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Summary. In this article, we defined the Riemann definite integral of
partial function from R to R. Then we have proved the integrability for the

continuous function and differentiable function. Moreover, we have proved an

elementary theorem of calculus.
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The articles [12], [13], [1], [2], [6], [3], [5], [14], [7], [16], [9], [10], [4], [11], [8], and

[15] provide the notation and terminology for this paper.

1. Some Useful Properties of Finite Sequence

For simplicity, we adopt the following convention: i denotes a natural number, a,

b, r1, r2 denote real numbers, A denotes a closed-interval subset of R, C denotes

a non empty set, and X denotes a set.

One can prove the following propositions:

(1) Let F , F1, F2 be finite sequences of elements of R and given r1, r2. If

F1 = 〈r1〉
a F or F1 = F a 〈r1〉 and if F2 = 〈r2〉

a F or F2 = F a 〈r2〉, then
∑

(F1 − F2) = r1 − r2.

(2) Let F1, F2 be finite sequences of elements of R. If lenF1 = lenF2, then

len(F1 + F2) = lenF1 and len(F1 − F2) = lenF1 and
∑

(F1 + F2) =
∑

F1 +
∑

F2 and
∑

(F1 − F2) =
∑

F1 −
∑

F2.

(3) Let F1, F2 be finite sequences of elements of R. If lenF1 = lenF2 and

for every i such that i ∈ domF1 holds F1(i) ¬ F2(i), then
∑

F1 ¬
∑

F2.
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2. Integrability for Partial Function of R, R

Let C be a non empty subset of R and let f be a partial function from R to R.

The functor f ↾ C yielding a partial function from C to R is defined as follows:

(Def. 1) f ↾ C = f↾C.

Next we state two propositions:

(4) For all partial functions f , g from R to R and for every non empty subset

C of R holds (f ↾ C) (g ↾ C) = (f g) ↾ C.

(5) For all partial functions f , g from R to R and for every non empty subset

C of R holds (f + g) ↾ C = f ↾ C + g ↾ C.

Let A be a closed-interval subset of R and let f be a partial function from

R to R. We say that f is integrable on A if and only if:

(Def. 2) f ↾ A is integrable on A.

Let A be a closed-interval subset of R and let f be a partial function from

R to R. The functor

∫

A

f(x)dx yields a real number and is defined by:

(Def. 3)

∫

A

f(x)dx = integral f ↾ A.

The following propositions are true:

(6) For every partial function f from R to R such that A ⊆ dom f holds

f ↾ A is total.

(7) For every partial function f from R to R such that f is upper bounded

on A holds f ↾ A is upper bounded on A.

(8) For every partial function f from R to R such that f is lower bounded

on A holds f ↾ A is lower bounded on A.

(9) For every partial function f from R to R such that f is bounded on A

holds f ↾ A is bounded on A.

3. Integrability for Continuous Function

The following propositions are true:

(10) For every partial function f from R to R such that f is continuous on A

holds f is bounded on A.

(11) For every partial function f from R to R such that f is continuous on A

holds f is integrable on A.

(12) Let f be a partial function from R to R and D be an element of divsA.

Suppose A ⊆ X and f is differentiable on X and f ′↾X is bounded on

A. Then lower sum(f ′↾X ↾ A,D) ¬ f(supA) − f(inf A) and f(supA) −

f(inf A) ¬ upper sum(f ′↾X ↾ A,D).
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(13) Let f be a partial function from R to R. Suppose A ⊆ X and f is

differentiable on X and f ′↾X is integrable on A and f ′↾X is bounded on A.

Then

∫

A

f ′↾X(x)dx = f(supA)− f(inf A).

(14) For every partial function f from R to R such that f is non-decreasing

on A and A ⊆ dom f holds rng(f↾A) is bounded.

(15) Let f be a partial function from R to R. If f is non-decreasing on A and

A ⊆ dom f, then inf rng(f↾A) = f(inf A) and sup rng(f↾A) = f(supA).

(16) For every partial function f from R to R such that f is monotone on A

and A ⊆ dom f holds f is integrable on A.

(17) Let f be a partial function from R to R and A, B be closed-interval

subsets of R. If f is continuous on A and B ⊆ A, then f is integrable on

B.

(18) Let f be a partial function from R to R, A, B, C be closed-interval

subsets of R, and given X. Suppose A ⊆ X and f is differentiable on X

and f ′↾X is continuous on A and inf A = inf B and supB = inf C and

supC = supA. Then B ⊆ A and C ⊆ A and

∫

A

f ′↾X(x)dx =

∫

B

f ′↾X(x)dx+

∫

C

f ′↾X(x)dx.

Let a, b be elements of R. Let us assume that a ¬ b. The functor [′a, b′]

yields a closed-interval subset of R and is defined as follows:

(Def. 4) [′a, b′] = [a, b].

Let a, b be elements of R and let f be a partial function from R to R. The

functor

b
∫

a

f(x)dx yields a real number and is defined by:

(Def. 5)

b
∫

a

f(x)dx =























∫

[′a,b′]

f(x)dx, if a ¬ b,

−

∫

[′b,a′]

f(x)dx, otherwise.

We now state three propositions:

(19) Let f be a partial function from R to R, A be a closed-interval subset of

R, and given a, b. If A = [a, b], then

∫

A

f(x)dx =

b
∫

a

f(x)dx.

(20) Let f be a partial function from R to R, A be a closed-interval subset of
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R, and given a, b. If A = [b, a], then −

∫

A

f(x)dx =

b
∫

a

f(x)dx.

(21) Let f , g be partial functions from R to R and X be an open subset

of R. Suppose that f is differentiable on X and g is differentiable on X

and A ⊆ X and f ′↾X is integrable on A and f ′↾X is bounded on A and

g′↾X is integrable on A and g′↾X is bounded on A. Then

∫

A

f ′↾X g(x)dx =

f(supA) · g(supA)− f(inf A) · g(inf A)−

∫

A

f g′↾X(x)dx.
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