A Characterization of Concept Lattices. Dual Concept Lattices

Christoph Schwarzweller University of Tuebingen

Summary. In this article we continue the formalization of concept lattices following [4]. We give necessary and sufficient conditions for a complete lattice to be isomorphic to a given formal context. As a by-product we get that a lattice is complete if and only if it is isomorphic to a concept lattice. In addition we introduce dual formal concepts and dual concept lattices and prove that the dual of a concept lattice over a formal context is isomorphic to the concept lattice over the dual formal context.

MML Identifier: CONLAT_2.

The notation and terminology used in this paper have been introduced in the following articles: [8], [10], [2], [3], [11], [1], [5], [9], [15], [7], [14], [6], [13], [12], and [16].

1. Preliminaries

Let C be a FormalContext and let C_1 be a strict FormalConcept of C. The functor ${}^{@}C_1$ yielding an element of ConceptLattice C is defined as follows: (Def. 1) ${}^{@}C_1 = C_1$.

Next we state four propositions:

- (1) For every FormalContext C holds $\perp_{\text{ConceptLattice }C} = \text{Concept} \text{with } \text{all } -\text{Attributes }C$ and $\top_{\text{ConceptLattice }C} = \text{Concept} \text{with } \text{all } \text{Objects }C$.
- (2) Let C be a FormalContext and D be a non empty subset of $2^{\text{the objects of }C}$. Then (ObjectDerivation C)($\bigcup D$) = $\bigcap \{(\text{ObjectDerivation }C)(\bigcup D) \in D\}$.

- (3) Let C be a FormalContext and D be a non empty subset of $2^{\text{the Attributes of }C}$. Then $(\text{AttributeDerivation }C)(\bigcup D) = \bigcap \{(\text{AttributeDerivation }C)(A); A \text{ ranges over subsets of the Attributes of }C: A \in D\}.$
- (4) Let C be a FormalContext and D be a subset of the carrier of ConceptLattice C. Then $\bigcap_{\text{ConceptLattice }C}D$ is a FormalConcept of C and $\bigcup_{\text{ConceptLattice }C}D$ is a FormalConcept of C.

Let C be a FormalContext and let D be a subset of the carrier of ConceptLattice C. The functor $\bigcap_C D$ yields a FormalConcept of C and is defined as follows:

(Def. 2) $\bigcap_C D = \bigcap_{\text{ConceptLattice } C} D$.

The functor $\bigsqcup_{C} D$ yields a FormalConcept of C and is defined by:

(Def. 3) $\bigsqcup_C D = \bigsqcup_{\text{ConceptLattice } C} D$.

Next we state several propositions:

- (5) For every FormalContext C holds $\bigsqcup_{C}(\emptyset_{\text{ConceptLattice }C}) = \text{Concept} \text{with } -\text{all} \text{Attributes }C$ and $\bigcap_{C}(\emptyset_{\text{ConceptLattice }C}) = \text{Concept} \text{with } -\text{all} \text{Objects }C.$
- (6) For every FormalContext C holds $\bigsqcup_{C}(\Omega_{\text{the carrier of ConceptLattice }C) = \text{Concept} \text{with } \text{all } \text{Objects }C \text{ and } \bigcap_{C}(\Omega_{\text{the carrier of ConceptLattice }C) = \text{Concept} \text{with } \text{all } \text{Attributes }C.$
- (7) Let C be a Formal Context and D be a non empty subset of Concept Lattice C. Then
 - (i) the Extent of $\bigsqcup_C D = (\text{AttributeDerivation } C)((\text{ObjectDerivation } C))$ ($\bigcup \{ \text{the Extent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \}$ ranges over subsets of the Attributes of $C: \langle E, I \rangle \in D \}$), and
- (ii) the Intent of $\bigsqcup_C D = \bigcap \{ \text{the Intent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the Attributes of } C: \langle E, I \rangle \in D \}.$
- (8) Let C be a Formal Context and D be a non empty subset of Concept Lattice C. Then
- (i) the Extent of $\bigcap_C D = \bigcap \{ \text{the Extent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the Attributes of } C: \langle E, I \rangle \in D \},$ and
- (ii) the Intent of $\bigcap_C D = (\text{ObjectDerivation } C)((\text{AttributeDerivation } C))$ ($\bigcup \{\text{the Intent of } \langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the Attributes of } C: \langle E, I \rangle \in D \})).$
- (9) Let C be a FormalContext and C_1 be a strict FormalConcept of C. Then $\bigsqcup_{\text{ConceptLattice }C} \{\langle O, A \rangle; O \text{ ranges over subsets of the objects of } C, A$ ranges over subsets of the Attributes of C: $\bigvee_{o:\text{object of }C} (o \in \text{the Extent of } C_1 \land O = (\text{AttributeDerivation } C)((\text{ObjectDerivation } C)(\{o\})) \land A = (\text{ObjectDerivation } C)(\{o\})) \} = C_1.$

- (10) Let C be a FormalContext and C_1 be a strict FormalConcept of C. Then $\bigcap_{\text{ConceptLattice }C}\{\langle O, A \rangle; O \text{ ranges over subsets of the objects of } C$, A ranges over subsets of the Attributes of C: $\bigvee_{a:\text{Attribute of }C}$ ($a \in \text{the Intent of } C_1 \land O = (\text{AttributeDerivation } C)(\{a\}) \land A = (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(\{a\})))\} = C_1$.
- Let C be a FormalContext. The functor $\gamma(C)$ yields a function from the objects of C into the carrier of ConceptLattice C and is defined by the condition (Def. 4).
- (Def. 4) Let o be an element of the objects of C. Then there exists a subset O of the objects of C and there exists a subset A of the Attributes of C such that $(\gamma(C))(o) = \langle O, A \rangle$ and $O = (\text{AttributeDerivation } C)((\text{ObjectDerivation } C)(\{o\}))$ and $A = (\text{ObjectDerivation } C)(\{o\})$.
 - Let C be a FormalContext. The functor δ_C yielding a function from the Attributes of C into the carrier of ConceptLattice C is defined by the condition (Def. 5).
- (Def. 5) Let a be an element of the Attributes of C. Then there exists a subset O of the objects of C and there exists a subset A of the Attributes of C such that $\delta_C(a) = \langle O, A \rangle$ and $O = (\text{AttributeDerivation } C)(\{a\})$ and $A = (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(\{a\}))$.

The following propositions are true:

- (11) Let C be a FormalContext, o be an object of C, and a be a Attribute of C. Then $(\gamma(C))(o)$ is a FormalConcept of C and $\delta_C(a)$ is a FormalConcept of C.
- (12) For every Formal Context C holds rng $\gamma(C)$ is supremum-dense and rng (δ_C) is infimum-dense.
- (13) Let C be a FormalContext, o be an object of C, and a be a Attribute of C. Then o is connected with a if and only if $(\gamma(C))(o) \sqsubseteq \delta_C(a)$.

2. The Characterization

We now state the proposition

(14) Let L be a complete lattice and C be a FormalContext. Then ConceptLattice C and L are isomorphic if and only if there exists a function g from the objects of C into the carrier of L and there exists a function d from the Attributes of C into the carrier of L such that rng g is supremum-dense and rng d is infimum-dense and for every object o of C and for every Attribute a of C holds o is connected with a iff $g(o) \sqsubseteq d(a)$.

Let L be a lattice. The functor Context L yields a strict non quasi-empty ContextStr and is defined as follows:

(Def. 6) Context $L = \langle \text{the carrier of } L, \text{ the carrier of } L, \text{ LattRel}(L) \rangle$.

One can prove the following proposition

(15) For every complete lattice L holds ConceptLattice Context L and L are isomorphic.

Let L_1 , L_2 be lattices. Let us note that the predicate L_1 and L_2 are isomorphic is symmetric.

Next we state the proposition

(16) For every lattice L holds L is complete iff there exists a FormalContext C such that ConceptLattice C and L are isomorphic.

3. Dual Concept Lattices

Let L be a complete lattice. Observe that L° is complete.

Let C be a FormalContext. The functor C° yielding a strict non quasi-empty ContextStr is defined as follows:

- (Def. 7) $C^{\circ} = \langle \text{the Attributes of } C, \text{ the objects of } C, \text{ (the Information of } C) \rangle$. We now state three propositions:
 - (17) For every strict FormalContext C holds $(C^{\circ})^{\circ} = C$.
 - (18) For every FormalContext C and for every subset O of the objects of C holds (ObjectDerivation C)(O) = (AttributeDerivation C°)(O).
 - (19) For every FormalContext C and for every subset A of the Attributes of C holds (AttributeDerivation C)(A) = (ObjectDerivation C°)(A).

Let C be a FormalContext and let C_1 be a ConceptStr over C. The functor C_1° yields a strict ConceptStr over C° and is defined as follows:

(Def. 8) The Extent of C_1° = the Intent of C_1 and the Intent of C_1° = the Extent of C_1 .

Let C be a FormalContext and let C_1 be a FormalConcept of C. Then C_1° is a strict FormalConcept of C° .

We now state the proposition

(20) For every FormalContext C and for every strict FormalConcept C_1 of C holds $(C_1^{\circ})^{\circ} = C_1$.

Let C be a Formal Context. The functor DualHomomorphism C yielding a homomorphism from (ConceptLattice C) $^{\circ}$ to ConceptLattice C° is defined as follows:

(Def. 9) For every strict FormalConcept C_1 of C holds (DualHomomorphism C) $(C_1) = C_1^{\circ}$.

We now state two propositions:

- (21) For every Formal Context C holds DualHomomorphism C is isomorphism.
- (22) For every FormalContext C holds ConceptLattice C° and (ConceptLattice C) $^{\circ}$ are isomorphic.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Verlag, Berlin, Heidelberg, Ney York, 1996. (written in German).
- [5] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.
- [6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [8] Christoph Schwarzweller. Introduction to concept lattices. Formalized Mathematics, 7(2):233–241, 1998.
- [9] Christoph Schwarzweller. Noetherian lattices. Formalized Mathematics, 8(1):169–174, 1999.
- [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [11] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983–988, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990
- 1990. [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [15] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.
- [16] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received August 17, 1999