Definition of Integrability for Partial Functions from \mathbb{R} to \mathbb{R} and Integrability for Continuous Functions

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article, we defined the Riemann definite integral of partial function from \mathbb{R} to \mathbb{R} . Then we have proved the integrability for the continuous function and differentiable function. Moreover, we have proved an elementary theorem of calculus.

MML Identifier: INTEGRA5.

The articles [12], [13], [1], [2], [6], [3], [5], [14], [7], [16], [9], [10], [4], [11], [8], and [15] provide the notation and terminology for this paper.

1. Some Useful Properties of Finite Sequence

For simplicity, we adopt the following convention: i denotes a natural number, a, b, r_1 , r_2 denote real numbers, A denotes a closed-interval subset of \mathbb{R} , C denotes a non empty set, and X denotes a set.

One can prove the following propositions:

- (1) Let F, F_1 , F_2 be finite sequences of elements of \mathbb{R} and given r_1 , r_2 . If $F_1 = \langle r_1 \rangle \cap F$ or $F_1 = F \cap \langle r_1 \rangle$ and if $F_2 = \langle r_2 \rangle \cap F$ or $F_2 = F \cap \langle r_2 \rangle$, then $\sum (F_1 F_2) = r_1 r_2$.
- (2) Let F_1 , F_2 be finite sequences of elements of \mathbb{R} . If len $F_1 = \text{len } F_2$, then len $(F_1 + F_2) = \text{len } F_1$ and len $(F_1 - F_2) = \text{len } F_1$ and $\sum (F_1 + F_2) = \sum F_1 + \sum F_2$ and $\sum (F_1 - F_2) = \sum F_1 - \sum F_2$.
- (3) Let F_1 , F_2 be finite sequences of elements of \mathbb{R} . If len $F_1 = \text{len } F_2$ and for every i such that $i \in \text{dom } F_1$ holds $F_1(i) \leq F_2(i)$, then $\sum F_1 \leq \sum F_2$.

C 2001 University of Białystok ISSN 1426-2630

2. Integrability for Partial Function of \mathbb{R}, \mathbb{R}

Let C be a non empty subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R} . The functor $f \upharpoonright C$ yielding a partial function from C to \mathbb{R} is defined as follows: (Def. 1) $f \upharpoonright C = f \upharpoonright C$.

Next we state two propositions:

- (4) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $(f \upharpoonright C) (g \upharpoonright C) = (f g) \upharpoonright C$.
- (5) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $(f+g) \upharpoonright C = f \upharpoonright C + g \upharpoonright C$.

Let A be a closed-interval subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R} . We say that f is integrable on A if and only if:

(Def. 2) $f \upharpoonright A$ is integrable on A.

Let A be a closed-interval subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R} . The functor $\int f(x)dx$ yields a real number and is defined by:

(Def. 3)
$$\int_{A} f(x)dx = \operatorname{integral} f \upharpoonright A.$$

The following propositions are true:

- (6) For every partial function f from \mathbb{R} to \mathbb{R} such that $A \subseteq \text{dom } f$ holds $f \upharpoonright A$ is total.
- (7) For every partial function f from \mathbb{R} to \mathbb{R} such that f is upper bounded on A holds $f \upharpoonright A$ is upper bounded on A.
- (8) For every partial function f from \mathbb{R} to \mathbb{R} such that f is lower bounded on A holds $f \upharpoonright A$ is lower bounded on A.
- (9) For every partial function f from \mathbb{R} to \mathbb{R} such that f is bounded on A holds $f \upharpoonright A$ is bounded on A.

3. Integrability for Continuous Function

The following propositions are true:

- (10) For every partial function f from \mathbb{R} to \mathbb{R} such that f is continuous on A holds f is bounded on A.
- (11) For every partial function f from \mathbb{R} to \mathbb{R} such that f is continuous on A holds f is integrable on A.
- (12) Let f be a partial function from \mathbb{R} to \mathbb{R} and D be an element of divs A. Suppose $A \subseteq X$ and f is differentiable on X and $f'_{\uparrow X}$ is bounded on A. Then lower_sum $(f'_{\uparrow X} \upharpoonright A, D) \leq f(\sup A) - f(\inf A)$ and $f(\sup A) - f(\inf A) \leq \operatorname{upper_sum}(f'_{\uparrow X} \upharpoonright A, D)$.

- (13) Let f be a partial function from \mathbb{R} to \mathbb{R} . Suppose $A \subseteq X$ and f is differentiable on X and $f'_{\uparrow X}$ is integrable on A and $f'_{\uparrow X}$ is bounded on A. Then $\int_{A} f'_{\uparrow X}(x) dx = f(\sup A) - f(\inf A)$.
- (14) For every partial function f from \mathbb{R} to \mathbb{R} such that f is non-decreasing on A and $A \subseteq \text{dom } f$ holds $\text{rng}(f \upharpoonright A)$ is bounded.
- (15) Let f be a partial function from \mathbb{R} to \mathbb{R} . If f is non-decreasing on A and $A \subseteq \text{dom } f$, then $\inf \text{rng}(f \upharpoonright A) = f(\inf A)$ and $\sup \text{rng}(f \upharpoonright A) = f(\sup A)$.
- (16) For every partial function f from \mathbb{R} to \mathbb{R} such that f is monotone on A and $A \subseteq \text{dom } f$ holds f is integrable on A.
- (17) Let f be a partial function from \mathbb{R} to \mathbb{R} and A, B be closed-interval subsets of \mathbb{R} . If f is continuous on A and $B \subseteq A$, then f is integrable on B.
- (18) Let f be a partial function from \mathbb{R} to \mathbb{R} , A, B, C be closed-interval subsets of \mathbb{R} , and given X. Suppose $A \subseteq X$ and f is differentiable on X and $f'_{\uparrow X}$ is continuous on A and $\inf A = \inf B$ and $\sup B = \inf C$ and $\sup C = \sup A$. Then $B \subseteq A$ and $C \subseteq A$ and $\int_{A} f'_{\uparrow X}(x) dx = \int_{B} f'_{\uparrow X}(x) dx + \int_{C} f'_{\uparrow X}(x) dx$.

Let a, b be elements of \mathbb{R} . Let us assume that $a \leq b$. The functor [a, b] yields a closed-interval subset of \mathbb{R} and is defined as follows:

(Def. 4)
$$['a, b'] = [a, b].$$

Let a, b be elements of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R} . The functor $\int_{a}^{b} f(x)dx$ yields a real number and is defined by:

$$\int_{a} f(x) dx$$
 yields a real number and is defined by

(Def. 5)
$$\int_{a}^{b} f(x)dx = \begin{cases} \int f(x)dx, \text{ if } a \leq b, \\ ['a,b'] \\ -\int \\ ['b,a'] \end{cases} f(x)dx, \text{ otherwise.}$$

We now state three propositions:

- (19) Let f be a partial function from \mathbb{R} to \mathbb{R} , A be a closed-interval subset of \mathbb{R} , and given a, b. If A = [a, b], then $\int_{A} f(x)dx = \int_{a}^{b} f(x)dx$.
- (20) Let f be a partial function from \mathbb{R} to \mathbb{R} , A be a closed-interval subset of

 \mathbb{R} , and given a, b. If A = [b, a], then $-\int_{A} f(x)dx = \int_{a}^{b} f(x)dx$.

(21) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and X be an open subset of \mathbb{R} . Suppose that f is differentiable on X and g is differentiable on Xand $A \subseteq X$ and $f'_{\uparrow X}$ is integrable on A and $f'_{\uparrow X}$ is bounded on A and

 $g'_{\uparrow X}$ is integrable on A and $g'_{\uparrow X}$ is bounded on A. Then $\int_{A} f'_{\uparrow X} g(x) dx =$

$$f(\sup A) \cdot g(\sup A) - f(\inf A) \cdot g(\inf A) - \int_A f g'_{\uparrow X}(x) dx.$$

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(1):93–102, 1999.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [8] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [10] Jarosław Kotowicz. Properties of real functions. *Formalized Mathematics*, 1(4):781–786, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received March 23, 2000