
FORMALIZED MATHEMATICS

Volume 9, Number 1, 2001

University of Białystok

The Construction and Computation of

for-loop Programs for SCMPDS1

Jing-Chao Chen

Shanghai Jiaotong University

Piotr Rudnicki

University of Alberta

Summary. This article defines two for-loop statements for SCMPDS. One
is called for-up, which corresponds to ”for (i=x; i<0; i+=n) S” in C language.

Another is called for-down, which corresponds to ”for (i=x; i>0; i-=n) S”. Here,

we do not present their unconditional halting (called parahalting) property, be-

cause we have not found that there exists a useful for-loop statement with un-

conditional halting, and the proof of unconditional halting is much simpler than

that of conditional halting. It is hard to formalize all halting conditions, but

some cases can be formalized. We choose loop invariants as halting conditions to

prove halting problem of for-up/down statements. When some variables (except

the loop control variable) keep undestroyed on a set for the loop invariant, and

the loop body is halting for this condition, the corresponding for-up/down is

halting and computable under this condition. The computation of for-loop state-

ments can be realized by evaluating its body. At the end of the article, we verify

for-down statements by two examples for summing.

MML Identifier: SCMPDS 7.

The papers [17], [18], [22], [19], [1], [3], [20], [4], [7], [8], [6], [23], [2], [15], [25],

[13], [9], [12], [10], [11], [14], [5], [24], [21], and [16] provide the notation and

terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x is a set, n is a natural

number, a is a Int position, i, j, k are instructions of SCMPDS, s, s1, s2 are

1This research is partially supported by the National Natural Science Foundation of China

Grant No. 69873033.

209
c© 2001 University of Białystok

ISSN 1426–2630



210 jing-chao chen and piotr rudnicki

states of SCMPDS, l1, l are instructions-locations of SCMPDS, and I, J , K are

Program-block.

We now state a number of propositions:

(1) For every state s of SCMPDS and for all natural numbers m, n such

that ICs = insposm holds ICplusConst(s, n−m) = insposn.

(2) For all finite partial states P , Q of SCMPDS such that P ⊆ Q holds

ProgramPart(P ) ⊆ ProgramPart(Q).

(3) For all programmed finite partial states P , Q of SCMPDS and for every

natural number k such that P ⊆ Q holds Shift(P, k) ⊆ Shift(Q, k).

(4) If ICs = inspos 0, then Initialized(s) = s.

(5) If ICs = inspos 0, then s+· Initialized(I) = s+·I.

(6) (Computation(s))(n)↾the instruction locations of SCMPDS = s↾the in-

struction locations of SCMPDS.

(7) Let s1, s2 be states of SCMPDS. Suppose IC(s1) = IC(s2) and

s1↾Data-LocSCM = s2↾Data-LocSCM and s1↾the instruction locations of

SCMPDS = s2↾the instruction locations of SCMPDS. Then s1 = s2.

(8) l ∈ dom I iff l ∈ dom Initialized(I).

(9) If x ∈ dom I, then I(x) = (s+·(I+·Start-At(l)))(x).

(10) If l1 ∈ dom I, then (s+· Initialized(I))(l1) = I(l1).

(11) (s+·(I+·Start-At(l)))(a) = s(a).

(12) (s+·Start-At(l1))(ICSCMPDS) = l1.

(13) card(I;i) = card I + 1.

(14) (I;i;j)(inspos card I) = i.

(15) (i;I;j);k = i;(I;j;k).

(16) Shift(J, card I) ⊆ I;J ;K.

(17) I ⊆ stop I;J.

(18) If l1 ∈ dom I, then (Shift(stop I, n))(l1 + n) = (Shift(I, n))(l1 + n).

(19) If card I > 0, then (Shift(stop I, n))(insposn) = (Shift(I, n))(insposn).

(20) For every state s of SCMPDS and for every instruction i of SCMPDS

such that InsCode(i) ∈ {0, 4, 5, 6} holds Exec(i, s)↾Data-LocSCM =

s↾Data-LocSCM.

(21) For all states s, s3 of SCMPDS holds (s+·s3↾the instruction locations of

SCMPDS)↾Data-LocSCM = s↾Data-LocSCM.

(22) For every instruction i of SCMPDS holds rng Load(i) = {i}.

(23) If IC(s1) = IC(s2) and s1↾Data-LocSCM = s2↾Data-LocSCM,

then ICExec(i,s1) = ICExec(i,s2) and Exec(i, s1)↾Data-LocSCM =

Exec(i, s2)↾Data-LocSCM.



the construction and computation of for-loop . . . 211

(24) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose

I is closed on s1 and Initialized(stop I) ⊆ s1 and Initialized(stop I) ⊆

s2 and s1↾Data-LocSCM = s2↾Data-LocSCM. Let i be a natu-

ral number. Then IC(Computation(s1))(i) = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾Data-LocSCM = (Computation(s2))(i)↾Data-LocSCM.

(25) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose I

is closed on s1 and halting on s1 and s1↾Data-LocSCM = s2↾Data-LocSCM.

Let k be a natural number. Then (Computation(s1+· Initialized(stop I)))(k)

and (Computation(s2+· Initialized(stop I)))(k) are equal outside the in-

struction locations of SCMPDS and CurInstr((Computation(s1+· Initialized

(stop I)))(k)) = CurInstr((Computation(s2+· Initialized(stop I)))(k)).

(26) Let I be a Program-block. Suppose that

(i) I is closed on s1 and halting on s1,

(ii) Initialized(stop I) ⊆ s1,

(iii) Initialized(stop I) ⊆ s2, and

(iv) s1 and s2 are equal outside the instruction locations of SCMPDS.

Let k be a natural number. Then (Computation(s1))(k) and

(Computation(s2))(k) are equal outside the instruction locations of

SCMPDS and CurInstr((Computation(s1))(k)) =

CurInstr((Computation(s2))(k)).

(27) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose

I is closed on s1 and halting on s1 and Initialized(stop I) ⊆ s1 and

Initialized(stop I) ⊆ s2 and s1↾Data-LocSCM = s2↾Data-LocSCM. Then

LifeSpan(s1) = LifeSpan(s2).

(28) Let I be a Program-block. Suppose that

(i) I is closed on s1 and halting on s1,

(ii) Initialized(stop I) ⊆ s1,

(iii) Initialized(stop I) ⊆ s2, and

(iv) s1 and s2 are equal outside the instruction locations of SCMPDS.

Then LifeSpan(s1) = LifeSpan(s2) and Result(s1) and Result(s2) are equal

outside the instruction locations of SCMPDS.

(29) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose I

is closed on s1 and halting on s1 and s1↾Data-LocSCM = s2↾Data-LocSCM.

Then LifeSpan(s1+· Initialized(stop I)) = LifeSpan(s2+· Initialized(stop I))

and Result(s1+· Initialized(stop I)) and Result(s2+· Initialized(stop I))

are equal outside the instruction locations of SCMPDS.

(30) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose

that

(i) I is closed on s1 and halting on s1,

(ii) Initialized(stop I) ⊆ s1,



212 jing-chao chen and piotr rudnicki

(iii) Initialized(stop I) ⊆ s2, and

(iv) there exists a natural number k such that (Computation(s1))(k) and

s2 are equal outside the instruction locations of SCMPDS.

Then Result(s1) and Result(s2) are equal outside the instruction locations

of SCMPDS.

Let I be a Program-block. One can check that Initialized(I) is initial.

The following propositions are true:

(31) Let s be a state of SCMPDS, I be a Program-block, and a

be a Int position. If I is halting on s, then (IExec(I, s))(a) =

(Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I)))(a).

(32) Let s be a state of SCMPDS, I be a parahalting Program-block, and a

be a Int position. Then (IExec(I, s))(a) =

(Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I)))(a).

(33) Let I be a Program-block and i be a natural number. If

Initialized(stop I) ⊆ s and I is closed on s and halting on s and i <

LifeSpan(s), then IC(Computation(s))(i) ∈ dom I.

(34) Let I be a shiftable Program-block. Suppose Initialized(stop I) ⊆ s1

and I is closed on s1 and halting on s1. Let n be a natural num-

ber. Suppose Shift(I, n) ⊆ s2 and card I > 0 and IC(s2) = insposn

and s1↾Data-LocSCM = s2↾Data-LocSCM. Let i be a natural number. If

i < LifeSpan(s1), then IC(Computation(s1))(i) +n = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾Data-LocSCM = (Computation(s2))(i)↾Data-LocSCM.

(35) For every No-StopCode Program-block I such that Initialized(stop I) ⊆

s and I is halting on s and card I > 0 holds LifeSpan(s) > 0.

(36) Let I be a No-StopCode shiftable Program-block. Suppose Initialized

(stop I) ⊆ s1 and I is closed on s1 and halting on s1. Let n be

a natural number. Suppose Shift(I, n) ⊆ s2 and card I > 0 and

IC(s2) = insposn and s1↾Data-LocSCM = s2↾Data-LocSCM. Then

IC(Computation(s2))(LifeSpan(s1)) = inspos card I + n and (Computation(s1))

(LifeSpan(s1))↾Data-LocSCM =

(Computation(s2))(LifeSpan(s1))↾Data-LocSCM.

(37) Let s be a state of SCMPDS, I be a Program-block, and n be

a natural number. If IC(Computation(s+· Initialized(I)))(n) = inspos 0, then

(Computation(s+· Initialized(I)))(n)+· Initialized(I) =

(Computation(s+· Initialized(I)))(n).

(38) Let I be a Program-block, J be a Program-block, and k be a na-

tural number. Suppose I is closed on s and halting on s and k ¬

LifeSpan(s+· Initialized(stop I)). Then (Computation(s+· Initialized

(stop I)))(k) and (Computation(s+·((I;J)+·Start-At(inspos 0))))(k) are



the construction and computation of for-loop . . . 213

equal outside the instruction locations of SCMPDS.

(39) Let I, J be Program-block and k be a natural number. Sup-

pose I ⊆ J and I is closed on s and halting on s and k ¬

LifeSpan(s+· Initialized(stop I)). Then (Computation(s+· Initialized(J)))(k)

and (Computation(s+· Initialized(stop I)))(k) are equal outside the in-

struction locations of SCMPDS.

(40) Let I, J be Program-block and k be a natural number. Suppose k ¬

LifeSpan(s+· Initialized(stop I)) and I ⊆ J and I is closed on s and halting

on s. Then IC(Computation(s+· Initialized(J)))(k) ∈ dom stop I.

(41) Let I, J be Program-block. Suppose I ⊆ J and I is closed on s and

halting on s. Then CurInstr((Computation(s+· Initialized(J)))

(LifeSpan(s+· Initialized(stop I)))) = haltSCMPDS or

IC(Computation(s+· Initialized(J)))(LifeSpan(s+· Initialized(stop I))) = inspos card I.

(42) Let I, J be Program-block. Suppose I is halting on s and J is clo-

sed on IExec(I, s) and halting on IExec(I, s). Then J is closed on

(Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I)))

and halting on (Computation(s+· Initialized(stop I)))

(LifeSpan(s+· Initialized(stop I))).

(43) Let I be a Program-block and J be a shiftable Program-block. Suppose

I is closed on s and halting on s and J is closed on IExec(I, s) and halting

on IExec(I, s). Then I;J is closed on s and I;J is halting on s.

(44) Let I be a No-StopCode Program-block and J be a Program-

block. If I ⊆ J and I is closed on s and halting on s, then

IC(Computation(s+· Initialized(J)))(LifeSpan(s+· Initialized(stop I))) = inspos card I.

(45) Let I be a Program-block, s be a state of SCMPDS, and k be a natural

number. If I is halting on s and k < LifeSpan(s+· Initialized(stop I)), then

CurInstr((Computation(s+· Initialized(stop I)))(k)) 6= haltSCMPDS.

(46) Let I, J be Program-block, s be a state of SCMPDS, and k be a

natural number. Suppose I is closed on s and halting on s and k <

LifeSpan(s+· Initialized(stop I)). Then CurInstr((Computation(s+·

Initialized(stop I;J)))(k)) 6= haltSCMPDS.

(47) Let I be a No-StopCode Program-block and J be a shifta-

ble Program-block. Suppose I is closed on s and halting on s

and J is closed on IExec(I, s) and halting on IExec(I, s). Then

LifeSpan(s+· Initialized(stop I;J)) = LifeSpan(s+· Initialized(stop I)) +

LifeSpan(Result(s+· Initialized(stop I))+· Initialized(stopJ)).

(48) Let I be a No-StopCode Program-block and J be a shiftable Program-

block. Suppose I is closed on s and halting on s and J is clo-

sed on IExec(I, s) and halting on IExec(I, s). Then IExec(I;J, s) =

IExec(J, IExec(I, s))+·Start-At(ICIExec(J,IExec(I,s)) + card I).



214 jing-chao chen and piotr rudnicki

(49) Let I be a No-StopCode Program-block and J be a shiftable Program-

block. Suppose I is closed on s and halting on s and J is closed

on IExec(I, s) and halting on IExec(I, s). Then (IExec(I;J, s))(a) =

(IExec(J, IExec(I, s)))(a).

(50) Let I be a No-StopCode Program-block and j be a parahalting shifta-

ble instruction of SCMPDS. If I is closed on s and halting on s, then

(IExec(I;j, s))(a) = (Exec(j, IExec(I, s)))(a).

2. The Construction of for-up loop Program

Let a be a Int position, let i be an integer, let n be a natural number, and let

I be a Program-block. The functor for-up(a, i, n, I) yielding a Program-block is

defined by:

(Def. 1) for-up(a, i, n, I) = ((a, i) >= 0 goto card I + 3);I;AddTo(a, i, n);

goto (−(card I + 2)).

3. The Computation of for-up loop Program

We now state several propositions:

(51) Let a be a Int position, i be an integer, n be a natural number, and I

be a Program-block. Then card for-up(a, i, n, I) = card I + 3.

(52) Let a be a Int position, i be an integer, n, m be natural numbers, and

I be a Program-block. Then m < card I + 3 if and only if insposm ∈

dom for-up(a, i, n, I).

(53) Let a be a Int position, i be an integer, n be a natural number, and

I be a Program-block. Then (for-up(a, i, n, I))(inspos 0) = (a, i) >=

0 goto card I +3 and (for-up(a, i, n, I))(inspos card I +1) = AddTo(a, i, n)

and (for-up(a, i, n, I))(inspos card I + 2) = goto (−(card I + 2)).

(54) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ­ 0,

then for-up(a, i, n, I) is closed on s and for-up(a, i, n, I) is halting on s.

(55) Let s be a state of SCMPDS, I be a Program-block, a, c be Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ­ 0,

then IExec(for-up(a, i, n, I), s) = s+·Start-At(inspos card I + 3).

(56) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ­ 0,

then ICIExec(for-up(a,i,n,I),s) = inspos card I + 3.



the construction and computation of for-loop . . . 215

(57) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ­ 0,

then (IExec(for-up(a, i, n, I), s))(b) = s(b).

(58) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be a Int position, i be an integer, n be a natural number, and X

be a set. Suppose that

(i) s(DataLoc(s(a), i)) < 0,

(ii) DataLoc(s(a), i) /∈ X,

(iii) n > 0,

(iv) card I > 0,

(v) a 6= DataLoc(s(a), i), and

(vi) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I, t))(a) = t(a)

and (IExec(I, t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i)) and I is closed

on t and halting on t and for every Int position y such that y ∈ X holds

(IExec(I, t))(y) = t(y).

Then for-up(a, i, n, I) is closed on s and for-up(a, i, n, I) is halting on s.

(59) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be a Int position, i be an integer, n be a natural number, and X

be a set. Suppose that

(i) s(DataLoc(s(a), i)) < 0,

(ii) DataLoc(s(a), i) /∈ X,

(iii) n > 0,

(iv) card I > 0,

(v) a 6= DataLoc(s(a), i), and

(vi) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I, t))(a) = t(a)

and (IExec(I, t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i)) and I is closed

on t and halting on t and for every Int position y such that y ∈ X holds

(IExec(I, t))(y) = t(y).

Then IExec(for-up(a, i, n, I), s) =

IExec(for-up(a, i, n, I), IExec(I;AddTo(a, i, n), s)).

Let I be a shiftable Program-block, let a be a Int position, let i be an integer,

and let n be a natural number. Observe that for-up(a, i, n, I) is shiftable.

Let I be a No-StopCode Program-block, let a be a Int position, let i be

an integer, and let n be a natural number. Note that for-up(a, i, n, I) is No-

StopCode.



216 jing-chao chen and piotr rudnicki

4. The Construction of for-down loop Program

Let a be a Int position, let i be an integer, let n be a natural number, and

let I be a Program-block. The functor for− down(a, i, n, I) yielding a Program-

block is defined as follows:

(Def. 2) for− down(a, i, n, I) = ((a, i) <= 0 goto card I + 3);I;AddTo(a, i,−n);

goto (−(card I + 2)).

5. The Computation of for-down loop Program

One can prove the following propositions:

(60) Let a be a Int position, i be an integer, n be a natural number, and I

be a Program-block. Then card for− down(a, i, n, I) = card I + 3.

(61) Let a be a Int position, i be an integer, n, m be natural numbers, and

I be a Program-block. Then m < card I + 3 if and only if insposm ∈

dom for− down(a, i, n, I).

(62) Let a be a Int position, i be an integer, n be a natural number,

and I be a Program-block. Then (for− down(a, i, n, I))(inspos 0) =

(a, i) <= 0 goto card I + 3 and (for− down(a, i, n, I))(inspos card I +

1) = AddTo(a, i,−n) and (for− down(a, i, n, I))(inspos card I + 2) =

goto (−(card I + 2)).

(63) Let s be a state of SCMPDS, I be a Program-block, a be a Int position, i

be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ¬ 0, then

for− down(a, i, n, I) is closed on s and for− down(a, i, n, I) is halting on

s.

(64) Let s be a state of SCMPDS, I be a Program-block, a, c be Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ¬ 0,

then IExec(for− down(a, i, n, I), s) = s+·Start-At(inspos card I + 3).

(65) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ¬ 0,

then ICIExec(for−down(a,i,n,I),s) = inspos card I + 3.

(66) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

i be an integer, and n be a natural number. If s(DataLoc(s(a), i)) ¬ 0,

then (IExec(for− down(a, i, n, I), s))(b) = s(b).

(67) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be a Int position, i be an integer, n be a natural number, and X

be a set. Suppose that

(i) s(DataLoc(s(a), i)) > 0,



the construction and computation of for-loop . . . 217

(ii) DataLoc(s(a), i) /∈ X,

(iii) n > 0,

(iv) card I > 0,

(v) a 6= DataLoc(s(a), i), and

(vi) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I, t))(a) = t(a)

and (IExec(I, t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i)) and I is closed

on t and halting on t and for every Int position y such that y ∈ X holds

(IExec(I, t))(y) = t(y).

Then for− down(a, i, n, I) is closed on s and for− down(a, i, n, I) is hal-

ting on s.

(68) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be a Int position, i be an integer, n be a natural number, and X

be a set. Suppose that

(i) s(DataLoc(s(a), i)) > 0,

(ii) DataLoc(s(a), i) /∈ X,

(iii) n > 0,

(iv) card I > 0,

(v) a 6= DataLoc(s(a), i), and

(vi) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I, t))(a) = t(a)

and (IExec(I, t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i)) and I is closed

on t and halting on t and for every Int position y such that y ∈ X holds

(IExec(I, t))(y) = t(y).

Then IExec(for− down(a, i, n, I), s) = IExec(for− down(a, i, n, I),

IExec(I;AddTo(a, i,−n), s)).

Let I be a shiftable Program-block, let a be a Int position, let i be an integer,

and let n be a natural number. Observe that for− down(a, i, n, I) is shiftable.

Let I be a No-StopCode Program-block, let a be a Int position, let i be

an integer, and let n be a natural number. Note that for− down(a, i, n, I) is

No-StopCode.

6. Two Examples for Summing

Let n be a natural number. The functor sumn yielding a Program-block is

defined as follows:

(Def. 3) sumn = (GBP :=0);((GBP)2:=n);((GBP)3:=0); for− down(GBP, 2, 1,

Load(AddTo(GBP, 3, 1))).

Next we state three propositions:



218 jing-chao chen and piotr rudnicki

(69) For every state s of SCMPDS such that s(GBP) = 0 holds

for− down(GBP, 2, 1,Load(AddTo(GBP, 3, 1))) is closed on s and

for− down(GBP, 2, 1,Load(AddTo(GBP, 3, 1))) is halting on s.

(70) Let s be a state of SCMPDS and n be a natural number. If

s(GBP) = 0 and s(intpos 2) = n and s(intpos 3) = 0, then

(IExec(for− down(GBP, 2, 1,Load(AddTo(GBP, 3, 1))), s))(intpos 3) =

n.

(71) For every state s of SCMPDS and for every natural number n holds

(IExec(sumn, s))(intpos 3) = n.

Let s4, c1, r1, p1, p2 be natural numbers. The functor sum(s4, c1, r1, p1, p2)

yields a Program-block and is defined as follows:

(Def. 4) sum(s4, c1, r1, p1, p2) = ((intpos s4)r1
:=0);(intpos p1:=p2);

for− down(intpos s4, c1, 1,AddTo(intpos s4, r1, intpos p2, 0);

AddTo(intpos p1, 0, 1)).

Next we state three propositions:

(72) Let s be a state of SCMPDS and s4, c2, r1, p1, p3 be natural num-

bers. Suppose s(intpos s4) > s4 and c2 < r1 and s(intpos p1) = p3

and s(intpos s4) + r1 < p1 and p1 < p3 and p3 < s(intpos p3). Then

for− down(intpos s4, c2, 1,AddTo(intpos s4, r1, intpos p3, 0);

AddTo(intpos p1, 0, 1)) is closed on s and for− down(intpos s4, c2, 1,

AddTo(intpos s4, r1, intpos p3, 0);AddTo(intpos p1, 0, 1)) is halting on s.

(73) Let s be a state of SCMPDS, s4, c2, r1, p1, p3 be natural numbers, and

f be a finite sequence of elements of N. Suppose that

s(intpos s4) > s4 and c2 < r1 and s(intpos p1) = p3 and s(intpos s4)+r1 <

p1 and p1 < p3 and p3 < s(intpos p3) and s(DataLoc(s(intpos s4), r1)) = 0

and len f = s(DataLoc(s(intpos s4), c2)) and for every natural number k

such that k < len f holds f(k + 1) = s(DataLoc(s(intpos p3), k)). Then

(IExec(for− down(intpos s4, c2, 1,AddTo(intpos s4, r1, intpos p3, 0);

AddTo(intpos p1, 0, 1)), s))(DataLoc(s(intpos s4), r1)) =
∑

f.

(74) Let s be a state of SCMPDS, s4, c2, r1, p1, p3 be natural numbers, and

f be a finite sequence of elements of N. Suppose that

s(intpos s4) > s4 and c2 < r1 and s(intpos s4) + r1 < p1 and p1 <

p3 and p3 < s(intpos p3) and len f = s(DataLoc(s(intpos s4), c2)) and

for every natural number k such that k < len f holds f(k + 1) =

s(DataLoc(s(intpos p3), k)). Then (IExec(sum(s4, c2, r1, p1, p3), s))

(DataLoc(s(intpos s4), r1)) =
∑

f.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.



the construction and computation of for-loop . . . 219

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[9] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[10] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[11] Jing-Chao Chen. The construction and computation of conditional statements for
SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.

[12] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[13] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[14] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[16] Andrzej Kondracki. The chinese remainder theorem. Formalized Mathematics, 6(4):573–
577, 1997.

[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[18] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received December 27, 1999


