The Hahn Banach Theorem in the Vector Space over the Field of Complex Numbers

Anna Justyna Milewska
University of Białystok

Summary. This article contains the Hahn Banach theorem in the vector space over the field of complex numbers.

MML Identifier: HAHNBAN1.

The articles [8], [7], [1], [5], [2], [6], [9], [3], [14], [10], [12], [13], [4], and [11] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:
(1) For every element z of \mathbb{C} holds $\|z\|=|z|$.
(2) For all elements $x_{1}, y_{1}, x_{2}, y_{2}$ of \mathbb{R} holds $\left(x_{1}+y_{1} i\right) \cdot\left(x_{2}+y_{2} i\right)=\left(x_{1}\right.$. $\left.x_{2}-y_{1} \cdot y_{2}\right)+\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right) i$.
(3) For every real number r holds $(r+0 i) \cdot i=0+r i$.
(4) For every real number r holds $|r+0 i|=|r|$.
(5) For every element z of \mathbb{C} such that $|z| \neq 0$ holds $|z|+0 i=\frac{z^{*}}{|z|+0 i} \cdot z$.
2. Some Facts on the Field of Complex Numbers

Let x, y be real numbers. The functor $x+y i_{\mathbb{C}_{F}}$ yielding an element of \mathbb{C}_{F} is defined by:
(Def. 1) $\quad x+y i_{\mathbb{C}_{\mathrm{F}}}=x+y i$.

The element $i_{\mathbb{C}_{\mathrm{F}}}$ of \mathbb{C}_{F} is defined by:
(Def. 2) $\quad i_{\mathbb{C}_{F}}=i$.
One can prove the following propositions:
(6) $i_{\mathbb{C}_{\mathrm{F}}}=0+1 i$ and $i_{\mathbb{C}_{\mathrm{F}}}=0+1 i_{\mathbb{C}_{\mathrm{F}}}$.
(7) $\left|i_{\mathbb{C}_{F}}\right|=1$.
(8) $i_{\mathbb{C}_{F}} \cdot i_{\mathbb{C}_{F}}=-\mathbf{1}_{\mathbb{C}_{F}}$.
(9) $\quad\left(-\mathbf{1}_{\mathbb{C}_{F}}\right) \cdot-\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}=\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}$.
(10) For all real numbers $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left(x_{1}+y_{1} i_{\mathbb{C}_{\mathrm{F}}}\right)+\left(x_{2}+y_{2} i_{\mathbb{C}_{\mathrm{F}}}\right)=$ $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(11) For all real numbers $x_{1}, y_{1}, x_{2}, y_{2}$ holds $\left(x_{1}+y_{1} i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot\left(x_{2}+y_{2} i_{\mathbb{C}_{\mathrm{F}}}\right)=$ $\left(x_{1} \cdot x_{2}-y_{1} \cdot y_{2}\right)+\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(12) For every element z of the carrier of \mathbb{C}_{F} holds $\|z\|=|z|$.
(13) For every real number r holds $\left|r+0 i_{\mathbb{C}_{F}}\right|=|r|$.
(14) For every real number r holds $\left(r+0 i_{\mathbb{C}_{\mathrm{F}}}\right) \cdot i_{\mathbb{C}_{\mathrm{F}}}=0+r i_{\mathbb{C}_{\mathrm{F}}}$.

Let z be an element of the carrier of \mathbb{C}_{F}. The functor $\Re(z)$ yields a real number and is defined as follows:
(Def. 3) There exists an element z^{\prime} of \mathbb{C} such that $z=z^{\prime}$ and $\Re(z)=\Re\left(z^{\prime}\right)$.
Let z be an element of the carrier of \mathbb{C}_{F}. The functor $\Im(z)$ yields a real number and is defined as follows:
(Def. 4) There exists an element z^{\prime} of \mathbb{C} such that $z=z^{\prime}$ and $\Im(z)=\Im\left(z^{\prime}\right)$.
The following propositions are true:
(15) For all real numbers x, y holds $\Re\left(x+y i_{\mathbb{C}_{\mathrm{F}}}\right)=x$ and $\Im\left(x+y i_{\mathbb{C}_{\mathrm{F}}}\right)=y$.
(16) For all elements x, y of the carrier of \mathbb{C}_{F} holds $\Re(x+y)=\Re(x)+\Re(y)$ and $\Im(x+y)=\Im(x)+\Im(y)$.
(17) For all elements x, y of the carrier of \mathbb{C}_{F} holds $\Re(x \cdot y)=\Re(x) \cdot \Re(y)-$ $\Im(x) \cdot \Im(y)$ and $\Im(x \cdot y)=\Re(x) \cdot \Im(y)+\Re(y) \cdot \Im(x)$.
(18) For every element z of the carrier of \mathbb{C}_{F} holds $\Re(z) \leqslant|z|$.
(19) For every element z of the carrier of \mathbb{C}_{F} holds $\Im(z) \leqslant|z|$.

3. Functionals of Vector Space

Let K be a 1 -sorted structure and let V be a vector space structure over K.
(Def. 5) A function from the carrier of V into the carrier of K is said to be a functional in V.
Let K be a non empty loop structure, let V be a non empty vector space structure over K, and let f, g be functionals in V. The functor $f+g$ yielding a functional in V is defined by:
(Def. 6) For every element x of the carrier of V holds $(f+g)(x)=f(x)+g(x)$.
Let K be a non empty loop structure, let V be a non empty vector space structure over K, and let f be a functional in V. The functor $-f$ yielding a functional in V is defined by:
(Def. 7) For every element x of the carrier of V holds $(-f)(x)=-f(x)$.
Let K be a non empty loop structure, let V be a non empty vector space structure over K, and let f, g be functionals in V. The functor $f-g$ yielding a functional in V is defined by:
(Def. 8) $f-g=f+-g$.
Let K be a non empty groupoid, let V be a non empty vector space structure over K, let v be an element of the carrier of K, and let f be a functional in V. The functor $v \cdot f$ yields a functional in V and is defined by:
(Def. 9) For every element x of the carrier of V holds $(v \cdot f)(x)=v \cdot f(x)$.
Let K be a non empty zero structure and let V be a vector space structure over K. The functor 0 Functional V yields a functional in V and is defined as follows:
(Def. 10) 0Functional $V=\Omega_{V} \longmapsto 0_{K}$.
Let K be a non empty loop structure, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is additive if and only if:
(Def. 11) For all vectors x, y of V holds $F(x+y)=F(x)+F(y)$.
Let K be a non empty groupoid, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is homogeneous if and only if:
(Def. 12) For every vector x of V and for every scalar r of V holds $F(r \cdot x)=r \cdot F(x)$.
Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is 0 -preserving if and only if:
(Def. 13) $\quad F\left(0_{V}\right)=0_{K}$.
Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be a vector space over K. Note that every functional in V which is homogeneous is also 0-preserving.

Let K be a right zeroed non empty loop structure and let V be a non empty vector space structure over K. Note that 0Functional V is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. Observe that 0Functional V is homogeneous.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. Observe that 0Functional V is 0 -preserving.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. Observe that there exists a functional in V which is additive, homogeneous, and 0-preserving.

The following propositions are true:
(20) Let K be an Abelian non empty loop structure, V be a non empty vector space structure over K, and f, g be functionals in V. Then $f+g=g+f$.
(21) Let K be an add-associative non empty loop structure, V be a non empty vector space structure over K, and f, g, h be functionals in V. Then $(f+g)+h=f+(g+h)$.
(22) Let K be a non empty zero structure, V be a non empty vector space structure over K, and x be an element of the carrier of V. Then (0Functional $V)(x)=0_{K}$.
(23) Let K be a right zeroed non empty loop structure, V be a non empty vector space structure over K, and f be a functional in V. Then $f+$ 0Functional $V=f$.
(24) Let K be an add-associative right zeroed right complementable non empty loop structure, V be a non empty vector space structure over K, and f be a functional in V. Then $f-f=0$ Functional V.
(25) Let K be a right distributive non empty double loop structure, V be a non empty vector space structure over K, r be an element of the carrier of K, and f, g be functionals in V. Then $r \cdot(f+g)=r \cdot f+r \cdot g$.
(26) Let K be a left distributive non empty double loop structure, V be a non empty vector space structure over K, r, s be elements of the carrier of K, and f be a functional in V. Then $(r+s) \cdot f=r \cdot f+s \cdot f$.
(27) Let K be an associative non empty groupoid, V be a non empty vector space structure over K, r, s be elements of the carrier of K, and f be a functional in V. Then $(r \cdot s) \cdot f=r \cdot(s \cdot f)$.
(28) Let K be a left unital non empty double loop structure, V be a non empty vector space structure over K, and f be a functional in V. Then $\mathbf{1}_{K} \cdot f=f$.
Let K be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let V be a non empty vector space structure over K, and let f, g be additive functionals in V. Observe that $f+g$ is additive.

Let K be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let V be a non empty vector space structure over K, and let f be an additive functional in V. One can verify that $-f$ is additive.

Let K be an add-associative right zeroed right complementable right di-
stributive non empty double loop structure, let V be a non empty vector space structure over K, let v be an element of the carrier of K, and let f be an additive functional in V. Observe that $v \cdot f$ is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure, let V be a non empty vector space structure over K, and let f, g be homogeneous functionals in V. Observe that $f+g$ is homogeneous.

Let K be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let V be a non empty vector space structure over K, and let f be a homogeneous functional in V. One can check that $-f$ is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure, let V be a non empty vector space structure over K, let v be an element of the carrier of K, and let f be a homogeneous functional in V. Observe that $v \cdot f$ is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. A linear functional in V is an additive homogeneous functional in V.

4. The Vector Space of Linear Functionals

Let K be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let V be a non empty vector space structure over K. The functor V^{*} yielding a non empty strict vector space structure over K is defined by the conditions (Def. 14).
(Def. 14)(i) For every set x holds $x \in$ the carrier of V^{*} iff x is a linear functional in V,
(ii) for all linear functionals f, g in V holds (the addition of $\left.V^{*}\right)(f, g)=$ $f+g$,
(iii) for every linear functional f in V holds (the reverse-map of $\left.V^{*}\right)(f)=$ $-f$,
(iv) the zero of $V^{*}=0$ Functional V, and
(v) for every linear functional f in V and for every element x of the carrier of K holds (the left multiplication of $\left.V^{*}\right)(x, f)=x \cdot f$.
Let K be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let V be a non empty vector space structure over K. One can check that V^{*} is Abelian.

Let K be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let
V be a non empty vector space structure over K. One can verify the following observations:

* V^{*} is add-associative,
* V^{*} is right zeroed, and
* V^{*} is right complemented.

Let K be an Abelian add-associative right zeroed right complementable left unital distributive associative commutative non empty double loop structure and let V be a non empty vector space structure over K. One can check that V^{*} is vector space-like.

5. Semi Norm of Vector Space

Let K be a 1 -sorted structure and let V be a vector space structure over K.
(Def. 15) A function from the carrier of V into \mathbb{R} is said to be a RFunctional of V.
Let K be a 1 -sorted structure, let V be a non empty vector space structure over K, and let F be a RFunctional of V. We say that F is subadditive if and only if:
(Def. 16) For all vectors x, y of V holds $F(x+y) \leqslant F(x)+F(y)$.
Let K be a 1 -sorted structure, let V be a non empty vector space structure over K, and let F be a RFunctional of V. We say that F is additive if and only if:
(Def. 17) For all vectors x, y of V holds $F(x+y)=F(x)+F(y)$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let F be a RFunctional of V. We say that F is Real-homogeneous if and only if:
(Def. 18) For every vector v of V and for every real number r holds $F\left(\left(r+0 i_{\mathbb{C}_{\mathrm{F}}}\right)\right.$. $v)=r \cdot F(v)$.
One can prove the following proposition
(29) Let V be a vector space-like non empty vector space structure over \mathbb{C}_{F} and F be a RFunctional of V. Suppose F is Real-homogeneous. Let v be a vector of V and r be a real number. Then $F\left(\left(0+r i_{\mathbb{C}_{F}}\right) \cdot v\right)=r \cdot F\left(i_{\mathbb{C}_{F}} \cdot v\right)$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let F be a RFunctional of V. We say that F is homogeneous if and only if:
(Def. 19) For every vector v of V and for every scalar r of V holds $F(r \cdot v)=$ $|r| \cdot F(v)$.
Let K be a 1 -sorted structure, let V be a vector space structure over K, and let F be a RFunctional of V. We say that F is 0 -preserving if and only if:
(Def. 20) $\quad F\left(0_{V}\right)=0$.

Let K be a 1-sorted structure and let V be a non empty vector space structure over K. One can verify that every RFunctional of V which is additive is also subadditive.

Let V be a vector space over \mathbb{C}_{F}. Note that every RFunctional of V which is Real-homogeneous is also 0-preserving.

Let K be a 1-sorted structure and let V be a vector space structure over K. The functor 0RFunctional V yielding a RFunctional of V is defined as follows:
(Def. 21) 0RFunctional $V=\Omega_{V} \longmapsto 0$.
Let K be a 1-sorted structure and let V be a non empty vector space structure over K. Note that 0RFunctional V is additive and 0RFunctional V is 0 preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F}. Note that 0RFunctional V is Real-homogeneous and 0RFunctional V is homogeneous.

Let K be a 1-sorted structure and let V be a non empty vector space structure over K. Note that there exists a RFunctional of V which is additive and 0 -preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F}. One can check that there exists a RFunctional of V which is additive, Real-homogeneous, and homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F}. A Semi-Norm of V is a subadditive homogeneous RFunctional of V.

6. The Hahn Banach Theorem

Let V be a non empty vector space structure over \mathbb{C}_{F}. The functor RealVS V yielding a strict RLS structure is defined by the conditions (Def. 22).
(Def. 22)(i) The loop structure of RealVS $V=$ the loop structure of V, and
(ii) for every real number r and for every vector v of V holds (the external multiplication of $\operatorname{RealVS} V)(r, v)=\left(r+0 i_{\mathbb{C}_{F}}\right) \cdot v$.
Let V be a non empty vector space structure over \mathbb{C}_{F}. Observe that RealVS V is non empty.

Let V be an Abelian non empty vector space structure over \mathbb{C}_{F}. Observe that RealVS V is Abelian.

Let V be an add-associative non empty vector space structure over \mathbb{C}_{F}. One can check that RealVS V is add-associative.

Let V be a right zeroed non empty vector space structure over \mathbb{C}_{F}. Note that RealVS V is right zeroed.

Let V be a right complementable non empty vector space structure over \mathbb{C}_{F}. One can check that RealVS V is right complementable.

Let V be a vector space-like non empty vector space structure over \mathbb{C}_{F}. Note that RealVS V is real linear space-like.

One can prove the following three propositions:
(30) For every non empty vector space V over \mathbb{C}_{F} and for every subspace M of V holds RealVS M is a subspace of RealVS V.
(31) For every non empty vector space structure V over \mathbb{C}_{F} holds every RFunctional of V is a functional in RealVS V.
(32) For every non empty vector space V over \mathbb{C}_{F} holds every Semi-Norm of V is a Banach functional in RealVS V.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a functional in V. The functor projRe l yielding a functional in RealVS V is defined by:
(Def. 23) For every element i of the carrier of V holds (projRe $l)(i)=\Re(l(i))$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a functional in V. The functor projIm l yields a functional in RealVS V and is defined as follows:
(Def. 24) For every element i of the carrier of V holds $(\operatorname{proj} \operatorname{Im} l)(i)=\Im(l(i))$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a functional in RealVS V. The functor $l_{\mathbb{R} \rightarrow \mathbb{C}}$ yielding a RFunctional of V is defined by:
(Def. 25) $\quad l_{\mathbb{R} \rightarrow \mathbb{C}}=l$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a RFunctional of V. The functor $l_{\mathbb{C} \rightarrow \mathbb{R}}$ yields a functional in RealVS V and is defined by:
(Def. 26) $\quad l_{\mathbb{C} \rightarrow \mathbb{R}}=l$.
Let V be a non empty vector space over \mathbb{C}_{F} and let l be an additive functional in RealVS V. One can check that $l_{\mathbb{R} \rightarrow \mathbb{C}}$ is additive.

Let V be a non empty vector space over \mathbb{C}_{F} and let l be an additive RFunctional of V. Observe that $l_{\mathbb{C} \rightarrow \mathbb{R}}$ is additive.

Let V be a non empty vector space over \mathbb{C}_{F} and let l be a homogeneous functional in RealVS V. Observe that $l_{\mathbb{R} \rightarrow \mathbb{C}}$ is Real-homogeneous.

Let V be a non empty vector space over \mathbb{C}_{F} and let l be a Real-homogeneous RFunctional of V. One can verify that $l_{\mathbb{C} \rightarrow \mathbb{R}}$ is homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a RFunctional of V. The functor i-shift l yields a RFunctional of V and is defined by:
(Def. 27) For every element v of the carrier of V holds (i-shift $l)(v)=l\left(i_{\mathbb{C}_{\mathrm{F}}} \cdot v\right)$.
Let V be a non empty vector space structure over \mathbb{C}_{F} and let l be a functional in RealVS V. The functor prodReIm l yielding a functional in V is defined as follows:
(Def. 28) For every element v of the carrier of V holds (prodReIm $l)(v)=$ $\left(l_{\mathbb{R} \rightarrow \mathbb{C}}\right)(v)+\left(-\left(\mathrm{i}-\right.\right.$ shift $\left.\left.l_{\mathbb{R} \rightarrow \mathbb{C}}\right)(v)\right) i_{\mathbb{C}_{\mathrm{F}}}$.

The following four propositions are true:
(33) Let V be a non empty vector space over \mathbb{C}_{F} and l be a linear functional in V. Then projRe l is a linear functional in RealVS V.
(34) Let V be a non empty vector space over \mathbb{C}_{F} and l be a linear functional in V. Then projIm l is a linear functional in RealVS V.
(35) Let V be a non empty vector space over \mathbb{C}_{F} and l be a linear functional in RealVS V. Then prodReIm l is a linear functional in V.
(36) Let V be a non empty vector space over \mathbb{C}_{F}, p be a Semi-Norm of V, M be a subspace of V, and l be a linear functional in M. Suppose that for every vector e of M and for every vector v of V such that $v=e$ holds $|l(e)| \leqslant p(v)$. Then there exists a linear functional L in V such that L the carrier of $M=l$ and for every vector e of V holds $|L(e)| \leqslant p(e)$.

References

[1] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[2] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[5] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[6] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29-34, 1993.
[7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[8] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185-191, 1991.
[9] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467-474, 1991.
[10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[11] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[12] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 23, 2000

