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Summary. In this article we continue the formalization of concept lattices
following [4]. We give necessary and sufficient conditions for a complete lattice
to be isomorphic to a given formal context. As a by-product we get that a lattice
is complete if and only if it is isomorphic to a concept lattice. In addition we
introduce dual formal concepts and dual concept lattices and prove that the dual
of a concept lattice over a formal context is isomorphic to the concept lattice
over the dual formal context.

MML Identifier: CONLAT 2.

The notation and terminology used in this paper have been introduced in the

following articles: [8], [10], [2], [3], [11], [1], [5], [9], [15], [7], [14], [6], [13], [12],

and [16].

1. Preliminaries

Let C be a FormalContext and let C1 be a strict FormalConcept of C. The

functor @C1 yielding an element of ConceptLatticeC is defined as follows:

(Def. 1) @C1 = C1.

Next we state four propositions:

(1) For every FormalContext C holds⊥ConceptLatticeC = Concept− with− all

−AttributesC and ⊤ConceptLatticeC = Concept− with− all−ObjectsC.

(2) Let C be a FormalContext and D be a non empty subset of

2the objects of C . Then (ObjectDerivationC)(
⋃

D) =
⋂
{(ObjectDerivationC)

(O);O ranges over subsets of the objects of C: O ∈ D}.
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(3) Let C be a FormalContext and D be a non empty subset of

2the Attributes of C . Then (AttributeDerivationC)(
⋃

D) =
⋂
{(AttributeDerivationC)(A);A ranges over subsets of the Attributes of

C: A ∈ D}.

(4) Let C be a FormalContext and D be a subset of the carrier of

ConceptLatticeC. Then ⌈−⌉ConceptLatticeCD is a FormalConcept of C and
⊔
ConceptLatticeC D is a FormalConcept of C.

Let C be a FormalContext and let D be a subset of the carrier

of ConceptLatticeC. The functor ⌈−⌉CD yields a FormalConcept of C and is

defined as follows:

(Def. 2) ⌈−⌉CD = ⌈−⌉ConceptLatticeCD.

The functor
⊔

C
D yields a FormalConcept of C and is defined by:

(Def. 3)
⊔

C
D =

⊔
ConceptLatticeC D.

Next we state several propositions:

(5) For every FormalContext C holds
⊔

C
(∅ConceptLatticeC) = Concept− with

−all−AttributesC and ⌈−⌉C(∅ConceptLatticeC) =

Concept− with− all−ObjectsC.

(6) For every FormalContext C holds
⊔

C
(Ωthe carrier of ConceptLatticeC) =

Concept− with− all−ObjectsC and ⌈−⌉C(Ωthe carrier of ConceptLatticeC) =

Concept− with− all−AttributesC.

(7) Let C be a FormalContext and D be a non empty subset of

ConceptLatticeC. Then

(i) the Extent of
⊔

C
D = (AttributeDerivationC)((ObjectDerivationC)

(
⋃
{the Extent of 〈E, I〉; E ranges over subsets of the objects of C, I

ranges over subsets of the Attributes of C: 〈E, I〉 ∈ D})), and

(ii) the Intent of
⊔

C
D =

⋂
{the Intent of 〈E, I〉; E ranges over subsets of

the objects of C, I ranges over subsets of the Attributes of C: 〈E, I〉 ∈ D}.

(8) Let C be a FormalContext and D be a non empty subset of

ConceptLatticeC. Then

(i) the Extent of ⌈−⌉CD =
⋂
{the Extent of 〈E, I〉; E ranges over subsets of

the objects of C, I ranges over subsets of the Attributes of C: 〈E, I〉 ∈ D},

and

(ii) the Intent of ⌈−⌉CD = (ObjectDerivationC)((AttributeDerivationC)

(
⋃
{the Intent of 〈E, I〉; E ranges over subsets of the objects of C, I ranges

over subsets of the Attributes of C: 〈E, I〉 ∈ D})).

(9) Let C be a FormalContext and C1 be a strict FormalConcept of C.

Then
⊔
ConceptLatticeC{〈O, A〉; O ranges over subsets of the objects of C, A

ranges over subsets of the Attributes of C:
∨

o : object of C
(o ∈ the Extent

of C1 ∧ O = (AttributeDerivationC)((ObjectDerivationC)({o})) ∧ A =

(ObjectDerivationC)({o}))} = C1.
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(10) Let C be a FormalContext and C1 be a strict FormalConcept of C.

Then ⌈−⌉ConceptLatticeC{〈O, A〉; O ranges over subsets of the objects of

C, A ranges over subsets of the Attributes of C:
∨

a :Attribute of C
(a ∈

the Intent of C1 ∧ O = (AttributeDerivationC)({a}) ∧ A =

(ObjectDerivationC)((AttributeDerivationC)({a})))} = C1.

Let C be a FormalContext. The functor γ(C) yields a function from the

objects of C into the carrier of ConceptLatticeC and is defined by the condition

(Def. 4).

(Def. 4) Let o be an element of the objects of C. Then there exi-

sts a subset O of the objects of C and there exists a sub-

set A of the Attributes of C such that (γ(C))(o) = 〈O,A〉 and

O = (AttributeDerivationC)((ObjectDerivationC)({o})) and A =

(ObjectDerivationC)({o}).

Let C be a FormalContext. The functor δC yielding a function from the

Attributes of C into the carrier of ConceptLatticeC is defined by the condition

(Def. 5).

(Def. 5) Let a be an element of the Attributes of C. Then there exists a subset

O of the objects of C and there exists a subset A of the Attributes of

C such that δC(a) = 〈O, A〉 and O = (AttributeDerivationC)({a}) and

A = (ObjectDerivationC)((AttributeDerivationC)({a})).

The following propositions are true:

(11) Let C be a FormalContext, o be an object of C, and a be a Attribute of

C. Then (γ(C))(o) is a FormalConcept of C and δC(a) is a FormalConcept

of C.

(12) For every FormalContext C holds rng γ(C) is supremum-dense and

rng(δC) is infimum-dense.

(13) Let C be a FormalContext, o be an object of C, and a be a Attribute of

C. Then o is connected with a if and only if (γ(C))(o) ⊑ δC(a).

2. The Characterization

We now state the proposition

(14) Let L be a complete lattice and C be a FormalContext. Then

ConceptLatticeC and L are isomorphic if and only if there exists a func-

tion g from the objects of C into the carrier of L and there exists a func-

tion d from the Attributes of C into the carrier of L such that rng g is

supremum-dense and rng d is infimum-dense and for every object o of C

and for every Attribute a of C holds o is connected with a iff g(o) ⊑ d(a).
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Let L be a lattice. The functor ContextL yields a strict non quasi-empty

ContextStr and is defined as follows:

(Def. 6) ContextL = 〈the carrier of L, the carrier of L, LattRel(L)〉.

One can prove the following proposition

(15) For every complete lattice L holds ConceptLatticeContextL and L are

isomorphic.

Let L1, L2 be lattices. Let us note that the predicate L1 and L2 are isomor-

phic is symmetric.

Next we state the proposition

(16) For every lattice L holds L is complete iff there exists a FormalContext

C such that ConceptLatticeC and L are isomorphic.

3. Dual Concept Lattices

Let L be a complete lattice. Observe that L◦ is complete.

Let C be a FormalContext. The functor C◦ yielding a strict non quasi-empty

ContextStr is defined as follows:

(Def. 7) C◦ = 〈the Attributes of C, the objects of C, (the Information of C)`〉.

We now state three propositions:

(17) For every strict FormalContext C holds (C◦)◦ = C.

(18) For every FormalContext C and for every subset O of the objects of C

holds (ObjectDerivationC)(O) = (AttributeDerivationC◦)(O).

(19) For every FormalContext C and for every subset A of the Attributes of

C holds (AttributeDerivationC)(A) = (ObjectDerivationC◦)(A).

Let C be a FormalContext and let C1 be a ConceptStr over C. The functor

C1
◦ yields a strict ConceptStr over C◦ and is defined as follows:

(Def. 8) The Extent of C1
◦ = the Intent of C1 and the Intent of C1

◦ = the Extent

of C1.

Let C be a FormalContext and let C1 be a FormalConcept of C. Then C1
◦

is a strict FormalConcept of C◦.

We now state the proposition

(20) For every FormalContext C and for every strict FormalConcept C1 of C

holds (C1
◦)◦ = C1.

Let C be a FormalContext. The functor DualHomomorphismC yielding a

homomorphism from (ConceptLatticeC)◦ to ConceptLatticeC◦ is defined as

follows:

(Def. 9) For every strict FormalConcept C1 of C holds

(DualHomomorphismC)(C1) = C1
◦.
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We now state two propositions:

(21) For every FormalContext C holds DualHomomorphismC is isomor-

phism.

(22) For every FormalContext C holds ConceptLatticeC◦ and

(ConceptLatticeC)◦ are isomorphic.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Verlag, Berlin,
Heidelberg, Ney York, 1996. (written in German).

[5] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite
join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.

[6] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[8] Christoph Schwarzweller. Introduction to concept lattices. Formalized Mathematics,
7(2):233–241, 1998.

[9] Christoph Schwarzweller. Noetherian lattices. Formalized Mathematics, 8(1):169–174,
1999.

[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[11] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics,
1(5):983–988, 1990.

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[15] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

[16] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received August 17, 1999


