Integrability of Bounded Total Functions

Noboru Endou
Shinshu University
Nagano

Katsumi Wasaki
Shinshu University
Nagano

Yasunari Shidama
Shinshu University
Nagano

Summary. All these results have been obtained by Darboux's theorem in our previous article [7]. In addition, we have proved the first mean value theorem to Riemann integral.

MML Identifier: INTEGRA4.

The articles [15], [1], [2], [3], [6], [8], [4], [5], [9], [18], [12], [14], [13], [11], [10], [17], and [16] provide the notation and terminology for this paper.

1. Basic Integrable Functions and First Mean Value Theorem

For simplicity, we use the following convention: i, n denote natural numbers, a, r, x, y denote real numbers, A denotes a closed-interval subset of \mathbb{R}, C denotes a non empty set, and X denotes a set.

We now state several propositions:
(1) For every element D of divs A such that $\operatorname{vol}(A)=0$ holds len $D=1$.
(2) $\chi_{A, A}$ is integrable on A and integral $\chi_{A, A}=\operatorname{vol}(A)$.
(3) For every partial function f from A to \mathbb{R} and for every r holds f is total and $\operatorname{rng} f=\{r\}$ iff $f=r \chi_{A, A}$.
(4) Let f be a partial function from A to \mathbb{R} and given r. If f is total and $\operatorname{rng} f=\{r\}$, then f is integrable on A and integral $f=r \cdot \operatorname{vol}(A)$.
(5) For every r there exists a partial function f from A to \mathbb{R} such that f is total and rng $f=\{r\}$ and f is bounded on A.
(6) Let f be a partial function from A to \mathbb{R} and D be an element of divs A. If $\operatorname{vol}(A)=0$, then f is integrable on A and integral $f=0$.
(7) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A and f is integrable on A. Then there exists a such that $\inf \operatorname{rng} f \leqslant a$ and $a \leqslant \sup \operatorname{rng} f$ and integral $f=a \cdot \operatorname{vol}(A)$.

2. Integrability of Bounded Total Functions

We now state three propositions:
(8) Let f be a partial function from A to \mathbb{R} and T be a DivSequence of A. Suppose f is total and bounded on A and δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$. Then lower_sum (f, T) is convergent and \lim lower_sum $(f, T)=$ lower_integral f.
(9) Let f be a partial function from A to \mathbb{R} and T be a DivSequence of A. Suppose f is total and bounded on A and δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$. Then upper_sum (f, T) is convergent and $\lim \operatorname{upper} _\operatorname{sum}(f, T)=$ upper_integral f.
(10) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A. Then f is upper integrable on A and f is lower integrable on A.
Let A be a closed-interval subset of \mathbb{R}, let I_{1} be an element of $\operatorname{divs} A$, and let us consider n. We say that I_{1} divides into equal n if and only if:
(Def. 1) $\operatorname{len} I_{1}=n$ and for every i such that $i \in \operatorname{dom} I_{1}$ holds $I_{1}(i)=\inf A+$ $\frac{\operatorname{vol}(A)}{\operatorname{len} I_{1}} \cdot i$.
Next we state a number of propositions:
(11) There exists a DivSequence T of A such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$.
(12) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A. Then f is integrable on A if and only if for every DivSequence T of A such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$ holds lim upper_sum $(f, T)-$ \lim lower_sum $(f, T)=0$.
(13) For every partial function f from C to \mathbb{R} such that f is total holds $\max _{+}(f)$ is total and $\max _{-}(f)$ is total.
(14) For every partial function f from C to \mathbb{R} such that f is upper bounded on X holds $\max _{+}(f)$ is upper bounded on X.
(15) For every partial function f from C to \mathbb{R} holds $\max _{+}(f)$ is lower bounded on X.
(16) For every partial function f from C to \mathbb{R} such that f is lower bounded on X holds max_ (f) is upper bounded on X.
(17) For every partial function f from C to \mathbb{R} holds max_ (f) is lower bounded on X.
(18) For every partial function f from A to \mathbb{R} such that f is upper bounded on A holds $\operatorname{rng}(f\lceil X)$ is upper bounded.
(19) For every partial function f from A to \mathbb{R} such that f is lower bounded on A holds $\operatorname{rng}(f\lceil X)$ is lower bounded.
(20) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A and f is integrable on A. Then $\max _{+}(f)$ is integrable on A.
(21) For every partial function f from C to \mathbb{R} holds max_ $(f)=\max _{+}(-f)$.
(22) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A and f is integrable on A. Then max_ (f) is integrable on A.
(23) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A and f is integrable on A. Then $|f|$ is integrable on A and \mid integral $f|\leqslant \operatorname{integral}| f \mid$.
(24) Let f be a partial function from A to \mathbb{R}. Suppose f is bounded on A and total and for all x, y such that $x \in A$ and $y \in A$ holds $|f(x)-f(y)| \leqslant a$. Then sup $\operatorname{rng} f-\inf \operatorname{rng} f \leqslant a$.
(25) Let f, g be partial functions from A to \mathbb{R}. Suppose that
(i) f is bounded on A,
(ii) g is bounded on A,
(iii) f is total,
(iv) g is total,
(v) $a \geqslant 0$, and
(vi) for all x, y such that $x \in A$ and $y \in A$ holds $|g(x)-g(y)| \leqslant a \cdot \mid f(x)-$ $f(y) \mid$.
Then sup $\operatorname{rng} g-\inf \operatorname{rng} g \leqslant a \cdot(\sup \operatorname{rng} f-\inf \operatorname{rng} f)$.
(26) Let f, g, h be partial functions from A to \mathbb{R}. Suppose that f is bounded on A and g is bounded on A and h is bounded on A and f is total and g is total and h is total and $a \geqslant 0$ and for all x, y such that $x \in A$ and $y \in A$ holds $|h(x)-h(y)| \leqslant a \cdot(|f(x)-f(y)|+|g(x)-g(y)|)$. Then sup $\operatorname{rng} h-\inf \operatorname{rng} h \leqslant a \cdot((\sup \operatorname{rng} f-\inf \operatorname{rng} f)+(\sup \operatorname{rng} g-\inf \operatorname{rng} g))$.
(27) Let f, g be partial functions from A to \mathbb{R}. Suppose that
(i) f is total and bounded on A,
(ii) f is integrable on A,
(iii) g is total and bounded on A,
(iv) $a>0$, and
(v) for all x, y such that $x \in A$ and $y \in A$ holds $|g(x)-g(y)| \leqslant a \cdot \mid f(x)-$ $f(y) \mid$.
Then g is integrable on A.
(28) Let f, g, h be partial functions from A to \mathbb{R}. Suppose that f is total and bounded on A and f is integrable on A and g is total and bounded on A and g is integrable on A and h is total and bounded on A and
$a>0$ and for all x, y such that $x \in A$ and $y \in A$ holds $|h(x)-h(y)| \leqslant$ $a \cdot(|f(x)-f(y)|+|g(x)-g(y)|)$. Then h is integrable on A.
(29) Let f, g be partial functions from A to \mathbb{R}. Suppose that
(i) f is total and bounded on A,
(ii) f is integrable on A,
(iii) g is total and bounded on A, and
(iv) g is integrable on A.

Then $f g$ is integrable on A.
(30) Let f be a partial function from A to \mathbb{R}. Suppose f is total and bounded on A and f is integrable on A and $0 \notin \operatorname{rng} f$ and $\frac{1}{f}$ is bounded on A. Then $\frac{1}{f}$ is integrable on A.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197-200, 2001.
[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[14] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

