d x$.
(20) Let f be a partial function from \mathbb{R} to \mathbb{R}, A be a closed-interval subset of
\mathbb{R}, and given a, b. If $A=[b, a]$, then $-\int_{A} f(x) d x=\int_{a}^{b} f(x) d x$.
(21) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and X be an open subset of \mathbb{R}. Suppose that f is differentiable on X and g is differentiable on X and $A \subseteq X$ and $f_{\uparrow X}^{\prime}$ is integrable on A and $f_{\lceil X}^{\prime}$ is bounded on A and $g_{\lceil X}^{\prime}$ is integrable on A and $g_{\lceil X}^{\prime}$ is bounded on A. Then $\int_{A} f_{\lceil X}^{\prime} g(x) d x=$ $f(\sup A) \cdot g(\sup A)-f(\inf A) \cdot g(\inf A)-\int_{A} f g_{\upharpoonright X}^{\prime}(x) d x$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

