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A Characterization of Concept Lattices.
Dual Concept Lattices

Christoph Schwarzweller
University of Tuebingen

Summary. In this article we continue the formalization of concept lattices
following [4]. We give necessary and sufficient conditions for a complete lattice
to be isomorphic to a given formal context. As a by-product we get that a lattice
is complete if and only if it is isomorphic to a concept lattice. In addition we
introduce dual formal concepts and dual concept lattices and prove that the dual
of a concept lattice over a formal context is isomorphic to the concept lattice
over the dual formal context.

MML Identifier: CONLAT_2.

The notation and terminology used in this paper have been introduced in the
following articles: [8], [10], (2], (3], [11], (1], [5], [9], [15], (7], [14], (6], [13], [12],
and [16].

1. PRELIMINARIES

Let C be a FormalContext and let Cy be a strict FormalConcept of C. The
functor ®C} yielding an element of ConceptLattice C' is defined as follows:

(Def. 1) @Cl = Cl.
Next we state four propositions:
(1)  For every FormalContext C holds L conceptLatticec = Concept — with — all
—Attributes C' and T conceptLatticec = Concept — with — all — Objects C.
(2) Let C be a FormalContext and D be a non empty subset of
gthe objects of ' 'Then (ObjectDerivation C)(|J D) = N{(ObjectDerivation C)
(0); O ranges over subsets of the objects of C: O € D}.
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(3) Let C be a FormalContext and D be a non empty subset of
gthe Attributes of €' " Then (AttributeDerivation C)(|J D) =
N{ (AttributeDerivation C')(A); A ranges over subsets of the Attributes of
C: Ae D}.

(4) Let C be a FormalContext and D be a subset of the carrier of
ConceptLattice C. Then [ |conceptLatticecD is a FormalConcept of C' and
UconceptLattice ¢ D 18 a FormalConcept of C.

Let C be a FormalContext and let D be a subset of the carrier
of ConceptLattice C. The functor [ | D yields a FormalConcept of C' and is
defined as follows:

(Def 2) ﬂC’D == ’_‘ConceptLattice CD-
The functor | |~ D yields a FormalConcept of C' and is defined by:

(Def 3) UC D= UConceptLatticeC D.
Next we state several propositions:

(5) For every FormalContext C holds | | (DconceptLattice ) = Concept — with
—all — Attributes C' and [ |o(@conceptLattice ¢) =
Concept — with — all — Objects C.

(6) For every FormalContext C holds UC(che carrier of ConceptLatticeC’) =
Concept — with —all — ObjeCtS C and HC(che carrier of ConceptLattice C) =
Concept — with — all — Attributes C.

(7) Let C be a FormalContext and D be a non empty subset of
ConceptLattice C. Then

(i)  the Extent of | |, D = (AttributeDerivation C')((ObjectDerivation C)
(U{the Extent of (E,I); E ranges over subsets of the objects of C, I
ranges over subsets of the Attributes of C: (E,I) € D})), and

(ii)  the Intent of | | D = ({the Intent of (£, I); E ranges over subsets of
the objects of C, I ranges over subsets of the Attributes of C: (E,I) € D}.

(8) Let C be a FormalContext and D be a non empty subset of
ConceptLattice C. Then

(i)  the Extent of [ |oD = ({the Extent of (E, I); E ranges over subsets of
the objects of C, I ranges over subsets of the Attributes of C: (E, I) € D},
and

(ii)  the Intent of [ |oD = (ObjectDerivation C')((AttributeDerivation C)
(U{the Intent of (E, I'}); E ranges over subsets of the objects of C, I ranges
over subsets of the Attributes of C: (E,I) € D})).

(9) Let C be a FormalContext and C; be a strict FormalConcept of C.
Then | |copeeptrattice ¢ 1(O; A); O ranges over subsets of the objects of C, A
ranges over subsets of the Attributes of C: \/, jpicct of ¢ (0 € the Extent
of C1 A O = (AttributeDerivation C)((ObjectDerivation C)({o})) A A =
(ObjectDerivation C)({o}))} = Ci.
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(10) Let C be a FormalContext and C; be a strict FormalConcept of C.
Then [ lconceptLatticec{(O, A); O ranges over subsets of the objects of
C, A ranges over subsets of the Attributes of C: \/,. attribute of ¢ (@ €
the Intent of C; A O = (AttributeDerivationC)({a}) A A =
(ObjectDerivation C')((AttributeDerivation C)({a})))} = Ci.

Let C be a FormalContext. The functor «(C) yields a function from the
objects of C' into the carrier of ConceptLattice C' and is defined by the condition
(Def. 4).

(Def. 4) Let o be an element of the objects of C. Then there exi-
sts a subset O of the objects of C and there exists a sub-
set A of the Attributes of C such that (y(C))(o) = (O, A) and
O = (AttributeDerivation C')((ObjectDerivation C')({0})) and A =
(ObjectDerivation C')({o}).

Let C' be a FormalContext. The functor d¢ yielding a function from the
Attributes of C' into the carrier of ConceptLattice C' is defined by the condition
(Def. 5).

(Def. 5) Let a be an element of the Attributes of C. Then there exists a subset
O of the objects of C' and there exists a subset A of the Attributes of
C such that d¢(a) = (O, A) and O = (AttributeDerivation C')({a}) and
A = (ObjectDerivation C')((AttributeDerivation C')({a})).

The following propositions are true:

(11) Let C be a FormalContext, o be an object of C, and a be a Attribute of
C'. Then (y(C))(0) is a FormalConcept of C and dc(a) is a FormalConcept
of C.

(12) For every FormalContext C' holds rng~v(C) is supremum-dense and
rng(d¢) is infimum-dense.

(13) Let C be a FormalContext, o be an object of C', and a be a Attribute of
C'. Then o is connected with a if and only if (v(C))(0) C dc(a).

2. THE CHARACTERIZATION

We now state the proposition

(14) Let L be a complete lattice and C be a FormalContext. Then
ConceptLattice C' and L are isomorphic if and only if there exists a func-
tion g from the objects of C' into the carrier of L and there exists a func-
tion d from the Attributes of C' into the carrier of L such that rngg is
supremum-dense and rngd is infimum-dense and for every object o of C
and for every Attribute a of C holds o is connected with a iff g(0) C d(a).
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Let L be a lattice. The functor Context L yields a strict non quasi-empty
ContextStr and is defined as follows:

(Def. 6) Context L = (the carrier of L, the carrier of L, LattRel(L)).
One can prove the following proposition
(15) For every complete lattice L holds ConceptLattice Context L and L are
isomorphic.
Let L1, Lo be lattices. Let us note that the predicate L1 and Lo are isomor-
phic is symmetric.
Next we state the proposition
(16) For every lattice L holds L is complete iff there exists a FormalContext
C such that ConceptLattice C' and L are isomorphic.

3. DuAL CONCEPT LATTICES

Let L be a complete lattice. Observe that L° is complete.
Let C be a FormalContext. The functor C° yielding a strict non quasi-empty
ContextStr is defined as follows:
(Def. 7) C° = (the Attributes of C, the objects of C, (the Information of C')™).
We now state three propositions:
(17) For every strict FormalContext C' holds (C°)° = C.

(18) For every FormalContext C' and for every subset O of the objects of C
holds (ObjectDerivation C)(O) = (AttributeDerivation C°)(O).

(19) For every FormalContext C' and for every subset A of the Attributes of
C holds (AttributeDerivation C')(A) = (ObjectDerivation C°)(A).

Let C be a FormalContext and let C; be a ConceptStr over C'. The functor
C1° yields a strict ConceptStr over C° and is defined as follows:

(Def. 8) The Extent of C1° = the Intent of C and the Intent of C1° = the Extent
of Cl.

Let C be a FormalContext and let C; be a FormalConcept of C. Then C°
is a strict FormalConcept of C°.

We now state the proposition

(20) For every FormalContext C' and for every strict FormalConcept C; of C
holds (C1°)° = C.

Let C' be a FormalContext. The functor DualHomomorphism C' yielding a
homomorphism from (ConceptLattice C')° to ConceptLattice C° is defined as
follows:

(Def. 9) For every strict FormalConcept C; of C holds
(DualHomomorphism C')(C}) = C°.
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We now state two propositions:

(21) For every FormalContext C' holds DualHomomorphism C' is isomor-

phism.

(22) For every FormalContext C holds ConceptLattice C° and

(ConceptLattice C')° are isomorphic.
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