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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.
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The terminology and notation used here have been introduced in the following

articles: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. Preliminaries

For simplicity, we follow the rules: Y denotes a non empty set, a denotes an

element of BVF(Y ), G denotes a subset of PARTITIONS(Y ), and A, B, C, D,

E denote partitions of Y .

One can prove the following propositions:

(1) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then CompF(A,G) = B ∧ C ∧D ∧E.

(2) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then CompF(B, G) = A ∧ C ∧D ∧E.

201
c© 2001 University of Białystok

ISSN 1426–2630



202 shunichi kobayashi

(3) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then CompF(C, G) = A ∧B ∧D ∧ E.

(4) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then CompF(D, G) = A ∧B ∧ C ∧E.

(5) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then CompF(E, G) = A ∧B ∧ C ∧D.

(6) Let A, B, C, D, E be sets, h be a function, and A′, B′, C ′, D′, E′ be

sets. Suppose A 6= B and A 6= C and A 6= D and A 6= E and B 6= C

and B 6= D and B 6= E and C 6= D and C 6= E and D 6= E and h =

(B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(A7−→. A′). Then h(A) =

A′ and h(B) = B′ and h(C) = C ′ and h(D) = D′ and h(E) = E′.

(7) Let A, B, C, D, E be sets, h be a function, and A′, B′, C ′, D′, E′

be sets. Suppose A 6= B and A 6= C and A 6= D and A 6= E and

B 6= C and B 6= D and B 6= E and C 6= D and C 6= E and D 6= E

and h = (B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(A7−→. A′). Then

domh = {A, B,C, D,E}.

(8) Let A, B, C, D, E be sets, h be a function, and A′, B′, C ′, D′, E′ be

sets. Suppose A 6= B and A 6= C and A 6= D and A 6= E and B 6= C

and B 6= D and B 6= E and C 6= D and C 6= E and D 6= E and h =

(B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(A7−→. A′). Then rng h =

{h(A), h(B), h(C), h(D), h(E)}.

(9) Let G be a subset of PARTITIONS(Y ), A, B, C, D, E be partitions of

Y , z, u be elements of Y , and h be a function. Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then EqClass(u,B ∧C ∧D ∧E)∩EqClass(z,A) 6= ∅.

(10) Let G be a subset of PARTITIONS(Y ), A, B, C, D, E be partitions of

Y , and z, u be elements of Y . Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E and EqClass(z, C ∧D ∧ E) = EqClass(u,C ∧D ∧ E).

Then EqClass(u,CompF(A,G)) ∩ EqClass(z,CompF(B, G)) 6= ∅.



five variable predicate calculus for boolean . . . 203

2. Predicate Calculus

One can prove the following propositions:

(11) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀∀a,AG,BG ⋐ ∀∀a,BG,AG.

(12) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀∀a,AG,BG = ∀∀a,BG,AG.

(13) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∃∀a,AG,BG ⋐ ∀∃a,BG,AG.

(14) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∃∃a,BG,AG ⋐ ∃∃a,AG,BG.

(15) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∃∃a,AG,BG = ∃∃a,BG,AG.

(16) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀∀a,AG,BG ⋐ ∃∀a,BG,AG.

(17) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀∀a,AG,BG ⋐ ∀∃a,BG,AG.

(18) ∀∃a,AG,BG ⋐ ∃∃a,BG,AG.

(19) ∀∀a,AG,BG ⋐ ∃∃a,BG,AG.

(20) Suppose that

G is a coordinate and G = {A,B, C, D, E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∃∀a,AG,BG ⋐ ∃∃a,BG,AG.

(22)1 Suppose that

1The proposition (21) has been removed.
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G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∃¬∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(23) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ¬∀∀a,AG,BG = ∃¬∀a,BG,AG.

(24) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ¬∀∀a,AG,BG = ∃∃
¬a,BG,AG.

(25) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀¬∀a,AG,BG ⋐ ¬∀∀a,BG,AG.

(26) Suppose that

G is a coordinate and G = {A,B,C, D,E} and A 6= B and A 6= C and

A 6= D and A 6= E and B 6= C and B 6= D and B 6= E and C 6= D and

C 6= E and D 6= E. Then ∀¬∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.
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