
FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001

University of Białystok

Integrability of Bounded Total Functions

Noboru Endou

Shinshu University

Nagano

Katsumi Wasaki

Shinshu University

Nagano

Yasunari Shidama

Shinshu University

Nagano

Summary. All these results have been obtained by Darboux’s theorem in
our previous article [7]. In addition, we have proved the first mean value theorem

to Riemann integral.
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The articles [15], [1], [2], [3], [6], [8], [4], [5], [9], [18], [12], [14], [13], [11], [10],

[17], and [16] provide the notation and terminology for this paper.

1. Basic Integrable Functions and First Mean Value Theorem

For simplicity, we use the following convention: i, n denote natural numbers,

a, r, x, y denote real numbers, A denotes a closed-interval subset of R, C denotes

a non empty set, and X denotes a set.

We now state several propositions:

(1) For every element D of divsA such that vol(A) = 0 holds lenD = 1.

(2) χA,A is integrable on A and integralχA,A = vol(A).

(3) For every partial function f from A to R and for every r holds f is total

and rng f = {r} iff f = r χA,A.

(4) Let f be a partial function from A to R and given r. If f is total and

rng f = {r}, then f is integrable on A and integral f = r · vol(A).

(5) For every r there exists a partial function f from A to R such that f is

total and rng f = {r} and f is bounded on A.

(6) Let f be a partial function from A to R and D be an element of divsA.

If vol(A) = 0, then f is integrable on A and integral f = 0.
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(7) Let f be a partial function from A to R. Suppose f is total and bounded

on A and f is integrable on A. Then there exists a such that inf rng f ¬ a

and a ¬ sup rng f and integral f = a · vol(A).

2. Integrability of Bounded Total Functions

We now state three propositions:

(8) Let f be a partial function from A to R and T be a DivSequ-

ence of A. Suppose f is total and bounded on A and δT is co-

nvergent and lim(δT ) = 0. Then lower sum(f, T ) is convergent and

lim lower sum(f, T ) = lower integral f.

(9) Let f be a partial function from A to R and T be a DivSequ-

ence of A. Suppose f is total and bounded on A and δT is co-

nvergent and lim(δT ) = 0. Then upper sum(f, T ) is convergent and

limupper sum(f, T ) = upper integral f.

(10) Let f be a partial function from A to R. Suppose f is total and bounded

on A. Then f is upper integrable on A and f is lower integrable on A.

Let A be a closed-interval subset of R, let I1 be an element of divsA, and

let us consider n. We say that I1 divides into equal n if and only if:

(Def. 1) len I1 = n and for every i such that i ∈ dom I1 holds I1(i) = inf A +
vol(A)
len I1

· i.

Next we state a number of propositions:

(11) There exists a DivSequence T of A such that δT is convergent and

lim(δT ) = 0.

(12) Let f be a partial function from A to R. Suppose f is total and bounded

on A. Then f is integrable on A if and only if for every DivSequence T of

A such that δT is convergent and lim(δT ) = 0 holds limupper sum(f, T )−

lim lower sum(f, T ) = 0.

(13) For every partial function f from C to R such that f is total holds

max+(f) is total and max
−
(f) is total.

(14) For every partial function f from C to R such that f is upper bounded

on X holds max+(f) is upper bounded on X.

(15) For every partial function f from C to R holds max+(f) is lower bounded

on X.

(16) For every partial function f from C to R such that f is lower bounded

on X holds max
−
(f) is upper bounded on X.

(17) For every partial function f from C to R holds max
−
(f) is lower bounded

on X.
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(18) For every partial function f from A to R such that f is upper bounded

on A holds rng(f↾X) is upper bounded.

(19) For every partial function f from A to R such that f is lower bounded

on A holds rng(f↾X) is lower bounded.

(20) Let f be a partial function from A to R. Suppose f is total and bounded

on A and f is integrable on A. Then max+(f) is integrable on A.

(21) For every partial function f from C to R holds max
−
(f) = max+(−f).

(22) Let f be a partial function from A to R. Suppose f is total and bounded

on A and f is integrable on A. Then max
−
(f) is integrable on A.

(23) Let f be a partial function from A to R. Suppose f is total and bo-

unded on A and f is integrable on A. Then |f | is integrable on A and

| integral f | ¬ integral |f |.

(24) Let f be a partial function from A to R. Suppose f is bounded on A and

total and for all x, y such that x ∈ A and y ∈ A holds |f(x)− f(y)| ¬ a.

Then sup rng f − inf rng f ¬ a.

(25) Let f , g be partial functions from A to R. Suppose that

(i) f is bounded on A,

(ii) g is bounded on A,

(iii) f is total,

(iv) g is total,

(v) a  0, and

(vi) for all x, y such that x ∈ A and y ∈ A holds |g(x)− g(y)| ¬ a · |f(x)−

f(y)|.

Then sup rng g − inf rng g ¬ a · (sup rng f − inf rng f).

(26) Let f , g, h be partial functions from A to R. Suppose that f is bounded

on A and g is bounded on A and h is bounded on A and f is total and

g is total and h is total and a  0 and for all x, y such that x ∈ A

and y ∈ A holds |h(x) − h(y)| ¬ a · (|f(x) − f(y)| + |g(x) − g(y)|). Then

sup rng h− inf rng h ¬ a · ((sup rng f − inf rng f) + (sup rng g− inf rng g)).

(27) Let f , g be partial functions from A to R. Suppose that

(i) f is total and bounded on A,

(ii) f is integrable on A,

(iii) g is total and bounded on A,

(iv) a > 0, and

(v) for all x, y such that x ∈ A and y ∈ A holds |g(x)− g(y)| ¬ a · |f(x)−

f(y)|.

Then g is integrable on A.

(28) Let f , g, h be partial functions from A to R. Suppose that f is total

and bounded on A and f is integrable on A and g is total and bounded

on A and g is integrable on A and h is total and bounded on A and
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a > 0 and for all x, y such that x ∈ A and y ∈ A holds |h(x) − h(y)| ¬

a · (|f(x)− f(y)|+ |g(x)− g(y)|). Then h is integrable on A.

(29) Let f , g be partial functions from A to R. Suppose that

(i) f is total and bounded on A,

(ii) f is integrable on A,

(iii) g is total and bounded on A, and

(iv) g is integrable on A.

Then f g is integrable on A.

(30) Let f be a partial function from A to R. Suppose f is total and bounded

on A and f is integrable on A and 0 /∈ rng f and 1
f
is bounded on A. Then

1
f
is integrable on A.
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