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Summary. On the Euclidean plane Jordan’s curve may be approximated
with a polygonal path of sides parallel to coordinate axes, either externally, or
internally. The paper deals with the external approximation, and the existence
of a Cage – an external polygonal path – is proved.

MML Identifier: JORDAN9.

The papers [17], [25], [8], [18], [9], [2], [3], [23], [4], [22], [14], [16], [21], [6], [5],

[11], [1], [19], [7], [13], [12], [15], [24], [20], [10], and [26] provide the terminology

and notation for this paper.

1. Generalities

We adopt the following rules: k, n are natural numbers, D is a non empty

set, and f , g are finite sequences of elements of D.

One can prove the following propositions:

(1) For all sets A, B such that A meets B holds A ∩B meets B.

(2) For every non empty set A and for all sets B1, B2 such that A ⊆ B1 and

A ⊆ B2 holds B1 meets B2.

1The paper was started during the author’s visit in the Shinshu University, Nagano, Japan,
summer 1998.
2The paper was finished during the author’s visit in the Shinshu University, Nagano, Japan,

summer 1999.
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(3) Let T be a non empty topological space and B, C1, C2, D be subsets

of T . Suppose B is connected and C1 is a component of D and C2 is a

component of D and B meets C1 and B meets C2 and B ⊆ D. Then

C1 = C2.

(4) If for every n holds f↾n = g↾n, then f = g.

(5) If n ∈ dom f, then there exists k such that k ∈ domRev(f) and n + k =

len f + 1 and πnf = πk Rev(f).

(6) If n ∈ domRev(f), then there exists k such that k ∈ dom f and n + k =

len f + 1 and πnRev(f) = πkf.

2. Go-Board Preliminaries

For simplicity, we adopt the following convention: G denotes a Go-board, f ,

g denote finite sequences of elements of E2
T, p denotes a point of E

2
T, r, s denote

real numbers, i, j, k denote natural numbers, and x denotes a set.

Next we state a number of propositions:

(7) f is a sequence which elements belong to G iff Rev(f) is a sequence

which elements belong to G.

(8) If f is a sequence which elements belong to G and 1 ¬ k and k ¬ len f,

then πkf ∈ ValuesG.

(9) If n ¬ len f and x ∈ L̃(f⇂n), then there exists a natural number i such

that n + 1 ¬ i and i + 1 ¬ len f and x ∈ L(f, i).

(10) If f is a sequence which elements belong toG and 1 ¬ k and k+1 ¬ len f,

then πkf ∈ left cell(f, k,G) and πkf ∈ right cell(f, k,G).

(11) If f is a sequence which elements belong toG and 1 ¬ k and k+1 ¬ len f,

then Int left cell(f, k, G) 6= ∅ and Int right cell(f, k, G) 6= ∅.

(12) Suppose f is a sequence which elements belong to G and 1 ¬ k and k +

1 ¬ len f. Then Int left cell(f, k, G) is connected and Int right cell(f, k,G)

is connected.

(13) If f is a sequence which elements belong toG and 1 ¬ k and k+1 ¬ len f,

then Int left cell(f, k,G) = left cell(f, k,G) and Int right cell(f, k, G) =

right cell(f, k,G).

(14) Suppose f is a sequence which elements belong to G and L(f, k) is

horizontal. Then there exists j such that 1 ¬ j and j ¬ widthG and

for every p such that p ∈ L(f, k) holds p2 = (G1,j)2.

(15) Suppose f is a sequence which elements belong to G and L(f, k) is

vertical. Then there exists i such that 1 ¬ i and i ¬ lenG and for every p

such that p ∈ L(f, k) holds p1 = (Gi,1)1.
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(16) If f is a sequence which elements belong to G and special and i ¬ lenG

and j ¬ widthG, then Int cell(G, i, j) misses L̃(f).

(17) Suppose f is a sequence which elements belong to G and special and

1 ¬ k and k + 1 ¬ len f. Then Int left cell(f, k, G) misses L̃(f) and

Int right cell(f, k, G) misses L̃(f).

(18) Suppose 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG. Then

(Gi,j)1 = (Gi,j+1)1 and (Gi,j)2 = (Gi+1,j)2 and (Gi+1,j+1)1 = (Gi+1,j)1
and (Gi+1,j+1)2 = (Gi,j+1)2.

(19) Let i, j be natural numbers. Suppose 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j

and j + 1 ¬ widthG. Then p ∈ cell(G, i, j) if and only if the following

conditions are satisfied:

(i) (Gi,j)1 ¬ p1,

(ii) p1 ¬ (Gi+1,j)1,

(iii) (Gi,j)2 ¬ p2, and

(iv) p2 ¬ (Gi,j+1)2.

(20) If 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG, then

cell(G, i, j) = {[r, s] : (Gi,j)1 ¬ r ∧ r ¬ (Gi+1,j)1 ∧ (Gi,j)2 ¬ s ∧ s ¬

(Gi,j+1)2}.

(21) Suppose 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG

and p ∈ ValuesG and p ∈ cell(G, i, j). Then p = Gi,j or p = Gi,j+1 or

p = Gi+1,j+1 or p = Gi+1,j .

(22) If 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG, then

Gi,j ∈ cell(G, i, j) and Gi,j+1 ∈ cell(G, i, j) and Gi+1,j+1 ∈ cell(G, i, j) and

Gi+1,j ∈ cell(G, i, j).

(23) If 1 ¬ i and i+1 ¬ lenG and 1 ¬ j and j+1 ¬ widthG and p ∈ ValuesG

and p ∈ cell(G, i, j), then p is extremal in cell(G, i, j).

(24) Suppose 2 ¬ lenG and 2 ¬ widthG and f is a sequence which elements

belong to G and 1 ¬ k and k + 1 ¬ len f. Then there exist i, j such

that 1 ¬ i and i + 1 ¬ lenG and 1 ¬ j and j + 1 ¬ widthG and

L(f, k) ⊆ cell(G, i, j).

(25) Suppose 2 ¬ lenG and 2 ¬ widthG and f is a sequence which elements

belong to G and 1 ¬ k and k+1 ¬ len f and p ∈ ValuesG and p ∈ L(f, k).

Then p = πkf or p = πk+1f.

(26) If 〈〈i, j〉〉 ∈ the indices of G and 1 ¬ k and k ¬ widthG, then (Gi,j)1 ¬

(GlenG,k)1.

(27) If 〈〈i, j〉〉 ∈ the indices of G and 1 ¬ k and k ¬ lenG, then (Gi,j)2 ¬

(Gk,widthG)2.

(28) Suppose f is a sequence which elements belong to G and special and

L̃(g) ⊆ L̃(f) and 1 ¬ k and k + 1 ¬ len f. Let A be a subset of E2
T. If

A = right cell(f, k,G) \ L̃(g) or A = left cell(f, k, G) \ L̃(g), then A is
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connected.

(29) Let f be a non constant standard special circular sequence. Suppose f is

a sequence which elements belong to G. Let given k. If 1 ¬ k and k + 1 ¬

len f, then right cell(f, k, G)\L̃(f) ⊆ RightComp(f) and left cell(f, k, G)\

L̃(f) ⊆ LeftComp(f).

3. Cages

We follow the rules: C is a compact non vertical non horizontal non empty

subset of E2
T and i, k, n, i1, i2 are natural numbers.

Next we state three propositions:

(30) There exists i such that 1 ¬ i and i + 1 ¬ lenGauge(C, n) and

N-minC ∈ cell(Gauge(C, n), i,widthGauge(C, n) −′ 1) and N-minC 6=

(Gauge(C, n))i,widthGauge(C,n)−′1.

(31) Suppose that

1 ¬ i1 and i1 + 1 ¬ lenGauge(C, n) and N-minC ∈

cell(Gauge(C, n), i1,widthGauge(C, n)−′ 1) and N-minC 6=

(Gauge(C, n))i1,widthGauge(C,n)−′1 and 1 ¬ i2 and i2 + 1 ¬ lenGauge(C, n)

and N-minC ∈ cell(Gauge(C, n), i2,widthGauge(C, n) −′ 1) and

N-minC 6= (Gauge(C, n))i2,widthGauge(C,n)−′1. Then i1 = i2.

(32) Let f be a standard non constant special circular sequence. Suppose that

(i) f is a sequence which elements belong to Gauge(C, n),

(ii) for every k such that 1 ¬ k and k + 1 ¬ len f holds

left cell(f, k,Gauge(C, n))∩C = ∅ and right cell(f, k,Gauge(C, n))∩C 6=

∅, and

(iii) there exists i such that 1 ¬ i and i + 1 ¬ lenGauge(C, n) and π1f =

(Gauge(C, n))i,widthGauge(C,n) and π2f = (Gauge(C, n))i+1,widthGauge(C,n)

and N-minC ∈ cell(Gauge(C, n), i,widthGauge(C, n)−′1) and N-minC 6=

(Gauge(C, n))i,widthGauge(C,n)−′1.

Then N-min L̃(f) = π1f.

Let C be a compact non vertical non horizontal non empty subset of E2
T

and let n be a natural number. Let us assume that C is connected. The functor

Cage(C, n) yields a clockwise oriented standard non constant special circular

sequence and is defined by the conditions (Def. 1).

(Def. 1)(i) Cage(C, n) is a sequence which elements belong to Gauge(C, n),

(ii) there exists i such that 1 ¬ i and i + 1 ¬ lenGauge(C, n)

and π1Cage(C, n) = (Gauge(C, n))i,widthGauge(C,n) and π2Cage(C, n) =

(Gauge(C, n))i+1,widthGauge(C,n) and N-minC ∈ cell(Gauge(C, n), i,width

Gauge(C, n)−′ 1) and N-minC 6= (Gauge(C, n))i,widthGauge(C,n)−′1, and
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(iii) for every k such that 1 ¬ k and k + 2 ¬ lenCage(C, n)

holds if front left cell(Cage(C, n), k,Gauge(C, n)) ∩ C = ∅ and

front right cell(Cage(C, n), k,Gauge(C, n))∩C = ∅, then Cage(C, n) turns

right k, Gauge(C, n) and if front left cell(Cage(C, n), k,Gauge(C, n)) ∩

C = ∅ and front right cell(Cage(C, n), k,Gauge(C, n)) ∩ C 6= ∅, then

Cage(C, n) goes straight k, Gauge(C, n) and if front left cell(Cage(C, n), k,

Gauge(C, n)) ∩ C 6= ∅, then Cage(C, n) turns left k, Gauge(C, n).

One can prove the following propositions:

(33) If C is connected and 1 ¬ k and k + 1 ¬ lenCage(C, n), then

left cell(Cage(C, n), k,Gauge(C, n)) ∩ C = ∅ and right cell(Cage(C, n), k,

Gauge(C, n)) ∩ C 6= ∅.

(34) If C is connected, then N-min L̃(Cage(C, n)) = π1Cage(C, n).
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