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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to

partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC13.

The papers [1], [2], [3], [5], and [4] provide the terminology and notation for this

paper.

In this paper Y denotes a non empty set.

One can prove the following propositions:

(1) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀¬∀a,AG,BG ⋐ ¬∀∀a,BG,AG.

(2) For every element a of BVF(Y ) and for every subset G of

PARTITIONS(Y ) and for all partitions A, B of Y holds ∀∀
¬a,AG,BG ⋐

¬∀∀a,BG,AG.

(3) For every element a of BVF(Y ) and for every subset G of

PARTITIONS(Y ) and for all partitions A, B of Y holds ∀¬∃a,AG,BG ⋐

¬∀∀a,BG,AG.

(4) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∃
¬a,AG,BG ⋐ ¬∀∀a,BG,AG.

(5) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃¬∀a,AG,BG ⋐ ¬∀∀a,BG,AG.
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(6) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃∀
¬a,AG,BG ⋐ ¬∀∀a,BG,AG.

(7) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ¬∀∀a,BG,AG.

(8) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃∃
¬a,AG,BG ⋐ ¬∀∀a,BG,AG.

(9) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ¬∃∀a,BG,AG.

(10) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ¬∃∀a,BG,AG.

(11) For every element a of BVF(Y ) and for every subset G of

PARTITIONS(Y ) and for all partitions A, B of Y holds ¬∃∃a,AG,BG ⋐

¬∀∃a,BG,AG.

(12) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ¬∃∃a,BG,AG.

(13) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∀∀a,AG,BG ⋐ ¬∀∀a,BG,AG.

(14) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∀a,AG,BG ⋐ ¬∀∀a,BG,AG.

(15) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ¬∀∀a,BG,AG.

(16) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ¬∀∀a,BG,AG.

(17) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∀a,AG,BG ⋐ ∃¬∀a,BG,AG.

(18) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ∃¬∀a,BG,AG.

(19) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and
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A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∃¬∀a,BG,AG.

(20) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ∀¬∀a,BG,AG.

(21) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∀¬∀a,BG,AG.

(22) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∃¬∃a,BG,AG.

(23) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∀¬∃a,BG,AG.

(24) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(25) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(26) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.

(27) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.

(28) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∃∀
¬a,BG,AG.

(29) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∃∃a,AG,BG ⋐ ∀∀
¬a,BG,AG.

(30) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ¬∃∀a,BG,AG.

(31) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ¬∃∀a,BG,AG.

(32) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,
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then ∀¬∃a,AG,BG ⋐ ¬∀∃a,BG,AG.

(33) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ¬∃∃a,BG,AG.

(34) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∀a,AG,BG ⋐ ∃¬∀a,BG,AG.

(35) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∀a,AG,BG ⋐ ∃¬∀a,BG,AG.

(36) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ∃¬∀a,BG,AG.

(37) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∃¬∀a,BG,AG.

(38) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ∀¬∀a,BG,AG.

(39) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∀¬∀a,BG,AG.

(40) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∃¬∃a,BG,AG.

(41) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∀¬∃a,BG,AG.

(42) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(43) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(44) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.

(45) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.
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(46) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∃∀
¬a,BG,AG.

(47) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀¬∃a,AG,BG ⋐ ∀∀
¬a,BG,AG.

(48) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃∀
¬a,AG,BG ⋐ ¬∃∀a,BG,AG.

(49) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ¬∃∀a,BG,AG.

(50) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ¬∀∃a,BG,AG.

(51) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ¬∃∃a,BG,AG.

(52) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃∃
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(53) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∃
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(54) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃∀
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(55) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(56) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∃∀
¬a,AG,BG ⋐ ∀¬∀a,BG,AG.

(57) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ∀¬∀a,BG,AG.

(58) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ∃¬∃a,BG,AG.

(59) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and
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A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀∀
¬a,AG,BG ⋐ ∀¬∃a,BG,AG.

(61)1 Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and A, B be partitions of Y . If G is a coordinate and G = {A,B} and

A 6= B, then ∀∃
¬a,AG,BG ⋐ ∃∃

¬a,BG,AG.

(62) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃∀
¬a,AG,BG ⋐ ∃∃

¬a,BG,AG.
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1The proposition (60) has been removed.


