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The articles [23], [29], [11], [28], [14], [2], [27], [12], [30], [8], [5], [3], [20], [9],
[6], [22], [7], [10], [1], [4], [15], [17], [18], [24], [25], [19], [16], [21], [13], and [26]
provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every integer i holds i is even iff i− 1 is odd.

(2) For every integer i holds i is odd iff i− 1 is even.

(3) Let X be a trivial set and x be a set. Suppose x ∈ X. Let f be a function
from X into X. Then x is a fixpoint of f .

Let A, B, C be sets. Note that every function from A into CB is function
yielding.

One can prove the following three propositions:

(4) For every function yielding function f holds Subf rng f = rng f.

(5) For all sets A, B, x and for every function f such that x ∈ A and f ∈ BA

holds f(x) ∈ B.

(6) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for
every function f from A into CB holds domκ f(κ) = A 7−→ B.

Let us note that ∅ is function yielding.
In the sequel n is a natural number and p, q, r are elements of HP-WFF.
Next we state the proposition

(7) For every set x holds ∅(x) = ∅.
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Let A be a set and let B be a functional set. One can verify that every
function from A into B is function yielding.

One can prove the following propositions:

(8) For every set X and for every subset A of X holds [0 7−→ 1, 1 7−→
0] · χA,X = χAc,X .

(9) For every set X and for every subset A of X holds [0 7−→ 1, 1 7−→
0] · χAc,X = χA,X .

(10) For all sets a, b, x, y, x′, y′ such that a 6= b and [a 7−→ x, b 7−→ y] =
[a 7−→ x′, b 7−→ y′] holds x = x′ and y = y′.

(11) For all sets a, b, x, y, X, Y such that a 6= b and x ∈ X and y ∈ Y holds
[a 7−→ x, b 7−→ y] ∈∏

[a 7−→ X, b 7−→ Y ].
(12) For every non empty set D and for every function f from 2 into D there

exist elements d1, d2 of D such that f = [0 7−→ d1, 1 7−→ d2].
(13) For all sets a, b, c, d such that a 6= b holds [a 7−→ c, b 7−→ d] · [a 7−→

b, b 7−→ a] = [a 7−→ d, b 7−→ c].
(14) For all sets a, b, c, d and for every function f such that a 6= b and c ∈

dom f and d ∈ dom f holds f · [a 7−→ c, b 7−→ d] = [a 7−→ f(c), b 7−→ f(d)].

2. The Cartesian Product of Functions and the Frege Function

Let f , g be one-to-one functions. Note that [: f, g :] is one-to-one.
We now state a number of propositions:

(15) Let A, B be non empty sets, C, D be sets, f be a function from C into A,
and g be a function from D into B. Then π1(A×B)·[: f, g :] = f ·π1(C×D).

(16) Let A, B be non empty sets, C, D be sets, f be a function from C into A,
and g be a function from D into B. Then π2(A×B)·[: f, g :] = g ·π2(C×D).

(17) For every function g holds ∅" g = ∅.
(18) For every function yielding function f and for all functions g, h holds

f " g · h = (f · h) " (g · h).
(19) Let C be a set, A be a non empty set, f be a function from A into

C(∅ qua set), and g be a function from A into ∅. Then rng(f " g) = {∅}.
(20) Let A, B, C be sets such that if B = ∅, then A = ∅. Let f be a function

from A into CB and g be a function from A into B. Then rng(f " g) ⊆ C.

(21) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for
every function f from A into CB holds dom Frege(f) = BA.

(22) Frege(∅) = {∅} 7−→ ∅.
(23) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for

every function f from A into CB holds rng Frege(f) ⊆ CA.



the canonical formulae 443

(24) Let A, B, C be sets such that if C = ∅, then B = ∅ or A = ∅. Let f be a
function from A into CB. Then Frege(f) is a function from BA into CA.

3. About Permutations

Let A be a set. Observe that every permutation of A is one-to-one.
The following proposition is true

(25) For all sets A, B and for every permutation P of A and for every per-
mutation Q of B holds [:P, Q :] is permutation-like.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a
function from B into B. The functor P ⇒ Q yielding a function from BA into
BA is defined as follows:

(Def. 1) For every function f from A into B holds (P ⇒ Q)(f) = Q · f · P−1.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a
permutation of B. Observe that P ⇒ Q is permutation-like.

Next we state three propositions:

(26) Let A, B be non empty sets, P be a permutation of A, Q be a permu-
tation of B, and f be a function from A into B. Then (P ⇒ Q)−1(f) =
Q−1 · f · P.

(27) For all non empty sets A, B and for every permutation P of A and for
every permutation Q of B holds (P ⇒ Q)−1 = P−1 ⇒ Q−1.

(28) Let A, B, C be non empty sets, f be a function from A into CB, g be a
function from A into B, P be a permutation of B, and Q be a permutation
of C. Then ((P ⇒ Q) · f) " (P · g) = Q · f " g.

4. Set Valuations

A SetValuation is a non-empty many sorted set indexed by N.
In the sequel V denotes a SetValuation.
Let us consider V . The functor SetVal V yielding a many sorted set indexed

by HP-WFF is defined by the conditions (Def. 2).

(Def. 2)(i) (SetVal V )(VERUM) = 1,
(ii) for every n holds (SetVal V )(prop n) = V (n), and
(iii) for all p, q holds (SetVal V )(p ∧ q) = [: (SetVal V )(p), (SetVal V )(q) :]

and (SetVal V )(p⇒ q) = (SetVal V )(q)(SetVal V )(p).

Let us consider V , p. The functor SetVal(V, p) is defined as follows:

(Def. 3) SetVal(V, p) = (SetVal V )(p).
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Let us consider V , p. One can check that SetVal(V, p) is non empty.
Next we state four propositions:

(29) SetVal(V, VERUM) = 1.
(30) SetVal(V, prop n) = V (n).
(31) SetVal(V, p ∧ q) = [: SetVal(V, p), SetVal(V, q) :].
(32) SetVal(V, p⇒ q) = (SetVal(V, q))SetVal(V,p).

Let us consider V , p, q. Observe that SetVal(V, p⇒ q) is functional.
Let us consider V , p, q, r. Note that every element of SetVal(V, p⇒ (q ⇒ r))

is function yielding.
Let us consider V , p, q, r. One can check that there exists a function from

SetVal(V, p ⇒ q) into SetVal(V, p ⇒ r) which is function yielding and there
exists an element of SetVal(V, p⇒ (q ⇒ r)) which is function yielding.

5. Permuting Set Valuations

Let us consider V . A function is called a permutation of V if:

(Def. 4) dom it = N and for every n holds it(n) is a permutation of V (n).
In the sequel P is a permutation of V .
Let us consider V , P . The functor Perm P yielding a many sorted function

from SetVal V into SetVal V is defined by the conditions (Def. 5).

(Def. 5)(i) (Perm P )(VERUM) = id1,

(ii) for every n holds (Perm P )(prop n) = P (n), and
(iii) for all p, q there exists a permutation p′ of SetVal(V, p) and there

exists a permutation q′ of SetVal(V, q) such that p′ = (Perm P )(p) and
q′ = (Perm P )(q) and (Perm P )(p ∧ q) = [: p′, q′ :] and (Perm P )(p⇒ q) =
p′ ⇒ q′.

Let us consider V , P , p. The functor Perm(P, p) yields a function from
SetVal(V, p) into SetVal(V, p) and is defined by:

(Def. 6) Perm(P, p) = (Perm P )(p).
Next we state four propositions:

(33) Perm(P, VERUM) = idSetVal(V,VERUM).

(34) Perm(P, prop n) = P (n).
(35) Perm(P, p ∧ q) = [: Perm(P, p), Perm(P, q) :].
(36) For every permutation p′ of SetVal(V, p) and for every permutation q′

of SetVal(V, q) such that p′ = Perm(P, p) and q′ = Perm(P, q) holds
Perm(P, p⇒ q) = p′ ⇒ q′.

Let us consider V , P , p. One can check that Perm(P, p) is permutation-like.
We now state four propositions:
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(37) For every function g from SetVal(V, p) into SetVal(V, q) holds
(Perm(P, p⇒ q))(g) = Perm(P, q) · g · (Perm(P, p))−1.

(38) For every function g from SetVal(V, p) into SetVal(V, q) holds
(Perm(P, p⇒ q))−1(g) = (Perm(P, q))−1 · g · Perm(P, p).

(39) For all functions f , g from SetVal(V, p) into SetVal(V, q) such that f =
(Perm(P, p⇒ q))(g) holds Perm(P, q) · g = f · Perm(P, p).

(40) Let given V , P be a permutation of V , and x be a set. Suppose x is a
fixpoint of Perm(P, p). Let f be a function. If f is a fixpoint of Perm(P, p⇒
q), then f(x) is a fixpoint of Perm(P, q).

6. Canonical Formulae

Let us consider p. We say that p is canonical if and only if:

(Def. 7) For every V there exists a set x such that for every permutation P of V

holds x is a fixpoint of Perm(P, p).
Let us observe that VERUM is canonical.
Next we state several propositions:

(41) p⇒ (q ⇒ p) is canonical.

(42) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) is canonical.

(43) p ∧ q ⇒ p is canonical.

(44) p ∧ q ⇒ q is canonical.

(45) p⇒ (q ⇒ p ∧ q) is canonical.

(46) If p is canonical and p⇒ q is canonical, then q is canonical.

(47) If p ∈ HP TAUT, then p is canonical.

Let us observe that there exists an element of HP-WFF which is canonical.

7. Pseudo-Canonical Formulae

Let us consider p. We say that p is pseudo-canonical if and only if:

(Def. 8) For every V and for every permutation P of V holds there exists a set
which is a fixpoint of Perm(P, p).

Let us observe that every element of HP-WFF which is canonical is also
pseudo-canonical.

One can prove the following propositions:

(48) p⇒ (q ⇒ p) is pseudo-canonical.

(49) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) is pseudo-canonical.



446 andrzej trybulec

(50) p ∧ q ⇒ p is pseudo-canonical.

(51) p ∧ q ⇒ q is pseudo-canonical.

(52) p⇒ (q ⇒ p ∧ q) is pseudo-canonical.

(53) If p is pseudo-canonical and p⇒ q is pseudo-canonical, then q is pseudo-
canonical.

(54) Let given p, q, given V , and P be a permutation of V . Suppose there
exists a set which is a fixpoint of Perm(P, p) and there exists no set which
is a fixpoint of Perm(P, q). Then p⇒ q is not pseudo-canonical.

(55) ((prop 0⇒ prop 1)⇒ prop 0)⇒ prop 0 is not pseudo-canonical.
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Summary. In [11] we proved that the lattice of substitutions, as defined
in [9], is a Heyting lattice (i.e. it is pseudo-complemented and it has the zero
element). We show that the lattice needs not to be complete. Obviously, the
example has to be infinite, namely we can take the set of natural numbers as
variables and a singleton as a set of constants. The incompleteness has been shown
for lattices of substitutions defined in terms of [22] and relational structures [18].

MML Identifier: HEYTING3.

The terminology and notation used here are introduced in the following articles:
[13], [20], [14], [4], [8], [17], [5], [10], [2], [22], [16], [1], [18], [6], [12], [21], [19], [9],
[15], [3], and [7].

1. Preliminaries

The scheme SSubsetUniq deals with a relational structure A and a unary
predicate P, and states that:

Let A1, A2 be subsets of A. Suppose for every set x holds x ∈ A1

iff P[x] and for every set x holds x ∈ A2 iff P[x]. Then A1 = A2

for all values of the parameters.
Let A, x be sets. Observe that [:A, {x} :] is function-like.
Next we state a number of propositions:

(1) For every odd natural number n holds 1 ¬ n.

(2) For every finite non empty subset X of N holds max X ∈ X.

(3) For every finite non empty subset X of N there exists a natural number
n such that X ⊆ Seg n ∪ {0}.
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(4) For every finite subset X of N there exists an odd natural number k such
that k /∈ X.

(5) Let k be a natural number and X be a finite non empty subset of [:N,

{k} :]. Then there exists a non empty natural number n such that X ⊆
[: Seg n ∪ {0}, {k} :].

(6) Let m be a natural number and X be a finite non empty subset of [:N,

{m} :]. Then there exists a non empty natural number k such that 〈〈2·k+1,

m〉〉 /∈ X.

(7) Let m be a natural number and X be a finite subset of [:N, {m} :]. Then
there exists a natural number k such that for every natural number l such
that l  k holds 〈〈l, m〉〉 /∈ X.

(8) For every upper-bounded lattice L holds >L = >Poset(L).

(9) For every lower-bounded lattice L holds ⊥L = ⊥Poset(L).

(10) Let L be a lower-bounded non empty antisymmetric relational structure
and a be an element of L. If ⊥L  a, then a = ⊥L.

2. Poset of Substitutions

Next we state four propositions:

(11) For every set V and for every finite set C and for all elements A, B of
Fin(V →̇C) such that A = ∅ and B 6= ∅ holds B ½ A = ∅.

(12) For all sets V , V ′, C, C ′ such that V ⊆ V ′ and C ⊆ C ′ holds
SubstitutionSet(V, C) ⊆ SubstitutionSet(V ′, C ′).

(13) Let V , V ′, C, C ′ be sets, A be an element of Fin(V →̇C), and B be an
element of Fin(V ′→̇C ′). If V ⊆ V ′ and C ⊆ C ′ and A = B, then µA = µB.

(14) Let V , V ′, C, C ′ be sets. Suppose V ⊆ V ′ and C ⊆ C ′. Then the join ope-
ration of SubstLatt(V, C) = (the join operation of SubstLatt(V ′, C ′))¹[: the
carrier of SubstLatt(V, C), the carrier of SubstLatt(V,C) :].

Let V , C be sets. The functor SubstPoset(V, C) yields a relational structure
and is defined as follows:

(Def. 1) SubstPoset(V, C) = Poset(SubstLatt(V, C)).
Let V , C be sets. One can verify that SubstPoset(V,C) has l.u.b.’s and

g.l.b.’s.
Let V , C be sets. One can verify that SubstPoset(V, C) is reflexive antisym-

metric and transitive.
One can prove the following propositions:

(15) Let V , C be sets and a, b be elements of SubstPoset(V, C). Then a ¬ b

if and only if for every set x such that x ∈ a there exists a set y such that
y ∈ b and y ⊆ x.
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(16) For all sets V , V ′, C, C ′ such that V ⊆ V ′ and C ⊆ C ′ holds
SubstPoset(V, C) is a full relational substructure of SubstPoset(V ′, C ′).

Let n, k be natural numbers. The functor PFA(n, k) yields an element of
N→̇{k} and is defined as follows:

(Def. 2) For every set x holds x ∈ PFA(n, k) iff there exists an odd natural
number m such that m ¬ 2 · n and 〈〈m, k〉〉 = x or 〈〈2 · n, k〉〉 = x.

Let n, k be natural numbers. One can verify that PFA(n, k) is finite.
Let n, k be natural numbers. The functor PFC(n, k) yielding an element of

N→̇{k} is defined by:

(Def. 3) For every set x holds x ∈ PFC(n, k) iff there exists an odd natural
number m such that m ¬ 2 · n + 1 and 〈〈m, k〉〉 = x.

Let n, k be natural numbers. Note that PFC(n, k) is finite.
The following four propositions are true:

(17) For all natural numbers n, k holds 〈〈2 · n + 1, k〉〉 ∈ PFC(n, k).

(18) For all natural numbers n, k holds PFC(n, k) ∩ {〈〈2 · n + 3, k〉〉} = ∅.
(19) For all natural numbers n, k holds PFC(n+1, k) = PFC(n, k)∪{〈〈2·n+3,

k〉〉}.
(20) For all natural numbers n, k holds PFC(n, k) ⊂ PFC(n + 1, k).

Let n, k be natural numbers. One can verify that PFA(n, k) is non empty.
Next we state three propositions:

(21) For all natural numbers n, m, k holds PFA(n,m) 6⊆ PFC(k,m).

(22) For all natural numbers n, m, k such that n ¬ k holds PFC(n,m) ⊆
PFC(k, m).

(23) For every natural number n holds PFA(1, n) = {〈〈1, n〉〉, 〈〈2, n〉〉}.
Let n, k be natural numbers. The functor PFB(n, k) yields an element of

Fin(N→̇{k}) and is defined as follows:

(Def. 4) For every set x holds x ∈ PFB(n, k) iff there exists a non empty natural
number m such that m ¬ n and x = PFA(m, k) or x = PFC(n, k).

The following propositions are true:

(24) For all natural numbers n, k and for every set x such that x ∈ PFB(n +
1, k) there exists a set y such that y ∈ PFB(n, k) and y ⊆ x.

(25) For all natural numbers n, k holds PFC(n, k) /∈ PFB(n + 1, k).

(26) For all natural numbers n, m, k such that PFA(n,m) ⊆ PFA(k,m) holds
n = k.

(27) For all natural numbers n, m, k holds PFC(n, m) ⊆ PFA(k,m) iff n < k.
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3. The Incompleteness

The following proposition is true

(28) For all natural numbers n, k holds PFB(n, k) is an element of
SubstPoset(N, {k}).

Let k be a natural number. The functor PFD(k) yielding a subset
of SubstPoset(N, {k}) is defined as follows:

(Def. 5) For every set x holds x ∈ PFD(k) iff there exists a non empty natural
number n such that x = PFB(n, k).

The following propositions are true:

(29) For every natural number k holds PFB(1, k) = {PFA(1, k), PFC(1, k)}.
(30) For every natural number k holds PFB(1, k) 6= {∅}.

Let k be a natural number. Note that PFB(1, k) is non empty.
We now state four propositions:

(31) For all natural numbers n, k holds {PFA(n, k)} is an element of
SubstPoset(N, {k}).

(32) Let k be a natural number, V , X be sets, and a be an element of
SubstPoset(V, {k}). If X ∈ a, then X is a finite subset of [:V, {k} :].

(33) Let m be a natural number and a be an element of SubstPoset(N, {m}).
Suppose PFD(m)  a. Let X be a non empty set. If X ∈ a, then it is
not true that for every natural number n such that 〈〈n, m〉〉 ∈ X holds n is
odd.

(34) Let k be a natural number, a, b be elements of SubstPoset(N, {k}), and
X be a subset of SubstPoset(N, {k}). If a ¬ X and b ¬ X, then at b ¬ X.

Let k be a natural number. Note that there exists an element
of SubstPoset(N, {k}) which is non empty.
One can prove the following propositions:

(35) For every natural number n and for every element a of SubstPoset(N, {n})
such that ∅ ∈ a holds a = {∅}.

(36) Let k be a natural number and a be a non empty element of
SubstPoset(N, {k}). If a 6= {∅}, then there exists a finite function f such
that f ∈ a and f 6= ∅.

(37) Let k be a natural number, a be a non empty element of
SubstPoset(N, {k}), and a′ be an element of Fin(N→̇{k}). If a 6= {∅}
and a = a′, then Involved a′ is a finite non empty subset of N.

(38) Let k be a natural number, a be an element of SubstPoset(N, {k}), a′

be an element of Fin(N→̇{k}), and B be a finite non empty subset of N.
Suppose B = Involved a′ and a′ = a. Let X be a set. If X ∈ a, then for
every natural number l such that l > max B + 1 holds 〈〈l, k〉〉 /∈ X.
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(39) For every natural number k holds >SubstPoset(N,{k}) = {∅}.
(40) For every natural number k holds ⊥SubstPoset(N,{k}) = ∅.
(41) For every natural number k and for all elements a, b of

SubstPoset(N, {k}) such that a ¬ b and a = {∅} holds b = {∅}.
(42) For every natural number k and for all elements a, b of

SubstPoset(N, {k}) such that a ¬ b and b = ∅ holds a = ∅.
(43) For every natural number m and for every element a of

SubstPoset(N, {m}) such that PFD(m)  a holds a 6= {∅}.
Let m be a natural number. One can verify that SubstPoset(N, {m}) is non

complete.
Let m be a natural number. One can check that SubstLatt(N, {m}) is non

complete.
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1. Preliminaries

One can prove the following propositions:

(1) Let F be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure and x be an element of the
carrier of F . Then 0F · x = 0F .

(2) Let F be an add-associative right zeroed right complementable right
distributive non empty double loop structure and x be an element of the
carrier of F . Then x · 0F = 0F .

The scheme Regr without 0 concerns a unary predicate P, and states that:
P[1]

provided the parameters meet the following conditions:
• There exists a non empty natural number k such that P[k], and
• For every non empty natural number k such that k 6= 1 and P[k]

there exists a non empty natural number n such that n < k and
P[n].

One can prove the following propositions:

(3) For every element z of C holds <(z)  −|z|.
(4) For every element z of C holds =(z)  −|z|.
(5) For every element z of the carrier of CF holds <(z)  −|z|.
(6) For every element z of the carrier of CF holds =(z)  −|z|.
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(7) For every element z of the carrier of CF holds |z|2 = <(z)2 + =(z)2.

(8) For all real numbers x1, x2, y1, y2 such that x1 + x2iCF = y1 + y2iCF

holds x1 = y1 and x2 = y2.

(9) For every element z of the carrier of CF holds z = <(z) + =(z)iCF .

(10) 0CF = 0 + 0iCF .

(11) 0CF = the zero of CF.

(12) For every unital non empty groupoid L and for every element x of the
carrier of L holds powerL(x, 1) = x.

(13) For every unital non empty groupoid L and for every element x of the
carrier of L holds powerL(x, 2) = x · x.

(14) Let L be an add-associative right zeroed right complementable right
distributive unital non empty double loop structure and n be a natural
number. If n > 0, then powerL(0L, n) = 0L.

(15) Let L be an associative commutative unital non empty groupoid, x, y be
elements of the carrier of L, and n be a natural number. Then powerL(x·y,

n) = powerL(x, n) · powerL(y, n).
(16) For every real number x such that x > 0 and for every natural number

n holds powerCF
(x + 0iCF , n) = xn + 0iCF .

(17) For every real number x and for every natural number n such that x  0
and n 6= 0 holds n

√
xn = x.

2. Sinus and Cosinus Properties

One can prove the following propositions:

(20)1 π + π
2 = 3

2 · π and 3
2 · π + π

2 = 2 · π and 3
2 · π − π = π

2 .

(21) 0 < π
2 and π

2 < π and 0 < π and −π
2 < π

2 and π < 2 · π and π
2 < 3

2 · π
and −π

2 < 0 and 0 < 2 · π and π < 3
2 · π and 3

2 · π < 2 · π and 0 < 3
2 · π.

(22) For all real numbers a, b, c, x such that x ∈ ]a, c[ holds x ∈ ]a, b[ or x = b

or x ∈ ]b, c[.
(23) For every real number x such that x ∈ ]0, π[ holds sin(x) > 0.

(24) For every real number x such that x ∈ [0, π] holds sin(x)  0.

(25) For every real number x such that x ∈ ]π, 2 · π[ holds sin(x) < 0.

(26) For every real number x such that x ∈ [π, 2 · π] holds sin(x) ¬ 0.

(27) For every real number x such that x ∈ ]−π
2 , π

2 [ holds cos(x) > 0.

(28) For every real number x such that x ∈ [−π
2 , π

2 ] holds cos(x)  0.

1The notation of π has been changed, previously ’Pai’. The propositions (18) and (19) have
been removed.
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(29) For every real number x such that x ∈ ]π2 , 3
2 · π[ holds cos(x) < 0.

(30) For every real number x such that x ∈ [π2 , 3
2 · π] holds cos(x) ¬ 0.

(31) For every real number x such that x ∈ ]32 · π, 2 · π[ holds cos(x) > 0.

(32) For every real number x such that x ∈ [32 · π, 2 · π] holds cos(x)  0.

(33) For every real number x such that 0 ¬ x and x < 2 · π and sin x = 0
holds x = 0 or x = π.

(34) For every real number x such that 0 ¬ x and x < 2 · π and cos x = 0
holds x = π

2 or x = 3
2 · π.

(35) sin is increasing on ]−π
2 , π

2 [.
(36) sin is decreasing on ]π2 , 3

2 · π[.
(37) cos is decreasing on ]0, π[.
(38) cos is increasing on ]π, 2 · π[.
(39) sin is increasing on [−π

2 , π
2 ].

(40) sin is decreasing on [π2 , 3
2 · π].

(41) cos is decreasing on [0, π].
(42) cos is increasing on [π, 2 · π].
(43) sin is continuous on R and for all real numbers x, y holds sin is continuous

on [x, y] and sin is continuous on ]x, y[.
(44) cos is continuous on R and for all real numbers x, y holds cos is conti-

nuous on [x, y] and cos is continuous on ]x, y[.
(45) For every real number x holds sin(x) ∈ [−1, 1] and cos(x) ∈ [−1, 1].
(46) rng sin = [−1, 1].
(47) rng cos = [−1, 1].
(48) rng(sin ¹[−π

2 , π
2 ]) = [−1, 1].

(49) rng(sin ¹[π
2 , 3

2 · π]) = [−1, 1].
(50) rng(cos ¹[0, π]) = [−1, 1].
(51) rng(cos ¹[π, 2 · π]) = [−1, 1].

3. Argument of Complex Number

Let z be an element of the carrier of CF. The functor Arg z yielding a real
number is defined as follows:

(Def. 1)(i) z = |z| · cos Arg z +(|z| · sin Arg z)iCF and 0 ¬ Arg z and Arg z < 2 ·π
if z 6= 0CF ,

(ii) Arg z = 0, otherwise.
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One can prove the following propositions:

(52) For every element z of the carrier of CF holds 0 ¬ Arg z and Arg z < 2·π.

(53) For every real number x such that x  0 holds Arg x + 0iCF = 0.

(54) For every real number x such that x < 0 holds Arg x + 0iCF = π.

(55) For every real number x such that x > 0 holds Arg 0 + xiCF = π
2 .

(56) For every real number x such that x < 0 holds Arg 0 + xiCF = 3
2 · π.

(57) Arg 1CF = 0.

(58) Arg iCF = π
2 .

(59) For every element z of the carrier of CF holds Arg z ∈ ]0, π
2 [ iff <(z) > 0

and =(z) > 0.

(60) For every element z of the carrier of CF holds Arg z ∈ ]π2 , π[ iff <(z) < 0
and =(z) > 0.

(61) For every element z of the carrier of CF holds Arg z ∈ ]π, 3
2 ·π[ iff <(z) < 0

and =(z) < 0.

(62) For every element z of the carrier of CF holds Arg z ∈ ]32 · π, 2 · π[ iff
<(z) > 0 and =(z) < 0.

(63) For every element z of the carrier of CF such that =(z) > 0 holds
sin Arg z > 0.

(64) For every element z of the carrier of CF such that =(z) < 0 holds
sin Arg z < 0.

(65) For every element z of the carrier of CF such that =(z)  0 holds
sin Arg z  0.

(66) For every element z of the carrier of CF such that =(z) ¬ 0 holds
sin Arg z ¬ 0.

(67) For every element z of the carrier of CF such that <(z) > 0 holds
cos Arg z > 0.

(68) For every element z of the carrier of CF such that <(z) < 0 holds
cos Arg z < 0.

(69) For every element z of the carrier of CF such that <(z)  0 holds
cos Arg z  0.

(70) For every element z of the carrier of CF such that <(z) ¬ 0 and z 6= 0CF

holds cos Arg z ¬ 0.

(71) For every real number x and for every natural number n holds
powerCF

(cos x + sin xiCF , n) = cos n · x + sin n · xiCF .

(72) Let z be an element of the carrier of CF and n be a natural number. If z 6=
0CF or n 6= 0, then powerCF

(z, n) = |z|n·cos n·Arg z+(|z|n·sin n·Arg z)iCF .

(73) For every real number x and for all natural numbers n, k such that n 6= 0
holds powerCF

(cos x+2·π·k
n + sin x+2·π·k

n iCF , n) = cos x + sin xiCF .
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(74) Let z be an element of the carrier of CF and n, k be natural numbers. If
n 6= 0, then z = powerCF

( n
√
|z| · cos Arg z+2·π·k

n + ( n
√
|z| · sin Arg z+2·π·k

n )iCF ,

n).
Let x be an element of the carrier of CF and let n be a non empty natural

number. An element of CF is called a root of n, x if:

(Def. 2) powerCF
(it, n) = x.

We now state four propositions:

(75) Let x be an element of the carrier of CF, n be a non empty natural
number, and k be a natural number. Then n

√
|x| · cos Arg x+2·π·k

n + ( n
√
|x| ·

sin Arg x+2·π·k
n )iCF is a root of n, x.

(76) For every element x of the carrier of CF and for every root v of 1, x holds
v = x.

(77) For every non empty natural number n and for every root v of n, 0CF

holds v = 0CF .

(78) Let n be a non empty natural number, x be an element of the carrier of
CF, and v be a root of n, x. If v = 0CF , then x = 0CF .
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[2], [20], [15], [14], [21], [9], [29], [27], [8], [10], [23], [28], [11], and [17] provide
the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For all natural numbers n, m such that n 6= 0 and m 6= 0 holds (n ·m−
n−m) + 1  0.

(2) For all real numbers x, y such that y > 0 holds min(x,y)
max(x,y) ¬ 1.

(3) For all real numbers x, y such that for every real number c such that
c > 0 and c < 1 holds c · x  y holds y ¬ 0.

(4) Let p be a finite sequence of elements of R. Suppose that for every natural
number n such that n ∈ dom p holds p(n)  0. Let i be a natural number.
If i ∈ dom p, then

∑
p  p(i).

(5) For all real numbers x, y holds −(x + yiCF) = −x + (−y)iCF .

(6) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) − (x2 + y2iCF) =
(x1 − x2) + (y1 − y2)iCF .

(7) Let L be a commutative associative left unital distributive field-like non
empty double loop structure and f , g, h be elements of the carrier of L.
If h 6= 0L, then if h · g = h · f or g · h = f · h, then g = f.

1This work has been partially supported by TYPES grant IST-1999-29001.
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In this article we present several logical schemes. The scheme ExDHGrStrSeq
deals with a non empty groupoid A and a unary functor F yielding an element
of the carrier of A, and states that:

There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)

for all values of the parameters.
The scheme ExDdoubleLoopStrSeq deals with a non empty double loop struc-

ture A and a unary functor F yielding an element of the carrier of A, and states
that:

There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)

for all values of the parameters.
Next we state the proposition

(8) For every element z of the carrier of CF such that z 6= 0CF and for every
natural number n holds |powerCF

(z, n)| = |z|n.

Let p be a finite sequence of elements of the carrier of CF. The functor |p|
yields a finite sequence of elements of R and is defined by:

(Def. 1) len |p| = len p and for every natural number n such that n ∈ dom p holds
|p|n = |pn|.

We now state several propositions:

(9) |ε(the carrier of CF)| = εR.

(10) For every element x of the carrier of CF holds |〈x〉| = 〈|x|〉.
(11) For all elements x, y of the carrier of CF holds |〈x, y〉| = 〈|x|, |y|〉.
(12) For all elements x, y, z of the carrier of CF holds |〈x, y, z〉| = 〈|x|, |y|,
|z|〉.

(13) For all finite sequences p, q of elements of the carrier of CF holds |paq| =
|p| a |q|.

(14) Let p be a finite sequence of elements of the carrier of CF and x be an
element of the carrier of CF. Then |p a 〈x〉| = |p| a 〈|x|〉 and |〈x〉 a p| =
〈|x|〉 a |p|.

(15) For every finite sequence p of elements of the carrier of CF holds |∑ p| ¬∑ |p|.

2. Operations on Polynomials

Let L be an Abelian add-associative right zeroed right complementable right
unital commutative distributive non empty double loop structure, let p be a
Polynomial of L, and let n be a natural number. The functor pn yields a sequence
of L and is defined by:
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(Def. 2) pn = powerPolynom-Ring L(p, n).
Let L be an Abelian add-associative right zeroed right complementable right

unital commutative distributive non empty double loop structure, let p be a
Polynomial of L, and let n be a natural number. One can verify that pn is
finite-Support.

One can prove the following propositions:

(16) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then p0 = 1. L.

(17) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then p1 = p.

(18) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then p2 = p ∗ p.

(19) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then p3 = p ∗ p ∗ p.

(20) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure, p

be a Polynomial of L, and n be a natural number. Then pn+1 = pn ∗ p.

(21) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and n be a natural number. Then (0. L)n+1 = 0. L.

(22) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and n be a natural number. Then (1. L)n = 1. L.

(23) Let L be a field, p be a Polynomial of L, x be an element of the carrier
of L, and n be a natural number. Then eval(pn, x) = powerL(eval(p, x),
n).

(24) Let L be a field and p be a Polynomial of L. If len p 6= 0, then for every
natural number n holds len(pn) = (n · len p− n) + 1.

Let L be a non empty groupoid, let p be a sequence of L, and let v be an
element of the carrier of L. The functor v ·p yields a sequence of L and is defined
by:

(Def. 3) For every natural number n holds (v · p)(n) = v · p(n).
Let L be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure, let p be a Polynomial of L, and let v

be an element of the carrier of L. Observe that v · p is finite-Support.
We now state several propositions:



464 robert milewski

(25) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure and p be a Polynomial of L. Then
len(0L · p) = 0.

(26) Let L be an add-associative right zeroed right complementable left uni-
tal commutative associative distributive field-like non empty double loop
structure, p be a Polynomial of L, and v be an element of the carrier of
L. If v 6= 0L, then len(v · p) = len p.

(27) Let L be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure and p be a sequence of L. Then
0L · p = 0. L.

(28) For every left unital non empty multiplicative loop structure L and for
every sequence p of L holds 1L · p = p.

(29) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure and v be an element of the
carrier of L. Then v · 0. L = 0. L.

(30) Let L be an add-associative right zeroed right complementable right
unital right distributive non empty double loop structure and v be an
element of the carrier of L. Then v · 1. L = 〈v〉.

(31) Let L be an add-associative right zeroed right complementable left uni-
tal distributive commutative associative field-like non empty double loop
structure, p be a Polynomial of L, and v, x be elements of the carrier of
L. Then eval(v · p, x) = v · eval(p, x).

(32) Let L be an add-associative right zeroed right complementable right
distributive unital non empty double loop structure and p be a Polynomial
of L. Then eval(p, 0L) = p(0).

Let L be a non empty zero structure and let z0, z1 be elements of the carrier
of L. The functor 〈z0, z1〉 yields a sequence of L and is defined by:

(Def. 4) 〈z0, z1〉 = 0. L +· (0, z0) +· (1, z1).
The following propositions are true:

(33) Let L be a non empty zero structure and z0 be an element of the carrier
of L. Then 〈z0〉(0) = z0 and for every natural number n such that n  1
holds 〈z0〉(n) = 0L.

(34) For every non empty zero structure L and for every element z0 of the
carrier of L such that z0 6= 0L holds len〈z0〉 = 1.

(35) For every non empty zero structure L holds 〈0L〉 = 0. L.

(36) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative left unital field-like non empty double loop
structure and x, y be elements of the carrier of L. Then 〈x〉 ∗ 〈y〉 = 〈x · y〉.

(37) Let L be an Abelian add-associative right zeroed right complementable
right unital associative commutative distributive field-like non empty do-
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uble loop structure, x be an element of the carrier of L, and n be a natural
number. Then 〈x〉n = 〈powerL(x, n)〉.

(38) Let L be an add-associative right zeroed right complementable unital
non empty double loop structure and z0, x be elements of the carrier of
L. Then eval(〈z0〉, x) = z0.

(39) Let L be a non empty zero structure and z0, z1 be elements of the carrier
of L. Then 〈z0, z1〉(0) = z0 and 〈z0, z1〉(1) = z1 and for every natural
number n such that n  2 holds 〈z0, z1〉(n) = 0L.

Let L be a non empty zero structure and let z0, z1 be elements of the carrier
of L. One can verify that 〈z0, z1〉 is finite-Support.

The following propositions are true:

(40) For every non empty zero structure L and for all elements z0, z1 of the
carrier of L holds len〈z0, z1〉 ¬ 2.

(41) For every non empty zero structure L and for all elements z0, z1 of the
carrier of L such that z1 6= 0L holds len〈z0, z1〉 = 2.

(42) For every non empty zero structure L and for every element z0 of the
carrier of L such that z0 6= 0L holds len〈z0, 0L〉 = 1.

(43) For every non empty zero structure L holds 〈0L, 0L〉 = 0. L.

(44) For every non empty zero structure L and for every element z0 of the
carrier of L holds 〈z0, 0L〉 = 〈z0〉.

(45) Let L be an add-associative right zeroed right complementable left di-
stributive unital non empty double loop structure and z0, z1, x be elements
of the carrier of L. Then eval(〈z0, z1〉, x) = z0 + z1 · x.

(46) Let L be an add-associative right zeroed right complementable left di-
stributive unital non empty double loop structure and z0, z1, x be elements
of the carrier of L. Then eval(〈z0, 0L〉, x) = z0.

(47) Let L be an add-associative right zeroed right complementable left di-
stributive unital non empty double loop structure and z0, z1, x be elements
of the carrier of L. Then eval(〈0L, z1〉, x) = z1 · x.

(48) Let L be an add-associative right zeroed right complementable left di-
stributive well unital non empty double loop structure and z0, z1, x be
elements of the carrier of L. Then eval(〈z0, 1L〉, x) = z0 + x.

(49) Let L be an add-associative right zeroed right complementable left di-
stributive well unital non empty double loop structure and z0, z1, x be
elements of the carrier of L. Then eval(〈0L, 1L〉, x) = x.
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3. Substitution in Polynomials

Let L be an Abelian add-associative right zeroed right complementable right
unital commutative distributive non empty double loop structure and let p, q

be Polynomials of L. The functor p[q] yielding a Polynomial of L is defined by
the condition (Def. 5).

(Def. 5) There exists a finite sequence F of elements of the carrier of
Polynom-Ring L such that p[q] =

∑
F and len F = len p and for every

natural number n such that n ∈ dom F holds F (n) = p(n−′ 1) · qn−′1.
One can prove the following propositions:

(50) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then (0. L)[p] = 0. L.

(51) Let L be an Abelian add-associative right zeroed right complementable
right unital commutative distributive non empty double loop structure
and p be a Polynomial of L. Then p[0. L] = 〈p(0)〉.

(52) Let L be an Abelian add-associative right zeroed right complementable
right unital associative commutative distributive field-like non empty do-
uble loop structure, p be a Polynomial of L, and x be an element of the
carrier of L. Then len(p[〈x〉]) ¬ 1.

(53) For every field L and for all Polynomials p, q of L such that len p 6= 0
and len q > 1 holds len(p[q]) = (len p · len q − len p− len q) + 2.

(54) Let L be a field, p, q be Polynomials of L, and x be an element of the
carrier of L. Then eval(p[q], x) = eval(p, eval(q, x)).

4. Fundamental Theorem of Algebra

Let L be a unital non empty double loop structure, let p be a Polynomial
of L, and let x be an element of the carrier of L. We say that x is a root of p if
and only if:

(Def. 6) eval(p, x) = 0L.

Let L be a unital non empty double loop structure and let p be a Polynomial
of L. We say that p has roots if and only if:

(Def. 7) There exists an element x of the carrier of L such that x is a root of p.

The following proposition is true

(55) For every unital non empty double loop structure L holds 0. L has roots.
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Let L be a unital non empty double loop structure. One can verify that 0. L

has roots.
The following proposition is true

(56) Let L be a unital non empty double loop structure and x be an element
of the carrier of L. Then x is a root of 0. L.

Let L be a unital non empty double loop structure. One can verify that there
exists a Polynomial of L which has roots.

Let L be a unital non empty double loop structure. We say that L is
algebraic-closed if and only if:

(Def. 8) For every Polynomial p of L such that len p > 1 holds p has roots.

Let L be a unital non empty double loop structure and let p be a Polynomial
of L. The functor Roots p yields a subset of L and is defined by:

(Def. 9) For every element x of the carrier of L holds x ∈ Roots p iff x is a root
of p.

Let L be a commutative associative left unital distributive field-like non
empty double loop structure and let p be a Polynomial of L. The functor
NormPolynomial p yielding a sequence of L is defined as follows:

(Def. 10) For every natural number n holds (NormPolynomial p)(n) = p(n)
p(len p−′1) .

Let L be an add-associative right zeroed right complementable commutative
associative left unital distributive field-like non empty double loop structure and
let p be a Polynomial of L. Note that NormPolynomial p is finite-Support.

The following propositions are true:

(57) Let L be a commutative associative left unital distributive field-like non
empty double loop structure and p be a Polynomial of L. If len p 6= 0, then
(NormPolynomial p)(len p−′ 1) = 1L.

(58) For every field L and for every Polynomial p of L such that len p 6= 0
holds len NormPolynomial p = len p.

(59) Let L be a field and p be a Polynomial of L. Suppose len p 6= 0. Let
x be an element of the carrier of L. Then eval(NormPolynomial p, x) =

eval(p,x)
p(len p−′1) .

(60) Let L be a field and p be a Polynomial of L. Suppose len p 6= 0. Let x

be an element of the carrier of L. Then x is a root of p if and only if x is
a root of NormPolynomial p.

(61) For every field L and for every Polynomial p of L such that len p 6= 0
holds p has roots iff NormPolynomial p has roots.

(62) For every field L and for every Polynomial p of L such that len p 6= 0
holds Roots p = Roots NormPolynomial p.

(63) idC is continuous on C.

(64) For every element x of C holds C 7−→ x is continuous on C.
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Let L be a unital non empty groupoid, let x be an element of the carrier of
L, and let n be a natural number. The functor FPower(x, n) yields a map from
L into L and is defined as follows:

(Def. 11) For every element y of the carrier of L holds (FPower(x, n))(y) = x ·
powerL(y, n).

The following propositions are true:

(65) For every unital non empty groupoid L holds FPower(1L, 1) =
idthe carrier of L.

(66) FPower(1CF , 2) = idC idC.

(67) For every unital non empty groupoid L and for every element x of the
carrier of L holds FPower(x, 0) = (the carrier of L) 7−→ x.

(68) For every element x of the carrier of CF there exists an element x1 of C
such that x = x1 and FPower(x, 1) = x1 idC.

(69) For every element x of the carrier of CF there exists an element x1 of C
such that x = x1 and FPower(x, 2) = x1 (idC idC).

(70) Let x be an element of the carrier of CF and n be a natural number.
Then there exists a function f from C into C such that f = FPower(x, n)
and FPower(x, n + 1) = f idC.

(71) Let x be an element of the carrier of CF and n be a natural number.
Then there exists a function f from C into C such that f = FPower(x, n)
and f is continuous on C.

Let L be a unital non empty double loop structure and let p be a Polynomial
of L. The functor Polynomial-Function(L, p) yields a map from L into L and is
defined as follows:

(Def. 12) For every element x of the carrier of L holds
(Polynomial-Function(L, p))(x) = eval(p, x).

The following propositions are true:

(72) For every Polynomial p of CF there exists a function f from C into C
such that f = Polynomial-Function(CF, p) and f is continuous on C.

(73) Let p be a Polynomial of CF. Suppose len p > 2 and |p(len p−′1)| = 1. Let
F be a finite sequence of elements of R. Suppose len F = len p and for every
natural number n such that n ∈ dom F holds F (n) = |p(n−′ 1)|. Let z be
an element of the carrier of CF. If |z| > ∑

F, then | eval(p, z)| > |p(0)|+1.

(74) Let p be a Polynomial of CF. Suppose len p > 2. Then there exists an
element z0 of the carrier of CF such that for every element z of the carrier
of CF holds | eval(p, z)|  | eval(p, z0)|.

(75) For every Polynomial p of CF such that len p > 1 holds p has roots.

Let us note that CF is algebraic-closed.



fundamental theorem of algebra 469

Let us mention that there exists a left unital right unital non empty double
loop structure which is algebraic-closed, add-associative, right zeroed, right com-
plementable, Abelian, commutative, associative, distributive, field-like, and non
degenerated.
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Summary. In this article, we show the property of the Replace Function
and the Swap Function of finite sequences. In the first section, we prepared some
useful theorems for finite sequences. In the second section, we defined the Replace
function and proved some theorems about the function. This function replaces an
element of a sequence by another value. In the third section, we defined the Swap
function and proved some theorems about the function. This function swaps two
elements of a sequence. In the last section, we show the property of composed
functions of the Replace Function and the Swap Function.

MML Identifier: FINSEQ 7.

The notation and terminology used here are introduced in the following papers:
[7], [11], [2], [9], [3], [1], [5], [12], [6], [10], [8], and [4].

1. Some Basic Theorems

For simplicity, we adopt the following rules: D denotes a non empty set, f ,
g, h denote finite sequences of elements of D, p, p1, p2, p3, q denote elements of
D, and i, j, k, l, n denote natural numbers.

One can prove the following propositions:

(1) If 1 ¬ i and j ¬ len f and i < j, then f = (f¹(i−′ 1))a 〈f(i)〉a (fºi¹(j−′
i−′ 1)) a 〈f(j)〉 a (fºj).

(2) If len g = len h and len g < i and i ¬ len(gaf), then (gaf)(i) = (haf)(i).
(3) If 1 ¬ i and i ¬ len f, then f(i) = (g a f)(len g + i).
(4) If i ∈ dom(fºn), then fºn(i) = f(n + i).
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2. Definition of Replace Function and its Properties

Let D be a non empty set, let f be a finite sequence of elements of D, let i

be a natural number, and let p be an element of D. Then f +· (i, p) is a finite
sequence of elements of D and it can be characterized by the condition:

(Def. 1) f +· (i, p) =
{

(f¹(i−′ 1)) a 〈p〉 a (fºi), if 1 ¬ i and i ¬ len f,

f, otherwise.
We introduce Replace(f, i, p) as a synonym of f +· (i, p).

The following propositions are true:

(5) Replace(f, 0, p) = f.

(6) If i > len f, then Replace(f, i, p) = f.

(7) len Replace(f, i, p) = len f.

(8) rng Replace(f, i, p) ⊆ rng f ∪ {p}.
(9) If 1 ¬ i and i ¬ len f, then p ∈ rng Replace(f, i, p).

(10) If 1 ¬ i and i ¬ len f, then (Replace(f, i, p))i = p.

(11) If 1 ¬ i and i ¬ len f, then for every k such that 0 < k and k ¬ len f − i

holds (Replace(f, i, p))(i + k) = fºi(k).
(12) If 1 ¬ k and k ¬ len f and k 6= i, then (Replace(f, i, p))k = fk.

(13) If 1 ¬ i and i < j and j ¬ len f, then Replace(Replace(f, j, q), i, p) =
(f¹(i−′ 1)) a 〈p〉 a (fºi¹(j −′ i−′ 1)) a 〈q〉 a (fºj).

(14) Replace(〈p〉, 1, q) = 〈q〉.
(15) Replace(〈p1, p2〉, 1, q) = 〈q, p2〉.
(16) Replace(〈p1, p2〉, 2, q) = 〈p1, q〉.
(17) Replace(〈p1, p2, p3〉, 1, q) = 〈q, p2, p3〉.
(18) Replace(〈p1, p2, p3〉, 2, q) = 〈p1, q, p3〉.
(19) Replace(〈p1, p2, p3〉, 3, q) = 〈p1, p2, q〉.

3. Definition of Swap Function and its Properties

Let D be a non empty set, let f be a finite sequence of elements of D, and
let i, j be natural numbers. The functor Swap(f, i, j) yields a finite sequence of
elements of D and is defined as follows:

(Def. 2) Swap(f, i, j) =





Replace(Replace(f, i, fj), j, fi), if 1 ¬ i and i ¬ len f

and 1 ¬ j and j ¬ len f,

f, otherwise.
Next we state a number of propositions:

(20) len Swap(f, i, j) = len f.
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(21) Swap(f, i, i) = f.

(22) Swap(Swap(f, i, j), j, i) = f.

(23) Swap(f, i, j) = Swap(f, j, i).
(24) rng Swap(f, i, j) = rng f.

(25) Swap(〈p1, p2〉, 1, 2) = 〈p2, p1〉.
(26) Swap(〈p1, p2, p3〉, 1, 2) = 〈p2, p1, p3〉.
(27) Swap(〈p1, p2, p3〉, 1, 3) = 〈p3, p2, p1〉.
(28) Swap(〈p1, p2, p3〉, 2, 3) = 〈p1, p3, p2〉.
(29) If 1 ¬ i and i < j and j ¬ len f, then Swap(f, i, j) = (f¹(i−′ 1)) a 〈fj〉a

(fºi¹(j −′ i−′ 1)) a 〈fi〉 a (fºj).
(30) If 1 < i and i ¬ len f, then Swap(f, 1, i) = 〈fi〉a(fº1¹(i−′2))a〈f1〉a(fºi).
(31) If 1 ¬ i and i < len f, then Swap(f, i, len f) = (f¹(i −′ 1)) a 〈flen f 〉 a

(fºi¹(len f −′ i−′ 1)) a 〈fi〉.
(32) If i 6= k and j 6= k and 1 ¬ k and k ¬ len f, then (Swap(f, i, j))k = fk.

(33) If 1 ¬ i and i ¬ len f and 1 ¬ j and j ¬ len f, then (Swap(f, i, j))i = fj

and (Swap(f, i, j))j = fi.

4. Properties of Combination Function of Replace Function and
Swap Function

We now state four propositions:

(34) If 1 ¬ i and i ¬ len f and 1 ¬ j and j ¬ len f, then
Replace(Swap(f, i, j), i, p) = Swap(Replace(f, j, p), i, j).

(35) If i 6= k and j 6= k and 1 ¬ i and i ¬ len f and 1 ¬ j and
j ¬ len f and 1 ¬ k and k ¬ len f, then Swap(Replace(f, k, p), i, j) =
Replace(Swap(f, i, j), k, p).

(36) If i 6= k and j 6= k and 1 ¬ i and i ¬ len f and 1 ¬ j and
j ¬ len f and 1 ¬ k and k ¬ len f, then Swap(Swap(f, i, j), j, k) =
Swap(Swap(f, i, k), i, j).

(37) Suppose i 6= k and j 6= k and l 6= i and l 6= j and 1 ¬ i and i ¬ len f

and 1 ¬ j and j ¬ len f and 1 ¬ k and k ¬ len f and 1 ¬ l and l ¬ len f.

Then Swap(Swap(f, i, j), k, l) = Swap(Swap(f, k, l), i, j).
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Summary. This article introduces the verification of the correctness for
the operations and the specification of the high speed array multiplier. We forma-
lize the concepts of 2-by-2 and 3-by-3 bit Plain array multiplier, 3-by-3 Wallace
tree multiplier circuit, and show that outputs of the array multiplier are equiva-
lent to outputs of normal (sequencial) multiplier.
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The articles [3], [1], and [2] provide the terminology and notation for this paper.

1. Preliminaries

Let x0, x1, y0, y1 be sets. The functor MULT210(x1, y1, x0, y0) yields a set
and is defined as follows:

(Def. 1) MULT210(x1, y1, x0, y0) = AND2(x0, y0).
The functor MULT211(x1, y1, x0, y0) yields a set and is defined by:

(Def. 2) MULT211(x1, y1, x0, y0) = ADD1(AND2(x1, y0), AND2(x0, y1), ∅).
The functor MULT212(x1, y1, x0, y0) yielding a set is defined as follows:

(Def. 3) MULT212(x1, y1, x0, y0) = ADD2(∅, AND2(x1, y1), AND2(x1, y0),
AND2(x0, y1), ∅).

The functor MULT213(x1, y1, x0, y0) yields a set and is defined as follows:

(Def. 4) MULT213(x1, y1, x0, y0) = CARR2(∅, AND2(x1, y1), AND2(x1, y0),
AND2(x0, y1), ∅).

475
c© 2001 University of Białystok

ISSN 1426–2630



476 hiroshi yamazaki and katsumi wasaki

We now state the proposition

(1) Let x0, x1, y0, y1, z0, z1, z2, z3, q0, q1, c1, q11, c11 be
sets such that NE q0 iff NE AND2(x0, y0) and NE q1 iff NE
XOR3(AND2(x1, y0), AND2(x0, y1), ∅) and NE c1 iff NE MAJ3(AND2(x1,

y0), AND2(x0, y1), ∅) and NE q11 iff NE XOR3(AND2(x1, y1), ∅, c1) and
NE c11 iff NE MAJ3(AND2(x1, y1), ∅, c1) and NE z0 iff NE q0 and NE z1

iff NE q1 and NE z2 iff NE q11 and NE z3 iff NE c11. Then
(i) NE z0 iff NE MULT210(x1, y1, x0, y0),
(ii) NE z1 iff NE MULT211(x1, y1, x0, y0),
(iii) NE z2 iff NE MULT212(x1, y1, x0, y0), and
(iv) NE z3 iff NE MULT213(x1, y1, x0, y0).

Let x0, x1, x2, y0, y1 be sets. The functor MULT310(x2, x1, y1, x0, y0) yields
a set and is defined by:

(Def. 5) MULT310(x2, x1, y1, x0, y0) = AND2(x0, y0).
The functor MULT311(x2, x1, y1, x0, y0) yields a set and is defined as follows:

(Def. 6) MULT311(x2, x1, y1, x0, y0) = ADD1(AND2(x1, y0), AND2(x0, y1), ∅).
The functor MULT312(x2, x1, y1, x0, y0) yields a set and is defined as follows:

(Def. 7) MULT312(x2, x1, y1, x0, y0) = ADD2(AND2(x2, y0), AND2(x1, y1),
AND2(x1, y0), AND2(x0, y1), ∅).

The functor MULT313(x2, x1, y1, x0, y0) yields a set and is defined as follows:

(Def. 8) MULT313(x2, x1, y1, x0, y0) = ADD3(∅, AND2(x2, y1), AND2(x2, y0),
AND2(x1, y1), AND2(x1, y0), AND2(x0, y1), ∅).

The functor MULT314(x2, x1, y1, x0, y0) yielding a set is defined by:

(Def. 9) MULT314(x2, x1, y1, x0, y0) = CARR3(∅, AND2(x2, y1), AND2(x2, y0),
AND2(x1, y1), AND2(x1, y0), AND2(x0, y1), ∅).

Let x0, x1, x2, y0, y1, y2 be sets. The functor MULT321(x2, y2, x1, y1, x0, y0)
yields a set and is defined by:

(Def. 10) MULT321(x2, y2, x1, y1, x0, y0) = ADD1(MULT312(x2, x1, y1, x0, y0),
AND2(x0, y2), ∅).

The functor MULT322(x2, y2, x1, y1, x0, y0) yields a set and is defined by:

(Def. 11) MULT322(x2, y2, x1, y1, x0, y0) = ADD2(MULT313(x2, x1, y1, x0, y0),
AND2(x1, y2), MULT312(x2, x1, y1, x0, y0), AND2(x0, y2), ∅).

The functor MULT323(x2, y2, x1, y1, x0, y0) yields a set and is defined as follows:

(Def. 12) MULT323(x2, y2, x1, y1, x0, y0) = ADD3(MULT314(x2, x1, y1, x0, y0),
AND2(x2, y2), MULT313(x2, x1, y1, x0, y0), AND2(x1, y2), MULT312(x2, x1,

y1, x0, y0), AND2(x0, y2), ∅).
The functor MULT324(x2, y2, x1, y1, x0, y0) yielding a set is defined as follows:

(Def. 13) MULT324(x2, y2, x1, y1, x0, y0) = CARR3(MULT314(x2, x1, y1, x0, y0),
AND2(x2, y2), MULT313(x2, x1, y1, x0, y0), AND2(x1, y2), MULT312(x2, x1,
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y1, x0, y0), AND2(x0, y2), ∅).
Next we state the proposition

(2) Let x0, x1, x2, y0, y1, y2, z0, z1, z2, z3, z4, z5, q0, q1, q2, c1, c2,
q11, q12, c11, c12, q21, q22, c21, c22 be sets such that NE q0 iff NE
AND2(x0, y0) and NE q1 iff NE XOR3(AND2(x1, y0), AND2(x0, y1), ∅)
and NE c1 iff NE MAJ3(AND2(x1, y0), AND2(x0, y1), ∅) and NE
q2 iff NE XOR3(AND2(x2, y0), AND2(x1, y1), ∅) and NE c2 iff NE
MAJ3(AND2(x2, y0), AND2(x1, y1), ∅) and NE q11 iff NE XOR3(q2, AND2
(x0, y2), c1) and NE c11 iff NE MAJ3(q2, AND2(x0, y2), c1) and
NE q12 iff NE XOR3(AND2(x2, y1), AND2(x1, y2), c2) and NE c12

iff NE MAJ3(AND2(x2, y1), AND2(x1, y2), c2) and NE q21 iff NE
XOR3(q12, ∅, c11) and NE c21 iff NE MAJ3(q12, ∅, c11) and NE q22 iff NE
XOR3(AND2(x2, y2), c21, c12) and NE c22 iff NE MAJ3(AND2(x2, y2), c21,

c12) and NE z0 iff NE q0 and NE z1 iff NE q1 and NE z2 iff NE q11 and
NE z3 iff NE q21 and NE z4 iff NE q22 and NE z5 iff NE c22. Then

(i) NE z0 iff NE MULT310(x2, x1, y1, x0, y0),
(ii) NE z1 iff NE MULT311(x2, x1, y1, x0, y0),
(iii) NE z2 iff NE MULT321(x2, y2, x1, y1, x0, y0),
(iv) NE z3 iff NE MULT322(x2, y2, x1, y1, x0, y0),
(v) NE z4 iff NE MULT323(x2, y2, x1, y1, x0, y0), and
(vi) NE z5 iff NE MULT324(x2, y2, x1, y1, x0, y0).

2. Logical Equivalence of Wallace Tree Multiplier

One can prove the following proposition

(3) Let x0, x1, x2, y0, y1, y2, z0, z1, z2, z3, z4, z5, q0, q1, q2, q3, c1,
c2, c3, q11, q12, q13, c11, c12, c13 be sets such that NE q0 iff NE
AND2(x0, y0) and NE q1 iff NE XOR3(AND2(x1, y0), AND2(x0, y1), ∅)
and NE c1 iff NE MAJ3(AND2(x1, y0), AND2(x0, y1), ∅) and NE
q2 iff NE XOR3(AND2(x2, y0), AND2(x1, y1), AND2(x0, y2)) and NE
c2 iff NE MAJ3(AND2(x2, y0), AND2(x1, y1), AND2(x0, y2)) and NE
q3 iff NE XOR3(AND2(x2, y1), AND2(x1, y2), ∅) and NE c3 iff NE
MAJ3(AND2(x2, y1), AND2(x1, y2), ∅) and NE q11 iff NE XOR3(q2, c1, ∅)
and NE c11 iff NE MAJ3(q2, c1, ∅) and NE q12 iff NE XOR3(q3, c2, c11) and
NE c12 iff NE MAJ3(q3, c2, c11) and NE q13 iff NE XOR3(AND2(x2, y2), c3,

c12) and NE c13 iff NE MAJ3(AND2(x2, y2), c3, c12) and NE z0 iff NE q0

and NE z1 iff NE q1 and NE z2 iff NE q11 and NE z3 iff NE q12 and NE
z4 iff NE q13 and NE z5 iff NE c13. Then

(i) NE z0 iff NE MULT310(x2, x1, y1, x0, y0),
(ii) NE z1 iff NE MULT311(x2, x1, y1, x0, y0),
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(iii) NE z2 iff NE MULT321(x2, y2, x1, y1, x0, y0),
(iv) NE z3 iff NE MULT322(x2, y2, x1, y1, x0, y0),
(v) NE z4 iff NE MULT323(x2, y2, x1, y1, x0, y0), and
(vi) NE z5 iff NE MULT324(x2, y2, x1, y1, x0, y0).

Let a1, b1, c be sets. We introduce CLAADD1(a1, b1, c) as a synonym of
XOR3(a1, b1, c). We introduce CLACARR1(a1, b1, c) as a synonym of MAJ3(a1,

b1, c).
Let a1, b1, a2, b2, c be sets. The functor CLAADD2(a2, b2, a1, b1, c) yields a

set and is defined by:

(Def. 16)1 CLAADD2(a2, b2, a1, b1, c) = XOR3(a2, b2, MAJ3(a1, b1, c)).
The functor CLACARR2(a2, b2, a1, b1, c) yields a set and is defined by:

(Def. 17) CLACARR2(a2, b2, a1, b1, c) = OR2(AND2(a2, b2), AND2(OR2(a2, b2),
MAJ3(a1, b1, c))).

Let a1, b1, a2, b2, a3, b3, c be sets. The functor CLAADD3(a3, b3, a2, b2, a1, b1,

c) yielding a set is defined as follows:

(Def. 18) CLAADD3(a3, b3, a2, b2, a1, b1, c) = XOR3(a3, b3, CLACARR2(a2, b2, a1,

b1, c)).
The functor CLACARR3(a3, b3, a2, b2, a1, b1, c) yields a set and is defined by:

(Def. 19) CLACARR3(a3, b3, a2, b2, a1, b1, c) = OR3(AND2(a3, b3), AND2(OR2(a3,

b3), AND2(a2, b2)), AND3(OR2(a3, b3), OR2(a2, b2), MAJ3(a1, b1, c))).
Let a1, b1, a2, b2, a3, b3, a4, b4, c be sets. The functor CLAADD4(a4, b4, a3, b3,

a2, b2, a1, b1, c) yielding a set is defined by:

(Def. 20) CLAADD4(a4, b4, a3, b3, a2, b2, a1, b1, c) = XOR3(a4, b4, CLACARR3(a3,

b3, a2, b2, a1, b1, c)).
The functor CLACARR4(a4, b4, a3, b3, a2, b2, a1, b1, c) yielding a set is defined as
follows:

(Def. 21) CLACARR4(a4, b4, a3, b3, a2, b2, a1, b1, c) = OR4(AND2(a4, b4), AND2
(OR2(a4, b4), AND2(a3, b3)), AND3(OR2(a4, b4), OR2(a3, b3), AND2(a2,

b2)), AND4(OR2(a4, b4), OR2(a3, b3), OR2(a2, b2), MAJ3(a1, b1, c))).
One can prove the following proposition

(4) Let x0, x1, x2, y0, y1, y2, z0, z1, z2, z3, z4, z5, q0, q1, q2,
q3, c1, c2, c3 be sets such that NE q0 iff NE AND2(x0, y0)
and NE q1 iff NE XOR3(AND2(x1, y0), AND2(x0, y1), ∅) and NE
c1 iff NE MAJ3(AND2(x1, y0), AND2(x0, y1), ∅) and NE q2 iff NE
XOR3(AND2(x2, y0), AND2(x1, y1), AND2(x0, y2)) and NE c2 iff NE
MAJ3(AND2(x2, y0), AND2(x1, y1), AND2(x0, y2)) and NE q3 iff NE
XOR3(AND2(x2, y1), AND2(x1, y2), ∅) and NE c3 iff NE MAJ3(AND2(x2,

1The definitions (Def. 14) and (Def. 15) have been removed.
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y1), AND2(x1, y2), ∅) and NE z0 iff NE q0 and NE z1 iff NE q1 and NE z2

iff NE CLAADD1(q2, c1, ∅) and NE z3 iff NE CLAADD2(q3, c2, q2, c1, ∅)
and NE z4 iff NE CLAADD3(AND2(x2, y2), c3, q3, c2, q2, c1, ∅) and NE z5

iff NE CLACARR3(AND2(x2, y2), c3, q3, c2, q2, c1, ∅). Then
(i) NE z0 iff NE MULT310(x2, x1, y1, x0, y0),
(ii) NE z1 iff NE MULT311(x2, x1, y1, x0, y0),
(iii) NE z2 iff NE MULT321(x2, y2, x1, y1, x0, y0),
(iv) NE z3 iff NE MULT322(x2, y2, x1, y1, x0, y0),
(v) NE z4 iff NE MULT323(x2, y2, x1, y1, x0, y0), and
(vi) NE z5 iff NE MULT324(x2, y2, x1, y1, x0, y0).
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Summary. I present some miscellaneous simple facts that are still missing
in the library. The only common feature is that, most of them, were needed as
lemmas in the proof of the Jordan curve theorem.
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The articles [11], [8], [17], [14], [9], [2], [3], [7], [1], [10], [4], [12], [5], [18], [19],
[6], [15], [16], and [13] provide the notation and terminology for this paper.

1. Preliminaries

The scheme NonEmpty deals with a non empty set A and a unary functor
F yielding a set, and states that:

{F(a) : a ranges over elements of A} is non empty
for all values of the parameters.

One can prove the following propositions:

(1) For all sets A, B, C such that A ⊆ B and A misses C holds A ⊆ B \C.

(2) For all sets X, Y such that X meets
⋃

Y there exists a set Z such that
Z ∈ Y and X meets Z.

(3) For all sets A, B and for every function f such that A ⊆ dom f and
f◦A ⊆ B holds A ⊆ f−1(B).

(4) For every function f and for all sets A, B such that A misses B holds
f−1(A) misses f−1(B).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(5) Let S, X be sets, f be a function from S into X, and A be a subset of
X such that if X = ∅, then S = ∅. Then (f−1(A))c = f−1(Ac).

(6) Let S be a 1-sorted structure, X be a non empty set, f be a function from
the carrier of S into X, and A be a subset of X. Then −f−1(A) = f−1(Ac).

We use the following convention: i, j, m, n denote natural numbers and r,
s, r0, s0, t denote real numbers.

Next we state several propositions:

(7) If m ¬ n, then n−′ (n−′ m) = m.

(8) For every real number r such that 1 ¬ r and i ¬ j holds ri ¬ rj .

(9) For all real numbers a, b such that r ∈ [a, b] and s ∈ [a, b] holds r+s
2 ∈

[a, b].
(10) For every increasing sequence N1 of naturals and for all i, j such that

i ¬ j holds N1(i) ¬ N1(j).
(11) ||r0 − s0| − |r − s|| ¬ |r0 − r|+ |s0 − s|.
(12) If t ∈ ]r, s[, then |t| < max(|r|, |s|).

Let A, B, C be non empty sets and let f be a function from A into [:B,

C :]. Then pr1(f) is a function from A into B and it can be characterized by the
condition:

(Def. 1) For every element x of A holds pr1(f)(x) = f(x)1.

Then pr2(f) is a function from A into C and it can be characterized by the
condition:

(Def. 2) For every element x of A holds pr2(f)(x) = f(x)2.

The scheme DoubleChoice deals with non empty sets A, B, C and a ternary
predicate P, and states that:

There exists a function a from A into B and there exists a func-
tion b from A into C such that for every element i of A holds
P[i, a(i), b(i)]

provided the parameters meet the following requirement:
• For every element i of A there exists an element a1 of B and there

exists an element b1 of C such that P[i, a1, b1].
We now state the proposition

(13) Let S, T be non empty topological spaces and G be a subset of [:S, T :].
Suppose that for every point x of [:S, T :] such that x ∈ G there exists a
subset G1 of S and there exists a subset G2 of T such that G1 is open and
G2 is open and x ∈ [:G1, G2 :] and [:G1, G2 :] ⊆ G. Then G is open.
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2. Topological Properties of Sets of Real Numbers

One can prove the following proposition

(14) For all compact subsets A, B of R holds A ∩B is compact.

Let A be a subset of R. We say that A is connected if and only if:

(Def. 3) For all real numbers r, s such that r ∈ A and s ∈ A holds [r, s] ⊆ A.

The following proposition is true

(15) Let T be a non empty topological space, f be a continuous real map of
T , and A be a subset of T . If A is connected, then f◦A is connected.

Let A, B be subsets of R. The functor ρ(A,B) yielding a real number is
defined by:

(Def. 4) There exists a subset X of R such that X = {|r − s|; r ranges over
elements of R, s ranges over elements of R: r ∈ A ∧ s ∈ B} and ρ(A,B) =
inf X.

Let us notice that the functor ρ(A,B) is commutative.
The following propositions are true:

(16) For all subsets A, B of R and for all r, s such that r ∈ A and s ∈ B

holds |r − s|  ρ(A,B).
(17) For all subsets A, B of R and for all non empty subsets C, D of R such

that C ⊆ A and D ⊆ B holds ρ(A,B) ¬ ρ(C, D).
(18) For all non empty compact subsets A, B of R there exist real numbers

r, s such that r ∈ A and s ∈ B and ρ(A,B) = |r − s|.
(19) For all non empty compact subsets A, B of R holds ρ(A, B)  0.

(20) For all non empty compact subsets A, B of R such that A misses B holds
ρ(A,B) > 0.

(21) Let e, f be real numbers and A, B be compact subsets of R. Suppose A

misses B and A ⊆ [e, f ] and B ⊆ [e, f ]. Let S be a function from N into
2R. Suppose that for every natural number i holds S(i) is connected and
S(i) meets A and S(i) meets B. Then there exists a real number r such
that r ∈ [e, f ] and r /∈ A ∪ B and for every natural number i there exists
a natural number k such that i ¬ k and r ∈ S(k).
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Summary. This article contains basic ordinal topology: closed unbounded
and stationary sets and necessary theorems about them, completness of the cen-
tered system of Clubs of M, Mahlo and strongly Mahlo cardinals, the proof that
(strongly) Mahlo is (strongly) inaccessible, and the proof that Rank of strongly
inaccessible is a model of ZF.

MML Identifier: CARD LAR.

The notation and terminology used in this paper are introduced in the following
articles: [15], [1], [6], [7], [16], [5], [11], [10], [8], [9], [3], [4], [17], [18], [12], [14],
[13], and [2].

1. Clubs and Mahlo Cardinals

Let S be a set, let X be a set, and let Y be a subset of S. Then X ∩ Y is a
subset of S.

Let us observe that every ordinal number which is cardinal and infinite is
also limit.

Let us note that every ordinal number which is non empty and limit is also
infinite.

Let us mention that every aleph which is non limit is also non countable.
Let us observe that there exists an aleph which is regular and non countable.
We use the following convention: A, B denote limit infinite ordinal numbers,

B1, B2, B3, C denote ordinal numbers, and X denotes a set.
Let us consider A, X. We say that X is unbounded in A if and only if:

(Def. 1) X ⊆ A and sup X = A.
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We say that X is closed in A if and only if:

(Def. 2) X ⊆ A and for every B such that B ∈ A holds if sup(X ∩B) = B, then
B ∈ X.

Let us consider A, X. We say that X is club in A if and only if:

(Def. 3) X is closed in A and X is unbounded in A.

Next we state the proposition

(1) X is club in A iff X is closed in A and X is unbounded in A.

In the sequel X is a subset of A.
Let us consider A, X. We say that X is unbounded if and only if:

(Def. 4) sup X = A.

We introduce X is bounded as an antonym of X is unbounded. We say that X

is closed if and only if:

(Def. 5) For every B such that B ∈ A holds if sup(X ∩B) = B, then B ∈ X.

We now state several propositions:

(2) X is club in A iff X is closed and unbounded.

(3) X ⊆ sup X.

(4) Suppose X is non empty and for every B1 such that B1 ∈ X there exists
B2 such that B2 ∈ X and B1 ∈ B2. Then sup X is limit infinite ordinal
number.

(5) X is bounded iff there exists B1 such that B1 ∈ A and X ⊆ B1.

(6) If sup(X ∩B) 6= B, then there exists B1 such that B1 ∈ B and X ∩B ⊆
B1.

(7) X is unbounded iff for every B1 such that B1 ∈ A there exists C such
that C ∈ X and B1 ⊆ C.

(8) If X is unbounded, then X is non empty.

(9) If X is unbounded and B1 ∈ A, then there exists an element B3 of A

such that B3 ∈ {B2;B2 ranges over elements of A: B2 ∈ X ∧ B1 ∈ B2}.
Let us consider A, X, B1. Let us assume that X is unbounded. And let us

assume that B1 ∈ A. The functor LBound(B1, X) yields an element of X and
is defined by:

(Def. 6) LBound(B1, X) = inf{B2; B2 ranges over elements of A: B2 ∈ X ∧ B1 ∈
B2}.

Next we state two propositions:

(10) If X is unbounded and B1 ∈ A, then LBound(B1, X) ∈ X and B1 ∈
LBound(B1, X).

(11) ΩA is closed and unbounded.

Let A be a set, let X be a subset of A, and let Y be a set. Then X \ Y is a
subset of A.
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Next we state two propositions:

(12) If B1 ∈ A and X is closed and unbounded, then X \ B1 is closed and
unbounded.

(13) If B1 ∈ A, then A \B1 is closed and unbounded.

Let us consider A, X. We say that X is stationary if and only if:

(Def. 7) For every subset Y of A such that Y is closed and unbounded holds
X ∩ Y is non empty.

The following proposition is true

(14) For all subsets X, Y of A such that X is stationary and X ⊆ Y holds Y

is stationary.

Let us consider A and let X be a set. We say that X is stationary in A if
and only if:

(Def. 8) X ⊆ A and for every subset Y of A such that Y is closed and unbounded
holds X ∩ Y is non empty.

One can prove the following proposition

(15) For all sets X, Y such that X is stationary in A and X ⊆ Y and Y ⊆ A

holds Y is stationary in A.

Let X be a set and let S be a family of subsets of X. We see that the element
of S is a subset of X.

The following proposition is true

(16) If X is stationary, then X is unbounded.

Let us consider A, X. The functor limpoints X yields a subset of A and is
defined as follows:

(Def. 9) limpoints X = {B1;B1 ranges over elements of A: B1 is infinite and
limit ∧ sup(X ∩B1) = B1}.

We now state four propositions:

(17) If X ∩B3 ⊆ B1, then B3 ∩ limpoints X ⊆ succ B1.

(18) If X ⊆ B1, then limpoints X ⊆ succ B1.

(19) limpoints X is closed.

(20) Suppose X is unbounded and limpoints X is bounded. Then there exists
B1 such that B1 ∈ A and {succ B2; B2 ranges over elements of A: B2 ∈
X ∧ B1 ∈ succ B2} is club in A.

In the sequel M is a non countable aleph and X is a subset of M .
Let us consider M . One can verify that there exists an element of M which

is cardinal and infinite.
In the sequel N denotes a cardinal infinite element of M .
Next we state several propositions:

(21) For every aleph M and for every subset X of M such that X is unbo-
unded holds cf M ¬ X .
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(22) For every family S of subsets of M such that every element of S is closed
holds

⋂
S is closed.

(23) If ℵ0 < cf M, then for every function f from N into X holds sup rng f ∈
M.

(24) Suppose ℵ0 < cf M. Let S be a non empty family of subsets of M . If
S < cf M and every element of S is closed and unbounded, then

⋂
S is

closed and unbounded.

(25) If ℵ0 < cf M and X is unbounded, then for every B1 such that B1 ∈M

there exists B such that B ∈M and B1 ∈ B and B ∈ limpoints X.

(26) If ℵ0 < cf M and X is unbounded, then limpoints X is unbounded.

Let us consider M . We say that M is Mahlo if and only if:

(Def. 10) {N : N is regular} is stationary in M .

We say that M is strongly Mahlo if and only if:

(Def. 11) {N : N is strongly inaccessible} is stationary in M .

We now state several propositions:

(27) If M is strongly Mahlo, then M is Mahlo.

(28) If M is Mahlo, then M is regular.

(29) If M is Mahlo, then M is limit.

(30) If M is Mahlo, then M is inaccessible.

(31) If M is strongly Mahlo, then M is strong limit.

(32) If M is strongly Mahlo, then M is strongly inaccessible.

2. Proof that Strongly Inaccessible is Model of ZF

We adopt the following convention: A denotes an ordinal number, x, y denote
sets, and X, Y denote sets.

The following propositions are true:

(33) Suppose that for every x such that x ∈ X there exists y such that y ∈ X

and x ⊆ y and y is a cardinal number. Then
⋃

X is a cardinal number.

(34) For every aleph M such that X < cf M and for every Y such that Y ∈ X

holds Y < M holds
⋃

X ∈M.

(35) If M is strongly inaccessible and A ∈M, then RA < M.

(36) If M is strongly inaccessible, then RM = M.

(37) If M is strongly inaccessible, then RM is a Tarski class.

(38) For every non empty ordinal number A holds RA is non empty.

Let A be a non empty ordinal number. One can check that RA is non empty.
Next we state two propositions:
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(39) If M is strongly inaccessible, then RM is a universal class.

(40) If M is strongly inaccessible, then RM is model of ZF.
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1. Preliminaries

In this paper x, y, z denote extended real numbers and a denotes a real
number.

One can prove the following propositions:

(1) If x 6= +∞ and x 6= −∞, then x is a real number.

(2) −∞ < +∞.

(3) If x < y, then x 6= +∞ and y 6= −∞.

(4) x = +∞ iff −x = −∞ and x = −∞ iff −x = +∞.

(5) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then x−−y = x+ y.

(6) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then x+−y = x− y.

(7) If x 6= −∞ and y 6= +∞ and x ¬ y, then x 6= +∞ and y 6= −∞.

(8) Suppose x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and y 6= +∞ or
z 6= −∞ but y 6= −∞ or z 6= +∞ and x 6= +∞ or z 6= −∞ but x 6= −∞
or z 6= +∞. Then (x + y) + z = x + (y + z).

(9) If −∞ < x and x < +∞, then x +−x = 0R and −x + x = 0R.
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(10) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then x− y = x+−y.

(11) Suppose x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and y 6= +∞ or
z 6= +∞ but y 6= −∞ or z 6= −∞ and x + y 6= +∞ or y − z 6= −∞ but
x + y 6= −∞ or y − z 6= +∞. Then (x + y)− z = x + (y − z).

2. Operations of Multiplication, Quotient and Absolute Value on
Extended Real Numbers

Let x, y be extended real numbers. The functor x · y yields an extended real
number and is defined by the conditions (Def. 1).

(Def. 1)(i) There exist real numbers a, b such that x = a and y = b and x·y = a·b,
or

(ii) 0R < x and y = +∞ or 0R < y and x = +∞ or x < 0R and y = −∞
or y < 0R and x = −∞ but x · y = +∞, or

(iii) x < 0R and y = +∞ or y < 0R and x = +∞ or 0R < x and y = −∞
or 0R < y and x = −∞ but x · y = −∞, or

(iv) x = 0R or y = 0R but x · y = 0R.

The following propositions are true:

(12) Let x, y be extended real numbers. Then
(i) there exist real numbers a, b such that x = a and y = b and x ·y = a · b,

or
(ii) 0R < x and y = +∞ or 0R < y and x = +∞ or x < 0R and y = −∞

or y < 0R and x = −∞ but x · y = +∞, or
(iii) x < 0R and y = +∞ or y < 0R and x = +∞ or 0R < x and y = −∞

or 0R < y and x = −∞ but x · y = −∞, or
(iv) x = 0R or y = 0R but x · y = 0R.

(13) For all extended real numbers x, y and for all real numbers a, b such
that x = a and y = b holds x · y = a · b.

(14) For every extended real number x such that 0R < x holds +∞·x = +∞
and x ·+∞ = +∞ and −∞ · x = −∞ and x · −∞ = −∞.

(15) For every extended real number x such that x < 0R holds +∞·x = −∞
and x ·+∞ = −∞ and −∞ · x = +∞ and x · −∞ = +∞.

(16) For all extended real numbers x, y such that x = 0R holds x ·y = 0R and
y · x = 0R.

(17) For all extended real numbers x, y holds x · y = y · x.

Let x, y be extended real numbers. Let us notice that the functor x · y is
commutative.

One can prove the following propositions:

(18) If x = a, then 0 < a iff 0R < x.
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(19) If x = a, then a < 0 iff x < 0R.

(20) If 0R < x and 0R < y or x < 0R and y < 0R, then 0R < x · y.

(21) If 0R < x and y < 0R or x < 0R and 0R < y, then x · y < 0R.

(22) x · y = 0R iff x = 0R or y = 0R.

(23) (x · y) · z = x · (y · z).
(24) −0R = 0R.

(25) 0R < x iff −x < 0R and x < 0R iff 0R < −x.

(26) −x · y = x · −y and −x · y = (−x) · y.

(27) If x 6= +∞ and x 6= −∞ and x · y = +∞, then y = +∞ or y = −∞.

(28) If x 6= +∞ and x 6= −∞ and x · y = −∞, then y = +∞ or y = −∞.

(29) If y 6= +∞ or z 6= −∞ but y 6= −∞ or z 6= +∞ and x 6= +∞ and
x 6= −∞, then x · (y + z) = x · y + x · z.

(30) If y 6= +∞ or z 6= +∞ but y 6= −∞ or z 6= −∞ and x 6= +∞ and
x 6= −∞, then x · (y − z) = x · y − x · z.

Let x, y be extended real numbers. Let us assume that x = −∞ or x = +∞
but y = −∞ or y = +∞ but y 6= 0R. The functor x

y yielding an extended real
number is defined by the conditions (Def. 2).

(Def. 2)(i) There exist real numbers a, b such that x = a and y = b and x
y = a

b ,

or
(ii) x = +∞ and 0R < y or x = −∞ and y < 0R but x

y = +∞, or
(iii) x = −∞ and 0R < y or x = +∞ and y < 0R but x

y = −∞, or
(iv) y = −∞ or y = +∞ but x

y = 0R.

The following four propositions are true:

(31) Let x, y be extended real numbers. Suppose x = −∞ or x = +∞ but
y = −∞ or y = +∞ but y 6= 0R. Then

(i) there exist real numbers a, b such that x = a and y = b and x
y = a

b , or
(ii) x = +∞ and 0R < y or x = −∞ and y < 0R but x

y = +∞, or
(iii) x = −∞ and 0R < y or x = +∞ and y < 0R but x

y = −∞, or
(iv) y = −∞ or y = +∞ but x

y = 0R.

(32) Let x, y be extended real numbers. Suppose y 6= 0R. Let a, b be real
numbers. If x = a and y = b, then x

y = a
b .

(33) For all extended real numbers x, y such that x 6= −∞ but x 6= +∞ but
y = −∞ or y = +∞ holds x

y = 0R.

(34) For every extended real number x such that x 6= −∞ and x 6= +∞ and
x 6= 0R holds x

x = 1.

Let x be an extended real number. The functor |x| yielding an extended real
number is defined as follows:

(Def. 3) |x| =
{

x, if 0R ¬ x,

−x, otherwise.
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One can prove the following propositions:

(35) For every extended real number x such that 0R ¬ x holds |x| = x.

(36) For every extended real number x such that 0R < x holds |x| = x.

(37) For every extended real number x such that x < 0R holds |x| = −x.

(38) For all real numbers a, b holds R(a · b) = R(a) · R(b).

(39) For all real numbers a, b such that b 6= 0 holds R(a
b ) = R(a)

R(b)
.

(40) For all extended real numbers x, y such that x ¬ y and x < +∞ and
−∞ < y holds 0R ¬ y − x.

(41) For all extended real numbers x, y such that x < y and x < +∞ and
−∞ < y holds 0R < y − x.

(42) If x ¬ y and 0R ¬ z, then x · z ¬ y · z.

(43) If x ¬ y and z ¬ 0R, then y · z ¬ x · z.

(44) If x < y and 0R < z and z 6= +∞, then x · z < y · z.

(45) If x < y and z < 0R and z 6= −∞, then y · z < x · z.

(46) Suppose x is a real number and y is a real number. Then x < y if and
only if there exist real numbers p, q such that p = x and q = y and p < q.

(47) If x 6= −∞ and y 6= +∞ and x ¬ y and 0R < z, then x
z ¬ y

z .

(48) If x ¬ y and 0R < z and z 6= +∞, then x
z ¬ y

z .

(49) If x 6= −∞ and y 6= +∞ and x ¬ y and z < 0R, then y
z ¬ x

z .

(50) If x ¬ y and z < 0R and z 6= −∞, then y
z ¬ x

z .

(51) If x < y and 0R < z and z 6= +∞, then x
z < y

z .

(52) If x < y and z < 0R and z 6= −∞, then y
z < x

z .
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1. Cardinal Numbers of Z and Q

In this paper k is a natural number, r is a real number, i is an integer, and
q is a rational number.

The subset Z− of R is defined as follows:

(Def. 1) r ∈ Z− iff there exists k such that r = −k.

Let us observe that Z− is non empty.
Next we state three propositions:

(1) N ≈ Z−.

(2) Z = Z− ∪ N.

(3) N ≈ Z.

Z is a subset of R.
Let n be a natural number. The functor Q(n) yields a subset of Q and is

defined as follows:

(Def. 2) q ∈ Q(n) iff there exists i such that q = i
n .
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Let n be a natural number. Observe that Q(n + 1) is non empty.
We now state two propositions:

(4) For every natural number n holds Z ≈ Q(n + 1).
(5) N ≈ Q.

2. Basic Operations of Extended Real Valued Functions

Let C be a non empty set, let f be a partial function from C to R, and let x be
a set. Then f(x) is an extended real number.

Let C be a non empty set and let f1, f2 be partial functions from C to R.
The functor f1 + f2 yielding a partial function from C to R is defined by:

(Def. 3) dom(f1 + f2) = dom f1 ∩ dom f2 \ (f1
−1({−∞}) ∩ f2

−1({+∞}) ∪
f1
−1({+∞}) ∩ f2

−1({−∞})) and for every element c of C such that
c ∈ dom(f1 + f2) holds (f1 + f2)(c) = f1(c) + f2(c).

The functor f1 − f2 yields a partial function from C to R and is defined by:

(Def. 4) dom(f1 − f2) = dom f1 ∩ dom f2 \ (f1
−1({+∞}) ∩ f2

−1({+∞}) ∪
f1
−1({−∞}) ∩ f2

−1({−∞})) and for every element c of C such that
c ∈ dom(f1 − f2) holds (f1 − f2)(c) = f1(c)− f2(c).

The functor f1 f2 yields a partial function from C to R and is defined as follows:

(Def. 5) dom(f1 f2) = dom f1 ∩ dom f2 and for every element c of C such that
c ∈ dom(f1 f2) holds (f1 f2)(c) = f1(c) · f2(c).

Let C be a non empty set, let f be a partial function from C to R, and let
r be a real number. The functor r f yielding a partial function from C to R is
defined as follows:

(Def. 6) dom(r f) = dom f and for every element c of C such that c ∈ dom(r f)
holds (r f)(c) = R(r) · f(c).

The following proposition is true

(6) Let C be a non empty set, f be a partial function from C to R, and r be
a real number. Suppose r 6= 0. Let c be an element of C. If c ∈ dom(r f),
then f(c) = (r f)(c)

R(r)
.

Let C be a non empty set and let f be a partial function from C to R. The
functor −f yielding a partial function from C to R is defined by:

(Def. 7) dom(−f) = dom f and for every element c of C such that c ∈ dom(−f)
holds (−f)(c) = −f(c).

The extended real number 1 is defined by:

(Def. 8) 1 = 1.
Let C be a non empty set, let f be a partial function from C to R, and let

r be a real number. The functor r
f yielding a partial function from C to R is

defined by:



definitions and basic properties of . . . 497

(Def. 9) dom( r
f ) = dom f \ f−1({0R}) and for every element c of C such that

c ∈ dom( r
f ) holds ( r

f )(c) = R(r)
f(c) .

One can prove the following proposition

(7) Let C be a non empty set and f be a partial function from C to R.
Then dom( 1

f ) = dom f \f−1({0R}) and for every element c of C such that

c ∈ dom( 1
f ) holds ( 1

f )(c) = 1
f(c) .

Let C be a non empty set and let f be a partial function from C to R. The
functor |f | yields a partial function from C to R and is defined as follows:

(Def. 10) dom |f | = dom f and for every element c of C such that c ∈ dom |f |
holds |f |(c) = |f(c)|.

We now state three propositions:

(8) For all extended real numbers x, y such that x 6= +∞ or y 6= −∞ but
x 6= −∞ or y 6= +∞ holds x + y = y + x.

(9) For every non empty set C and for all partial functions f1, f2 from C to
R holds f1 + f2 = f2 + f1.

(10) For every non empty set C and for all partial functions f1, f2 from C to
R holds f1 f2 = f2 f1.

Let C be a non empty set and let f1, f2 be partial functions from C to R.
Let us note that the functor f1 + f2 is commutative. Let us observe that the
functor f1 f2 is commutative.

3. Level Sets

Next we state several propositions:

(11) For every real number r there exists a natural number n such that r ¬ n.

(12) For every real number r there exists a natural number n such that −n ¬
r.

(13) For all real numbers r, s such that r < s there exists a natural number
n such that 1

n+1 < s− r.

(14) For all real numbers r, s such that for every natural number n holds
r − 1

n+1 ¬ s holds r ¬ s.

(15) For every extended real number a such that for every real number r

holds R(r) < a holds a = +∞.

(16) For every extended real number a such that for every real number r

holds a < R(r) holds a = −∞.

Let X be a set, let S be a σ-field of subsets of X, and let A be a set. We say
that A is measurable on S if and only if:

(Def. 11) A ∈ S.
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One can prove the following proposition

(17) Let X, A be sets and S be a σ-field of subsets of X. Then A is measurable
on S if and only if for every σ-measure M on S holds A is measurable
w.r.t. M .

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, f , g are partial functions from X to R, S is a σ-field of subsets
of X, F is a function from N into S, A is a set, a is an extended real number,
r, s are real numbers, and n is a natural number.

Let us consider X, f , a. The functor LE-dom(f, a) yielding a subset of X is
defined by:

(Def. 12) x ∈ LE-dom(f, a) iff x ∈ dom f and there exists an extended real number
y such that y = f(x) and y < a.

The functor LEQ-dom(f, a) yielding a subset of X is defined by:

(Def. 13) x ∈ LEQ-dom(f, a) iff x ∈ dom f and there exists an extended real
number y such that y = f(x) and y ¬ a.

The functor GT-dom(f, a) yields a subset of X and is defined as follows:

(Def. 14) x ∈ GT-dom(f, a) iff x ∈ dom f and there exists an extended real num-
ber y such that y = f(x) and a < y.

The functor GTE-dom(f, a) yields a subset of X and is defined as follows:

(Def. 15) x ∈ GTE-dom(f, a) iff x ∈ dom f and there exists an extended real
number y such that y = f(x) and a ¬ y.

The functor EQ-dom(f, a) yielding a subset of X is defined as follows:

(Def. 16) x ∈ EQ-dom(f, a) iff x ∈ dom f and there exists an extended real number
y such that y = f(x) and a = y.

One can prove the following propositions:

(18) For all X, S, f , A, a such that A ⊆ dom f holds A ∩GTE-dom(f, a) =
A \A ∩ LE-dom(f, a).

(19) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ GT-dom(f, a) =
A \A ∩ LEQ-dom(f, a).

(20) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ LEQ-dom(f, a) =
A \A ∩GT-dom(f, a).

(21) For all X, S, f , A, a such that A ⊆ dom f holds A ∩ LE-dom(f, a) =
A \A ∩GTE-dom(f, a).

(22) For all X, S, f , A, a holds A ∩ EQ-dom(f, a) = A ∩ GTE-dom(f, a) ∩
LEQ-dom(f, a).

(23) For all X, S, F , f , A, r such that for every n holds F (n) = A ∩
GT-dom(f,R(r − 1

n+1)) holds A ∩GTE-dom(f,R(r)) =
⋂

rng F.

(24) For all X, S, F , f , A and for every real number r such that for every n

holds F (n) = A ∩ LE-dom(f,R(r + 1
n+1)) holds A ∩ LEQ-dom(f,R(r)) =
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⋂
rng F.

(25) For all X, S, F , f , A and for every real number r such that for every n

holds F (n) = A ∩ LEQ-dom(f,R(r − 1
n+1)) holds A ∩ LE-dom(f,R(r)) =⋃

rng F.

(26) For all X, S, F , f , A, r such that for every n holds F (n) = A ∩
GTE-dom(f,R(r + 1

n+1)) holds A ∩GT-dom(f,R(r)) =
⋃

rng F.

(27) For all X, S, F , f , A such that for every n holds F (n) = A ∩
GT-dom(f,R(n)) holds A ∩ EQ-dom(f, +∞) =

⋂
rng F.

(28) For all X, S, F , f , A such that for every n holds F (n) = A ∩
LE-dom(f,R(n)) holds A ∩ LE-dom(f,+∞) =

⋃
rng F.

(29) For all X, S, F , f , A such that for every n holds F (n) = A ∩
LE-dom(f,R(−n)) holds A ∩ EQ-dom(f,−∞) =

⋂
rng F.

(30) For all X, S, F , f , A such that for every n holds F (n) = A ∩
GT-dom(f,R(−n)) holds A ∩GT-dom(f,−∞) =

⋃
rng F.

4. Measurable Functions

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a partial
function from X to R, and let A be an element of S. We say that f is measurable
on A if and only if:

(Def. 17) For every real number r holds A∩ LE-dom(f,R(r)) is measurable on S.

In the sequel A, B are elements of S.
Next we state a number of propositions:

(31) Let given X, S, f , A. Suppose A ⊆ dom f. Then f is measurable on
A if and only if for every real number r holds A ∩ GTE-dom(f,R(r)) is
measurable on S.

(32) Let given X, S, f , A. Then f is measurable on A if and only if for every
real number r holds A ∩ LEQ-dom(f,R(r)) is measurable on S.

(33) Let given X, S, f , A. Suppose A ⊆ dom f. Then f is measurable on
A if and only if for every real number r holds A ∩ GT-dom(f,R(r)) is
measurable on S.

(34) For all X, S, f , A, B such that B ⊆ A and f is measurable on A holds
f is measurable on B.

(35) For all X, S, f , A, B such that f is measurable on A and f is measurable
on B holds f is measurable on A ∪B.

(36) For all X, S, f , A, r, s such that f is measurable on A and A ⊆ dom f

holds A ∩GT-dom(f,R(r)) ∩ LE-dom(f,R(s)) is measurable on S.

(37) For all X, S, f , A such that f is measurable on A and A ⊆ dom f holds
A ∩ EQ-dom(f, +∞) is measurable on S.
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(38) For all X, S, f , A such that f is measurable on A holds A ∩
EQ-dom(f,−∞) is measurable on S.

(39) For all X, S, f , A such that f is measurable on A and A ⊆ dom f holds
A ∩GT-dom(f,−∞) ∩ LE-dom(f, +∞) is measurable on S.

(40) Let given X, S, f , g, A, r. Suppose f is measurable on A and g is measu-
rable on A and A ⊆ dom g. Then A∩LE-dom(f,R(r))∩GT-dom(g,R(r))
is measurable on S.

(41) For all X, S, f , A, r such that f is measurable on A and A ⊆ dom f

holds r f is measurable on A.
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The notation and terminology used in this paper have been introduced in the
following articles: [28], [24], [32], [9], [25], [10], [2], [3], [30], [29], [4], [5], [18],
[21], [23], [22], [6], [8], [14], [1], [19], [26], [7], [27], [13], [33], [17], [16], [20], [31],
[11], [12], and [15].

1. Preliminaries

For simplicity, we use the following convention: i, i1, i2, j, j1, j2, k, m, n, t

denote natural numbers, D denotes a non empty subset of E2
T, E denotes a com-

pact non vertical non horizontal subset of E2
T, C denotes a compact connected

non vertical non horizontal subset of E2
T, G denotes a Go-board, p, q, x denote

points of E2
T, and r, s denote real numbers.

The following propositions are true:

(1) For all real numbers s1, s3, s4, l such that s1 ¬ s3 and s1 ¬ s4 and 0 ¬ l

and l ¬ 1 holds s1 ¬ (1− l) · s3 + l · s4.

(2) For all real numbers s1, s3, s4, l such that s3 ¬ s1 and s4 ¬ s1 and 0 ¬ l

and l ¬ 1 holds (1− l) · s3 + l · s4 ¬ s1.

(3) If n > 0, then mn mod m = 0.

(4) If j > 0 and i mod j = 0, then i÷ j = i
j .

(5) If n > 0, then in ÷ i = in

i .

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

501
c© 2001 University of Białystok

ISSN 1426–2630



502 artur korniłowicz et al.

(6) If 0 < n and 1 < r, then 1 < rn.

(7) If r > 1 and m > n, then rm > rn.

(8) Let T be a non empty topological space, A be a subset of T , and B, C

be subsets of the carrier of T . If A is connected and C is a component of
B and A ∩ C 6= ∅ and A ⊆ B, then A ⊆ C.

Let f be a finite sequence. The functor Center f yields a natural number
and is defined as follows:

(Def. 1) Center f = (len f ÷ 2) + 1.
The following two propositions are true:

(9) For every finite sequence f such that len f is odd holds len f = 2 ·
Center f − 1.

(10) For every finite sequence f such that len f is even holds len f = 2 ·
Center f − 2.

2. Some Subsets of the Plane

One can check the following observations:

∗ there exists a subset of E2
T which is compact, non vertical, non horizontal,

and non empty and satisfies conditions of simple closed curve,

∗ there exists a subset of E2
T which is compact, non empty, and horizontal,

and

∗ there exists a subset of E2
T which is compact, non empty, and vertical.

The following propositions are true:

(11) If p ∈ N-most D, then p2 = N-bound D.

(12) If p ∈ E-most D, then p1 = E-bound D.

(13) If p ∈ S-most D, then p2 = S-bound D.

(14) If p ∈W-most D, then p1 = W-bound D.

(15) BDD D misses D.

(16) For every compact non empty subset S of E2
T satisfying conditions of

simple closed curve holds LowerArc S ⊆ S and UpperArc S ⊆ S.

(17) p ∈ VerticalLine p1.

(18) [r, s] ∈ VerticalLine r.

(19) For every subset A of E2
T such that A ⊆ VerticalLine s holds A is vertical.

(20) (proj2)([r, s]) = s and (proj1)([r, s]) = r.

(21) If p1 = q1 and r ∈ [(proj2)(p), (proj2)(q)], then [p1, r] ∈ L(p, q).
(22) If p2 = q2 and r ∈ [(proj1)(p), (proj1)(q)], then [r, p2] ∈ L(p, q).
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(23) If p ∈ VerticalLine s and q ∈ VerticalLine s, then L(p, q) ⊆
VerticalLine s.

Let S be a non empty subset of E2
T satisfying conditions of simple closed

curve. Observe that LowerArc S is non empty and compact and UpperArc S is
non empty and compact.

We now state several propositions:

(24) For all subsets A, B of E2
T such that A meets B holds (proj2)◦A meets

(proj2)◦B.

(25) For all subsets A, B of E2
T such that A misses B and A ⊆ VerticalLine s

and B ⊆ VerticalLine s holds (proj2)◦A misses (proj2)◦B.

(26) For every closed subset S of E2
T such that S is Bounded holds (proj2)◦S

is closed.

(27) For every subset S of E2
T such that S is Bounded holds (proj2)◦S is

bounded.

(28) For every compact subset S of E2
T holds (proj2)◦S is compact.

In this article we present several logical schemes. The scheme TRSubsetEx
deals with a natural number A and a unary predicate P, and states that:

There exists a subset A of EAT such that for every point p of EAT
holds p ∈ A iff P[p]

for all values of the parameters.
The scheme TRSubsetUniq deals with a natural number A and a unary

predicate P, and states that:
Let A, B be subsets of EAT . Suppose for every point p of EAT holds
p ∈ A iff P[p] and for every point p of EAT holds p ∈ B iff P[p].
Then A = B

for all values of the parameters.
Let p be a point of E2

T. The functor NorthHalfline p yielding a subset of E2
T

is defined as follows:

(Def. 2) For every point x of E2
T holds x ∈ NorthHalfline p iff x1 = p1 and x2  p2.

The functor EastHalfline p yielding a subset of E2
T is defined as follows:

(Def. 3) For every point x of E2
T holds x ∈ EastHalfline p iff x1  p1 and x2 = p2.

The functor SouthHalfline p yielding a subset of E2
T is defined as follows:

(Def. 4) For every point x of E2
T holds x ∈ SouthHalfline p iff x1 = p1 and x2 ¬ p2.

The functor WestHalfline p yields a subset of E2
T and is defined by:

(Def. 5) For every point x of E2
T holds x ∈WestHalfline p iff x1 ¬ p1 and x2 = p2.

The following propositions are true:

(29) NorthHalfline p = {q; q ranges over points of E2
T: q1 = p1 ∧ q2  p2}.

(30) NorthHalfline p = {[p1, r]; r ranges over elements of R: r  p2}.
(31) EastHalfline p = {q; q ranges over points of E2

T: q1  p1 ∧ q2 = p2}.
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(32) EastHalfline p = {[r, p2]; r ranges over elements of R: r  p1}.
(33) SouthHalfline p = {q; q ranges over points of E2

T: q1 = p1 ∧ q2 ¬ p2}.
(34) SouthHalfline p = {[p1, r]; r ranges over elements of R: r ¬ p2}.
(35) WestHalfline p = {q; q ranges over points of E2

T: q1 ¬ p1 ∧ q2 = p2}.
(36) WestHalfline p = {[r, p2]; r ranges over elements of R: r ¬ p1}.

Let p be a point of E2
T. One can check the following observations:

∗ NorthHalfline p is non empty and convex,

∗ EastHalfline p is non empty and convex,

∗ SouthHalfline p is non empty and convex, and

∗ WestHalfline p is non empty and convex.

3. Goboards

We now state a number of propositions:

(37) If 1 ¬ i and i ¬ len G and 1 ¬ j and j ¬ width G, then Gi,j ∈
L(Gi,1, Gi,width G).

(38) If 1 ¬ i and i ¬ len G and 1 ¬ j and j ¬ width G, then Gi,j ∈
L(G1,j , Glen G,j).

(39) If 1 ¬ j1 and j1 ¬ width G and 1 ¬ j2 and j2 ¬ width G and 1 ¬ i1 and
i1 ¬ i2 and i2 ¬ len G, then (Gi1,j1)1 ¬ (Gi2,j2)1.

(40) If 1 ¬ i1 and i1 ¬ len G and 1 ¬ i2 and i2 ¬ len G and 1 ¬ j1 and j1 ¬ j2

and j2 ¬ width G, then (Gi1,j1)2 ¬ (Gi2,j2)2.

(41) Let f be a non constant standard special circular sequence. Suppose f

is a sequence which elements belong to G and 1 ¬ t and t ¬ len G. Then
(Gt,width G)2  N-bound L̃(f).

(42) Let f be a non constant standard special circular sequence. Suppose f is
a sequence which elements belong to G and 1 ¬ t and t ¬ width G. Then
(G1,t)1 ¬W-bound L̃(f).

(43) Let f be a non constant standard special circular sequence. Suppose f

is a sequence which elements belong to G and 1 ¬ t and t ¬ len G. Then
(Gt,1)2 ¬ S-bound L̃(f).

(44) Let f be a non constant standard special circular sequence. Suppose f is
a sequence which elements belong to G and 1 ¬ t and t ¬ width G. Then
(Glen G,t)1  E-bound L̃(f).

(45) If i ¬ len G and j ¬ width G, then cell(G, i, j) is non empty.

(46) If i ¬ len G and j ¬ width G, then cell(G, i, j) is connected.

(47) If i ¬ len G, then cell(G, i, 0) is not Bounded.
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(48) If i ¬ len G, then cell(G, i, width G) is not Bounded.

4. Gauges

One can prove the following propositions:

(49) width Gauge(D, n) = 2n + 3.

(50) If i < j, then len Gauge(D, i) < len Gauge(D, j).
(51) If i ¬ j, then len Gauge(D, i) ¬ len Gauge(D, j).
(52) If m ¬ n and 1 < i and i < len Gauge(D, m), then 1 < 2n−′m · (i−2)+2

and 2n−′m · (i− 2) + 2 < len Gauge(D, n).
(53) If m ¬ n and 1 < i and i < width Gauge(D, m), then 1 < 2n−′m·(i−2)+2

and 2n−′m · (i− 2) + 2 < width Gauge(D, n).
(54) Suppose m ¬ n and 1 < i and i < len Gauge(D,m) and 1 < j and j <

width Gauge(D, m). Let i1, j1 be natural numbers. If i1 = 2n−′m ·(i−2)+2
and j1 = 2n−′m · (j − 2) + 2, then (Gauge(D, m))i,j = (Gauge(D, n))i1,j1 .

(55) If m ¬ n and 1 < i and i+1 < len Gauge(D,m), then 1 < 2n−′m·(i−1)+2
and 2n−′m · (i− 1) + 2 ¬ len Gauge(D, n).

(56) If m ¬ n and 1 < i and i + 1 < width Gauge(D, m), then 1 < 2n−′m ·
(i− 1) + 2 and 2n−′m · (i− 1) + 2 ¬ width Gauge(D, n).

(57) If 1 ¬ i and i ¬ len Gauge(D,n) and 1 ¬ j and j ¬
len Gauge(D, m) and n > 0 and m > 0 or n = 0 and m = 0, then
((Gauge(D, n))Center Gauge(D,n),i)1 = ((Gauge(D,m))Center Gauge(D,m),j)1.

(58) If 1 ¬ i and i ¬ len Gauge(D,n) and 1 ¬ j and j ¬
len Gauge(D, m) and n > 0 and m > 0 or n = 0 and m = 0, then
((Gauge(D, n))i,Center Gauge(D,n))2 = ((Gauge(D,m))j,Center Gauge(D,m))2.

(59) If 1 ¬ i and i ¬ len Gauge(C, 1), then ((Gauge(C, 1))Center Gauge(C,1),i)1 =
W-bound C+E-bound C

2 .

(60) If 1 ¬ i and i ¬ len Gauge(C, 1), then ((Gauge(C, 1))i,Center Gauge(C,1))2 =
S-bound C+N-bound C

2 .

(61) If 1 ¬ i and i ¬ len Gauge(E, n) and 1 ¬ j and j ¬
len Gauge(E, m) and m ¬ n, then ((Gauge(E,n))i,len Gauge(E,n))2 ¬
((Gauge(E, m))j,len Gauge(E,m))2.

(62) If 1 ¬ i and i ¬ len Gauge(E, n) and 1 ¬ j and j ¬
len Gauge(E, m) and m ¬ n, then ((Gauge(E,n))len Gauge(E,n),i)1 ¬
((Gauge(E, m))len Gauge(E,m),j)1.

(63) If 1 ¬ i and i ¬ len Gauge(E, n) and 1 ¬ j and j ¬ len Gauge(E, m)
and m ¬ n, then ((Gauge(E, m))1,j)1 ¬ ((Gauge(E, n))1,i)1.
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(64) If 1 ¬ i and i ¬ len Gauge(E, n) and 1 ¬ j and j ¬ len Gauge(E, m)
and m ¬ n, then ((Gauge(E, m))j,1)2 ¬ ((Gauge(E, n))i,1)2.

(65) If 1 ¬ m and m ¬ n, then L((Gauge(E, n))Center Gauge(E,n),1,

(Gauge(E, n))Center Gauge(E,n),len Gauge(E,n)) ⊆
L((Gauge(E,m))Center Gauge(E,m),1,

(Gauge(E, m))Center Gauge(E,m),len Gauge(E,m)).
(66) If 1 ¬ m and m ¬ n and 1 ¬ j and j ¬ width Gauge(E, n),

then L((Gauge(E, n))Center Gauge(E,n),1, (Gauge(E,n))Center Gauge(E,n),j) ⊆
L((Gauge(E,m))Center Gauge(E,m),1, (Gauge(E, n))Center Gauge(E,n),j).

(67) If 1 ¬ m and m ¬ n and 1 ¬ j and j ¬ width Gauge(E, n), then
L((Gauge(E,m))Center Gauge(E,m),1, (Gauge(E, n))Center Gauge(E,n),j) ⊆
L((Gauge(E,m))Center Gauge(E,m),1,

(Gauge(E, m))Center Gauge(E,m),len Gauge(E,m)).
(68) Suppose m ¬ n and 1 < i and i + 1 < len Gauge(E, m) and 1 < j

and j + 1 < width Gauge(E, m). Let i1, j1 be natural numbers. Suppose
2n−′m · (i − 2) + 2 ¬ i1 and i1 < 2n−′m · (i − 1) + 2 and 2n−′m · (j −
2) + 2 ¬ j1 and j1 < 2n−′m · (j − 1) + 2. Then cell(Gauge(E, n), i1, j1) ⊆
cell(Gauge(E,m), i, j).

(69) Suppose m ¬ n and 3 ¬ i and i < len Gauge(E,m) and 1 < j and
j + 1 < width Gauge(E, m). Let i1, j1 be natural numbers. If i1 = 2n−′m ·
(i−2)+2 and j1 = 2n−′m · (j−2)+2, then cell(Gauge(E, n), i1−′ 1, j1) ⊆
cell(Gauge(E,m), i−′ 1, j).

(70) If i ¬ len Gauge(C, n), then cell(Gauge(C, n), i, 0) ⊆ UBD C.

(71) If i ¬ len Gauge(E, n), then cell(Gauge(E, n), i, width Gauge(E, n)) ⊆
UBD E.

5. Cages

The following propositions are true:

(72) If p ∈ C, then NorthHalfline p meets L̃(Cage(C, n)).
(73) If p ∈ C, then EastHalfline p meets L̃(Cage(C, n)).
(74) If p ∈ C, then SouthHalfline p meets L̃(Cage(C, n)).
(75) If p ∈ C, then WestHalfline p meets L̃(Cage(C, n)).
(76) There exist k, t such that 1 ¬ k and k < len Cage(C, n) and 1 ¬ t and

t ¬ width Gauge(C, n) and (Cage(C, n))k = (Gauge(C, n))1,t.

(77) There exist k, t such that 1 ¬ k and k < len Cage(C, n) and 1 ¬ t and
t ¬ len Gauge(C, n) and (Cage(C, n))k = (Gauge(C, n))t,1.

(78) There exist k, t such that 1 ¬ k and k < len Cage(C, n) and 1 ¬ t and
t ¬ width Gauge(C, n) and (Cage(C, n))k = (Gauge(C, n))len Gauge(C,n),t.
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(79) If 1 ¬ k and k ¬ len Cage(C, n) and 1 ¬ t and t ¬ len Gauge(C, n)
and (Cage(C, n))k = (Gauge(C, n))t,width Gauge(C,n), then (Cage(C, n))k ∈
N-most L̃(Cage(C, n)).

(80) If 1 ¬ k and k ¬ len Cage(C, n) and 1 ¬ t and
t ¬ width Gauge(C, n) and (Cage(C, n))k = (Gauge(C, n))1,t, then
(Cage(C, n))k ∈W-most L̃(Cage(C, n)).

(81) If 1 ¬ k and k ¬ len Cage(C, n) and 1 ¬ t and
t ¬ len Gauge(C, n) and (Cage(C, n))k = (Gauge(C, n))t,1, then
(Cage(C, n))k ∈ S-most L̃(Cage(C, n)).

(82) If 1 ¬ k and k ¬ len Cage(C, n) and 1 ¬ t and t ¬ width Gauge(C, n)
and (Cage(C, n))k = (Gauge(C, n))len Gauge(C,n),t, then (Cage(C, n))k ∈
E-most L̃(Cage(C, n)).

(83) W-bound L̃(Cage(C, n)) = W-bound C − E-bound C−W-bound C
2n .

(84) S-bound L̃(Cage(C, n)) = S-bound C − N-bound C−S-bound C
2n .

(85) E-bound L̃(Cage(C, n)) = E-bound C + E-bound C−W-bound C
2n .

(86) N-bound L̃(Cage(C, n)) + S-bound L̃(Cage(C, n)) = N-bound L̃(Cage(C,

m)) + S-bound L̃(Cage(C,m)).

(87) E-bound L̃(Cage(C, n))+W-bound L̃(Cage(C, n)) = E-bound L̃(Cage(C,

m)) + W-bound L̃(Cage(C, m)).

(88) If i < j, then E-bound L̃(Cage(C, j)) < E-bound L̃(Cage(C, i)).

(89) If i < j, then W-bound L̃(Cage(C, i)) < W-bound L̃(Cage(C, j)).

(90) If i < j, then S-bound L̃(Cage(C, i)) < S-bound L̃(Cage(C, j)).

(91) If 1 ¬ i and i ¬ len Gauge(C, n), then N-bound L̃(Cage(C, n)) =
((Gauge(C, n))i,len Gauge(C,n))2.

(92) If 1 ¬ i and i ¬ len Gauge(C, n), then E-bound L̃(Cage(C, n)) =
((Gauge(C, n))len Gauge(C,n),i)1.

(93) If 1 ¬ i and i ¬ len Gauge(C, n), then S-bound L̃(Cage(C, n)) =
((Gauge(C, n))i,1)2.

(94) If 1 ¬ i and i ¬ len Gauge(C, n), then W-bound L̃(Cage(C, n)) =
((Gauge(C, n))1,i)1.

(95) If x ∈ C and p ∈ NorthHalfline x ∩ L̃(Cage(C, n)), then p2 > x2.

(96) If x ∈ C and p ∈ EastHalfline x ∩ L̃(Cage(C, n)), then p1 > x1.

(97) If x ∈ C and p ∈ SouthHalfline x ∩ L̃(Cage(C, n)), then p2 < x2.

(98) If x ∈ C and p ∈WestHalfline x ∩ L̃(Cage(C, n)), then p1 < x1.

(99) If x ∈ N-most C and p ∈ NorthHalfline x and 1 ¬ i and i <

len Cage(C, n) and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is horizon-
tal.
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(100) If x ∈ E-most C and p ∈ EastHalfline x and 1 ¬ i and i < len Cage(C, n)
and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is vertical.

(101) If x ∈ S-most C and p ∈ SouthHalfline x and 1 ¬ i and i < len Cage(C, n)
and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is horizontal.

(102) If x ∈ W-most C and p ∈ WestHalfline x and 1 ¬ i and i <

len Cage(C, n) and p ∈ L(Cage(C, n), i), then L(Cage(C, n), i) is vertical.

(103) If x ∈ N-most C and p ∈ NorthHalfline x ∩ L̃(Cage(C, n)), then p2 =
N-bound L̃(Cage(C, n)).

(104) If x ∈ E-most C and p ∈ EastHalfline x ∩ L̃(Cage(C, n)), then p1 =
E-bound L̃(Cage(C, n)).

(105) If x ∈ S-most C and p ∈ SouthHalfline x ∩ L̃(Cage(C, n)), then p2 =
S-bound L̃(Cage(C, n)).

(106) If x ∈ W-most C and p ∈ WestHalfline x ∩ L̃(Cage(C, n)), then p1 =
W-bound L̃(Cage(C, n)).

(107) If x ∈ N-most C, then there exists a point p of E2
T such that

NorthHalfline x ∩ L̃(Cage(C, n)) = {p}.
(108) If x ∈ E-most C, then there exists a point p of E2

T such that
EastHalfline x ∩ L̃(Cage(C, n)) = {p}.

(109) If x ∈ S-most C, then there exists a point p of E2
T such that

SouthHalfline x ∩ L̃(Cage(C, n)) = {p}.
(110) If x ∈ W-most C, then there exists a point p of E2

T such that
WestHalfline x ∩ L̃(Cage(C, n)) = {p}.
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Summary. In this article, we extend some properties concerning real num-
bers to extended real numbers. Almost all properties included in this article are
extended properties of other articles: [9], [6], [8], [10] and [7].

MML Identifier: EXTREAL2.

The terminology and notation used in this paper are introduced in the following
papers: [8], [4], [3], [5], [10], [11], [1], and [2].

1. Preliminaries

We follow the rules: x, y, w, z denote extended real numbers and a, b denote
real numbers.

The following propositions are true:

(1) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then x + y = y + x.

(2) If x 6= +∞ and x 6= −∞, then there exists y such that x + y = 0R.

(3) If x 6= +∞ and x 6= −∞ and x 6= 0R, then there exists y such that
x · y = 1 .

(4) 1 ·x = x and x · 1 = x and R(1) · x = x and x · R(1) = x.

(5) 0R − x = −x.

(6) x 6= 0R iff −x 6= 0R.

(7) If 0R ¬ x and 0R ¬ y, then 0R ¬ x + y.

(8) If 0R ¬ x and 0R < y or 0R < x and 0R ¬ y, then 0R < x + y.
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(9) If x ¬ 0R and y ¬ 0R, then x + y ¬ 0R.

(10) If x ¬ 0R and y < 0R or x < 0R and y ¬ 0R, then x + y < 0R.

(11) If z 6= +∞ and z 6= −∞ and x + z = y, then x = y − z.

(12) If x 6= +∞ and x 6= −∞ and x 6= 0R, then x · 1
x = 1 and 1

x · x = 1 .

(13) If x 6= +∞ and x 6= −∞, then x− x = 0R.

(14) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then −(x + y) =
−x +−y and −(x + y) = −y − x and −(x + y) = −x− y.

(15) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then −(x− y) =
−x + y and −(x− y) = y − x.

(16) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then −(−x + y) =
x− y and −(−x + y) = x +−y.

(17) If x = +∞ and 0R < y and y < +∞ or x = −∞ and y < 0R and
−∞ < y, then x

y = +∞.

(18) If x = +∞ and y < 0R and −∞ < y or x = −∞ and 0R < y and
y < +∞, then x

y = −∞.

(19) If −∞ < y and y < +∞ and y 6= 0R, then x·y
y = x and x · y

y = x.

(20) 1 < +∞ and −∞ < 1 .

(21) If x = +∞ or x = −∞, then for every y such that y ∈ R holds x+y 6= 0R.

(22) If x = +∞ or x = −∞, then for every y holds x · y 6= 1 .

(23) If x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and x + y < +∞, then
x 6= +∞ and y 6= +∞.

(24) If x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and −∞ < x + y, then
x 6= −∞ and y 6= −∞.

(25) If x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞ and x− y < +∞, then
x 6= +∞ and y 6= −∞.

(26) If x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞ and −∞ < x− y, then
x 6= −∞ and y 6= +∞.

(27) If x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and x + y < z, then
x 6= +∞ and y 6= +∞ and z 6= −∞ and x < z − y.

(28) If z 6= +∞ or y 6= +∞ but z 6= −∞ or y 6= −∞ and x < z − y, then
x 6= +∞ and y 6= +∞ and z 6= −∞ and x + y < z.

(29) If x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞ and x − y < z, then
x 6= +∞ and y 6= −∞ and z 6= −∞ and x < z + y.

(30) If z 6= +∞ or y 6= −∞ but z 6= −∞ or y 6= +∞ and x < z + y, then
x 6= +∞ and y 6= −∞ and z 6= −∞ and x− y < z.

(31) If x 6= +∞ or y 6= −∞ and x 6= −∞ or y 6= +∞ and y 6= +∞ or z 6= +∞
and y 6= −∞ or z 6= −∞ and x + y ¬ z, then y 6= +∞ and x ¬ z − y.
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(32) If x = +∞ and y = −∞ and x = −∞ and y = +∞ and y = +∞ and
z = +∞ and y = −∞ and z = −∞ and x ¬ z − y, then y 6= +∞ and
x + y ¬ z.

(33) If x 6= +∞ or y 6= +∞ and x 6= −∞ or y 6= −∞ and y 6= +∞ or z 6= −∞
and y 6= −∞ or z 6= +∞ and x− y ¬ z, then y 6= −∞ and x ¬ z + y.

(34) If x = +∞ and y = +∞ and x = −∞ and y = −∞ and y = −∞ and
z = +∞ and x ¬ z + y, then y 6= −∞ and x− y ¬ z.

(35) If x 6= +∞ and y 6= +∞, then x + y 6= +∞.

(36) If x 6= −∞ and y 6= −∞, then x + y 6= −∞.

(37) If x 6= +∞ and y 6= −∞, then x− y 6= +∞.

(38) If x 6= −∞ and y 6= +∞, then x− y 6= −∞.

(39) Suppose x = +∞ and y = −∞ and x = −∞ and y = +∞ and y = +∞
and z = +∞ and y = −∞ and z = −∞ and x = +∞ and z = +∞ and
x = −∞ and z = −∞. Then (x + y)− z = x + (y − z).

(40) Suppose x = +∞ and y = +∞ and x = −∞ and y = −∞ and y = +∞
and z = −∞ and y = −∞ and z = +∞ and x = +∞ and z = +∞ and
x = −∞ and z = −∞. Then x− y − z = x− (y + z).

(41) Suppose x = +∞ and y = +∞ and x = −∞ and y = −∞ and y = +∞
and z = +∞ and y = −∞ and z = −∞ and x = +∞ and z = −∞ and
x = −∞ and z = +∞. Then (x− y) + z = x− (y − z).

(42) If x · y 6= +∞ and x · y 6= −∞, then x is a real number or y is a real
number.

(43) 0R < x and 0R < y or x < 0R and y < 0R iff 0R < x · y.

(44) 0R < x and y < 0R or x < 0R and 0R < y iff x · y < 0R.

(45) 0R ¬ x or 0R < x but 0R ¬ y or 0R < y or x ¬ 0R or x < 0R but y ¬ 0R
or y < 0R iff 0R ¬ x · y.

(46) x ¬ 0R or x < 0R but 0R ¬ y or 0R < y or 0R ¬ x or 0R < x but y ¬ 0R
or y < 0R iff x · y ¬ 0R.

(47) x ¬ −y iff y ¬ −x and −x ¬ y iff −y ¬ x.

(48) x < −y iff y < −x and −x < y iff −y < x.

2. Basic Properties of abs for Extended Real Numbers

One can prove the following propositions:

(49) If x = a, then |x| = |a|.
(50) |x| = x or |x| = −x.

(51) 0R ¬ |x|.
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(52) If x 6= 0R, then 0R < |x|.
(53) x = 0R iff |x| = 0R.

(54) If |x| = −x and x 6= 0R, then x < 0R.

(55) If x ¬ 0R, then |x| = −x.

(56) |x · y| = |x| · |y|.
(57) −|x| ¬ x and x ¬ |x|.
(58) If |x| < y, then −y < x and x < y.

(59) If −y < x and x < y, then 0R < y and |x| < y.

(60) −y ¬ x and x ¬ y iff |x| ¬ y.

(61) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then |x+y| ¬ |x|+|y|.
(62) If −∞ < x and x < +∞ and x 6= 0R, then |x| · | 1x | = 1 .

(63) If x = +∞ or x = −∞, then |x| · | 1x | = 0R.

(64) If x 6= 0R, then | 1x | = 1
|x| .

(65) If x = −∞ or x = +∞ and if y = −∞ or y = +∞ and if y 6= 0R, then

|xy | = |x|
|y| .

(66) |x| = |−x|.
(67) If x = +∞ or x = −∞, then |x| = +∞.

(68) If x is a real number or y is a real number, then |x| − |y| ¬ |x− y|.
(69) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then |x−y| ¬ |x|+|y|.
(70) ||x|| = |x|.
(71) If x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and |x| ¬ z and |y| ¬ w,

then |x + y| ¬ z + w.

(72) If x is a real number or y is a real number, then ||x| − |y|| ¬ |x− y|.
(73) If 0R ¬ x · y, then |x + y| = |x|+ |y|.

3. Definitions of min, max for Extended Real Numbers and their
Basic Properties

Next we state the proposition

(74) If x = a and y = b, then b < a iff y < x and b ¬ a iff y ¬ x.

Let us consider x, y. The functor min(x, y) yielding an extended real number
is defined by:

(Def. 1) min(x, y) =
{

x, if x ¬ y,

y, otherwise.

The functor max(x, y) yielding an extended real number is defined as follows:
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(Def. 2) max(x, y) =
{

x, if y ¬ x,

y, otherwise.
One can prove the following propositions:

(75) If x = −∞ or y = −∞, then min(x, y) = −∞.

(76) If x = +∞ or y = +∞, then max(x, y) = +∞.

(77) Let x, y be extended real numbers and a, b be real numbers. If x = a

and y = b, then min(x, y) = min(a, b) and max(x, y) = max(a, b).
(78) If y ¬ x, then min(x, y) = y.

(79) If y � x, then min(x, y) = x.

(80) If x 6= +∞ and y 6= +∞ and x 6= +∞ or y 6= +∞ but x 6= −∞ or
y 6= −∞, then min(x, y) = (x+y)−|x−y|

R(2)
.

(81) min(x, y) ¬ x and min(y, x) ¬ x.

(82) min(x, x) = x.

(83) min(x, y) = min(y, x).
(84) min(x, y) = x or min(x, y) = y.

(85) x ¬ y and x ¬ z iff x ¬ min(y, z).
(86) If min(x, y) = x, then x ¬ y.

(87) If min(x, y) = y, then y ¬ x.

(88) min(x, min(y, z)) = min(min(x, y), z).
(89) If x ¬ y, then max(x, y) = y.

(90) If x � y, then max(x, y) = x.

(91) If x 6= −∞ and y 6= −∞ and x 6= +∞ or y 6= +∞ but x 6= −∞ or
y 6= −∞, then max(x, y) = x+y+|x−y|

R(2)
.

(92) x ¬ max(x, y) and x ¬ max(y, x).
(93) max(x, x) = x.

(94) max(x, y) = max(y, x).
(95) max(x, y) = x or max(x, y) = y.

(96) y ¬ x and z ¬ x iff max(y, z) ¬ x.

(97) If max(x, y) = x, then y ¬ x.

(98) If max(x, y) = y, then x ¬ y.

(99) max(x, max(y, z)) = max(max(x, y), z).
(100) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then min(x, y) +

max(x, y) = x + y.

(101) max(x, min(x, y)) = x and max(min(x, y), x) = x and max(min(y, x), x) =
x and max(x, min(y, x)) = x.

(102) min(x, max(x, y)) = x and min(max(x, y), x) = x and min(max(y, x), x) =
x and min(x, max(y, x)) = x.
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(103) min(x, max(y, z)) = max(min(x, y), min(x, z)) and min(max(y, z), x) =
max(min(y, x), min(z, x)).

(104) max(x, min(y, z)) = min(max(x, y), max(x, z)) and max(min(y, z), x) =
min(max(y, x), max(z, x)).
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Summary. This article introduces the fuzzy relation. This is the expansion
of usual relation, and the value is given at the fuzzy value. At first, the definition
of the fuzzy relation characterized by membership function is described. Next,
the definitions of the zero relation and universe relation and basic operations of
these relations are shown.

MML Identifier: FUZZY 3.

The papers [8], [1], [5], [9], [3], [4], [6], [7], and [2] provide the terminology and
notation for this paper.

1. Definition of Fuzzy Relation

In this paper C1, C2 are non empty sets.
Let us consider C1, C2. A partial function from [:C1, C2 :] to R is said to be

a Membership function of C1, C2 if:

(Def. 1) dom it = [:C1, C2 :] and rng it ⊆ [0, 1].
The following proposition is true

(1) χ
[: C1, C2 :],[: C1, C2 :] is a Membership function of C1, C2.

Let C1, C2 be non empty sets and let h be a Membership function of C1,
C2. A set is called a fuzzy relation of C1, C2, h if:

(Def. 2) It = [: [:C1, C2 :], h◦[:C1, C2 :] :].
Let C1, C2 be non empty sets, let h, g be Membership functions of C1, C2,

let A be a fuzzy relation of C1, C2, h, and let B be a fuzzy relation of C1, C2,
g. The predicate A = B is defined by:
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(Def. 3) For every element c of [:C1, C2 :] holds h(c) = g(c).
Let C1, C2 be non empty sets, let h, g be Membership functions of C1, C2,

let A be a fuzzy relation of C1, C2, h, and let B be a fuzzy relation of C1, C2,
g. The predicate A ⊆ B is defined by:

(Def. 4) For every element c of [:C1, C2 :] holds h(c) ¬ g(c).
For simplicity, we adopt the following rules: f , g, h, h1 denote Membership

functions of C1, C2, A denotes a fuzzy relation of C1, C2, f , B denotes a fuzzy
relation of C1, C2, g, D denotes a fuzzy relation of C1, C2, h, and D1 denotes a
fuzzy relation of C1, C2, h1.

The following three propositions are true:

(2) A = B iff A ⊆ B and B ⊆ A.

(3) A ⊆ A.

(4) If A ⊆ B and B ⊆ D, then A ⊆ D.

2. Intersection, Union and Complement

Let C1, C2 be non empty sets and let h, g be Membership functions of C1,
C2. The functor min(h, g) yielding a Membership function of C1, C2 is defined
as follows:

(Def. 5) For every element c of [:C1, C2 :] holds (min(h, g))(c) = min(h(c), g(c)).
Let C1, C2 be non empty sets and let h, g be Membership functions of C1,

C2. The functor max(h, g) yields a Membership function of C1, C2 and is defined
by:

(Def. 6) For every element c of [:C1, C2 :] holds (max(h, g))(c) = max(h(c), g(c)).
Let C1, C2 be non empty sets and let h be a Membership function of C1, C2.

The functor 1-minus h yields a Membership function of C1, C2 and is defined as
follows:

(Def. 7) For every element c of [:C1, C2 :] holds (1-minus h)(c) = 1− h(c).
Let C1, C2 be non empty sets, let h, g be Membership functions of C1, C2,

let A be a fuzzy relation of C1, C2, h, and let B be a fuzzy relation of C1, C2,
g. The functor A ∩B yields a fuzzy relation of C1, C2, min(h, g) and is defined
as follows:

(Def. 8) A ∩B = [: [:C1, C2 :], (min(h, g))◦[:C1, C2 :] :].
Let C1, C2 be non empty sets, let h, g be Membership functions of C1, C2,

let A be a fuzzy relation of C1, C2, h, and let B be a fuzzy relation of C1, C2, g.
The functor A ∪B yielding a fuzzy relation of C1, C2, max(h, g) is defined by:

(Def. 9) A ∪B = [: [:C1, C2 :], (max(h, g))◦[:C1, C2 :] :].
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Let C1, C2 be non empty sets, let h be a Membership function of C1, C2, and
let A be a fuzzy relation of C1, C2, h. The functor Ac yielding a fuzzy relation
of C1, C2, 1-minus h is defined as follows:

(Def. 10) Ac = [: [:C1, C2 :], (1-minus h)◦[:C1, C2 :] :].
The following propositions are true:

(5) For every element x of [:C1, C2 :] holds min(h(x), g(x)) = (min(h, g))(x)
and max(h(x), g(x)) = (max(h, g))(x).

(6) max(h, h) = h and min(h, h) = h and max(h, h) = min(h, h) and
min(f, g) = min(g, f) and max(f, g) = max(g, f).

(7) f = g iff A = B.

(8) A ∩A = A and A ∪A = A.

(9) A ∩B = B ∩A and A ∪B = B ∪A.

(10) max(max(f, g), h) = max(f, max(g, h)) and min(min(f, g), h) =
min(f, min(g, h)).

(11) (A ∪B) ∪D = A ∪ (B ∪D).
(12) (A ∩B) ∩D = A ∩ (B ∩D).
(13) max(f, min(f, g)) = f and min(f, max(f, g)) = f.

(14) A ∪A ∩B = A and A ∩ (A ∪B) = A.

(15) min(f, max(g, h)) = max(min(f, g), min(f, h)) and max(f, min(g, h)) =
min(max(f, g), max(f, h)).

(16) A ∪B ∩D = (A ∪B) ∩ (A ∪D) and A ∩ (B ∪D) = A ∩B ∪A ∩D.

(17) 1-minus 1-minus h = h.

(18) (Ac)c = A.

(19) 1-minus max(f, g) = min(1-minus f, 1-minus g) and 1-minus min(f, g) =
max(1-minus f, 1-minus g).

(20) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

(21) A ⊆ A ∪B.

(22) If A ⊆ D and B ⊆ D, then A ∪B ⊆ D.

(23) If A ⊆ B, then A ∪D ⊆ B ∪D.

(24) If A ⊆ B and D ⊆ D1, then A ∪D ⊆ B ∪D1.

(25) If A ⊆ B, then A ∪B = B.

(26) A ∩B ⊆ A.

(27) A ∩B ⊆ A ∪B.

(28) If D ⊆ A and D ⊆ B, then D ⊆ A ∩B.

(29) For all elements a, b, c, d of R such that a ¬ b and c ¬ d holds min(a, c) ¬
min(b, d).

(30) For all elements a, b, c of R such that a ¬ b holds min(a, c) ¬ min(b, c).
(31) If A ⊆ B, then A ∩D ⊆ B ∩D.
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(32) If A ⊆ B and D ⊆ D1, then A ∩D ⊆ B ∩D1.

(33) If A ⊆ B, then A ∩B = A.

(34) If A ∩B ∪A ∩D = A, then A ⊆ B ∪D.

(35) A = B ∪D iff B ⊆ A and D ⊆ A and for all h1, D1 such that B ⊆ D1

and D ⊆ D1 holds A ⊆ D1.

(36) A = B ∩D iff A ⊆ B and A ⊆ D and for all h1, D1 such that D1 ⊆ B

and D1 ⊆ D holds D1 ⊆ A.

(37) A ⊆ B iff Bc ⊆ Ac.

(38) If A ⊆ Bc, then B ⊆ Ac.

(39) If Ac ⊆ B, then Bc ⊆ A.

(40) (A ∪B)c ⊆ Ac and (A ∪B)c ⊆ Bc.

(41) Ac ⊆ (A ∩B)c and Bc ⊆ (A ∩B)c.

3. Exclusive Sum

Let C1, C2 be non empty sets, let h, g be Membership functions of C1, C2,
let A be a fuzzy relation of C1, C2, h, and let B be a fuzzy relation of C1, C2,
g. The functor A−. B yields a fuzzy relation of C1, C2, max(min(h, 1-minus g),

min(1-minus h, g)) and is defined by:

(Def. 11) A−. B = [: [:C1, C2 :], (max(min(h, 1-minus g), min(1-minus h, g)))◦[:C1,

C2 :] :].
The following propositions are true:

(42) A−. B = A ∩Bc ∪Ac ∩B.

(43) A−. B = B−. A.

4. Zero Relation and Universe Relation

Let C1, C2 be non empty sets. A set is called a zero relation of C1, C2 if:

(Def. 12) It = [: [:C1, C2 :], (χ∅,[: C1, C2 :])◦[:C1, C2 :] :].
Let C1, C2 be non empty sets. A set is called a universe relation of C1, C2

if:

(Def. 13) It = [: [:C1, C2 :], (χ[: C1, C2 :],[: C1, C2 :])◦[:C1, C2 :] :].
In the sequel X is a universe relation of C1, C2 and O is a zero relation of

C1, C2.
The following proposition is true

(44) χ∅,[: C1, C2 :] is a Membership function of C1, C2.
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Let C1, C2 be non empty sets. The functor Zmf(C1, C2) yielding a Member-
ship function of C1, C2 is defined as follows:

(Def. 14) Zmf(C1, C2) = χ∅,[: C1, C2 :].

Let C1, C2 be non empty sets. The functor Umf(C1, C2) yields a Membership
function of C1, C2 and is defined as follows:

(Def. 15) Umf(C1, C2) = χ
[: C1, C2 :],[: C1, C2 :].

Next we state four propositions:

(45) Let h be a Membership function of C1, C2. If h = χ
[: C1, C2 :],[: C1, C2 :], then

[: [:C1, C2 :], (χ[: C1, C2 :],[: C1, C2 :])◦[:C1, C2 :] :] is a fuzzy relation of C1, C2, h.

(46) For every Membership function h of C1, C2 such that h = χ∅,[: C1, C2 :]

holds [: [:C1, C2 :], (χ∅,[: C1, C2 :])◦[:C1, C2 :] :] is a fuzzy relation of C1, C2, h.

(47) O is a fuzzy relation of C1, C2, Zmf(C1, C2).
(48) X is a fuzzy relation of C1, C2, Umf(C1, C2).

Let C1, C2 be non empty sets. We see that the zero relation of C1, C2 is a
fuzzy relation of C1, C2, Zmf(C1, C2).

Let C1, C2 be non empty sets. We see that the universe relation of C1, C2

is a fuzzy relation of C1, C2, Umf(C1, C2).
In the sequel X denotes a universe relation of C1, C2 and O denotes a zero

relation of C1, C2.
Next we state a number of propositions:

(49) Let a, b be elements of R and f be a partial function from [:C1, C2 :] to
R. Suppose rng f ⊆ [a, b] and dom f 6= ∅ and a ¬ b. Let x be an element
of [:C1, C2 :]. If x ∈ dom f, then a ¬ f(x) and f(x) ¬ b.

(50) O ⊆ A.

(51) A ⊆ X.

(52) For every element x of [:C1, C2 :] and for every Membership function h

of C1, C2 holds (Zmf(C1, C2))(x) ¬ h(x) and h(x) ¬ (Umf(C1, C2))(x).
(53) max(f, Umf(C1, C2)) = Umf(C1, C2) and min(f, Umf(C1, C2)) = f and

max(f, Zmf(C1, C2)) = f and min(f, Zmf(C1, C2)) = Zmf(C1, C2).
(54) A ∪X = X and A ∩X = A.

(55) A ∪O = A and A ∩O = O.

(56) If A ⊆ B and A ⊆ D and B ∩D = O, then A = O.

(57) If A ⊆ B and B ∩D = O, then A ∩D = O.

(58) If A ⊆ O, then A = O.

(59) A ∪B = O iff A = O and B = O.

(60) If A ⊆ B ∪D and A ∩D = O, then A ⊆ B.

(61) 1-minus Zmf(C1, C2) = Umf(C1, C2) and 1-minus Umf(C1, C2) =
Zmf(C1, C2).
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(62) Oc = X and Xc = O.

(63) A−. O = A and O−. A = A.

(64) A−. X = Ac and X−. A = Ac.

(65) For every element c of [:C1, C2 :] such that f(c) ¬ h(c) holds
(max(f, min(g, h)))(c) = (min(max(f, g), h))(c).

(66) If A ⊆ D, then A ∪B ∩D = (A ∪B) ∩D.

Let C1, C2 be non empty sets, let f , g be Membership functions of C1, C2,
let A be a fuzzy relation of C1, C2, f , and let B be a fuzzy relation of C1, C2,
g. The functor A \ B yielding a fuzzy relation of C1, C2, min(f, 1-minus g) is
defined by:

(Def. 16) A \B = [: [:C1, C2 :], (min(f, 1-minus g))◦[:C1, C2 :] :].
One can prove the following propositions:

(67) A \B = A ∩Bc.

(68) 1-minus min(f, 1-minus g) = max(1-minus f, g).
(69) (A \B)c = Ac ∪B.

(70) For every element c of [:C1, C2 :] such that f(c) ¬ g(c) holds
(min(f, 1-minus h))(c) ¬ (min(g, 1-minus h))(c).

(71) If A ⊆ B, then A \D ⊆ B \D.

(72) For every element c of [:C1, C2 :] such that f(c) ¬ g(c) holds
(min(h, 1-minus g))(c) ¬ (min(h, 1-minus f))(c).

(73) If A ⊆ B, then D \B ⊆ D \A.

(74) For every element c of [:C1, C2 :] such that f(c) ¬ g(c) and h(c) ¬ h1(c)
holds (min(f, 1-minus h1))(c) ¬ (min(g, 1-minus h))(c).

(75) If A ⊆ B and D ⊆ D1, then A \D1 ⊆ B \D.

(76) For every element c of [:C1, C2 :] holds (min(f, 1-minus g))(c) ¬ f(c).
(77) A \B ⊆ A.

(78) For every element c of [:C1, C2 :] holds (min(f, 1-minus g))(c) ¬
(max(min(f, 1-minus g), min(1-minus f, g)))(c).

(79) A \B ⊆ A−. B.

(80) A \O = A.

(81) O \A = O.

(82) For every element c of [:C1, C2 :] holds (min(f, 1-minus g))(c) ¬
(min(f, 1-minus min(f, g)))(c).

(83) A \B ⊆ A \A ∩B.

(84) For every element c of [:C1, C2 :] holds (max(min(f, g), min(f, 1-minus g)))
(c) ¬ f(c).

(85) For every element c of [:C1, C2 :] holds (max(f, min(g, 1-minus f)))(c) ¬
(max(f, g))(c).
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(86) A ∪ (B \A) ⊆ A ∪B.

(87) A ∩B ∪ (A \B) ⊆ A.

(88) min(f, 1-minus min(g, 1-minus h)) = max(min(f, 1-minus g), min(f, h)).
(89) A \ (B \D) = (A \B) ∪A ∩D.

(90) For every element c of [:C1, C2 :] holds (min(f, g))(c) ¬ (min(f, 1-minus min(f,

1-minus g)))(c).
(91) A ∩B ⊆ A \ (A \B).
(92) For every element c of [:C1, C2 :] holds (min(f, 1-minus g))(c) ¬

(min(max(f, g), 1-minus g))(c).
(93) A \B ⊆ (A ∪B) \B.

(94) min(f, 1-minus max(g, h)) = min(min(f, 1-minus g), min(f, 1-minus h)).
(95) A \ (B ∪D) = (A \B) ∩ (A \D).
(96) min(f, 1-minus min(g, h)) = max(min(f, 1-minus g), min(f, 1-minus h)).
(97) A \B ∩D = (A \B) ∪ (A \D).
(98) min(min(f, 1-minus g), 1-minus h) = min(f, 1-minus max(g, h)).
(99) A \B \D = A \ (B ∪D).

(100) For every element c of [:C1, C2 :] holds (min(max(f, g), 1-minus min(f, g)))(c) 
(max(min(f, 1-minus g), min(g, 1-minus f)))(c).

(101) (A \B) ∪ (B \A) ⊆ (A ∪B) \A ∩B.

(102) min(max(f, g), 1-minus h) = max(min(f, 1-minus h), min(g, 1-minus h)).
(103) (A ∪B) \D = (A \D) ∪ (B \D).
(104) For every element c of [:C1, C2 :] such that (min(f, 1-minus g))(c) ¬ h(c)

and (min(g, 1-minus f))(c) ¬ h(c) holds (max(min(f, 1-minus g), min(1-minus f,

g)))(c) ¬ h(c).
(105) If A \B ⊆ D and B \A ⊆ D, then A−. B ⊆ D.

(106) A ∩ (B \D) = A ∩B \D.

(107) For every element c of [:C1, C2 :] holds (min(f, min(g, 1-minus h)))(c) ¬
(min(min(f, g), 1-minus min(f, h)))(c).

(108) A ∩ (B \D) ⊆ A ∩B \A ∩D.

(109) For every element c of [:C1, C2 :] holds (min(max(f, g), 1-minus min(f, g)))(c) 
(max(min(f, 1-minus g), min(1-minus f, g)))(c).

(110) A−. B ⊆ (A ∪B) \A ∩B.

(111) For every element c of [:C1, C2 :] holds (max(min(f, g), 1-minus max(f, g)))(c) ¬
(1-minus max(min(f, 1-minus g), min(1-minus f, g)))(c).

(112) A ∩B ∪ (A ∪B)c ⊆ (A−. B)c.

(113) min(max(min(f, 1-minus g), min(1-minus f, g)), 1-minus h) = max(min(f,

1-minus max(g, h)), min(g, 1-minus max(f, h))).
(114) (A−. B) \D = (A \ (B ∪D)) ∪ (B \ (A ∪D)).
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(115) For every element c of [:C1, C2 :] holds (min(f, 1-minus max(min(g,

1-minus h), min(1-minus g, h))))(c)  (max(min(f, 1-minus max(g, h)),
min(min(f, g), h)))(c).

(116) (A \ (B ∪D)) ∪A ∩B ∩D ⊆ A \ (B−. D).
(117) For every element c of [:C1, C2 :] such that f(c) ¬ g(c) holds g(c) 

(max(f, min(g, 1-minus f)))(c).
(118) If A ⊆ B, then A ∪ (B \A) ⊆ B.

(119) For every element c of [:C1, C2 :] holds (max(f, g))(c)  (max(max(min(f,

1-minus g), min(1-minus f, g)), min(f, g)))(c).
(120) (A−. B) ∪A ∩B ⊆ A ∪B.

(121) If min(f, 1-minus g) = Zmf(C1, C2), then for every element c of [:C1, C2 :]
holds f(c) ¬ g(c).

(122) If A \B = O, then A ⊆ B.

(123) If min(f, g) = Zmf(C1, C2), then min(f, 1-minus g) = f.

(124) If A ∩B = O, then A \B = A.
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Summary. In this article we prove the measurablility of some extended
real valued functions which are f+g, f – g and so on. Moreover, we will define the
simple function which are defined on the sigma field. It will play an important
role for the Lebesgue integral theory.

MML Identifier: MESFUNC2.

The notation and terminology used here are introduced in the following papers:
[21], [2], [10], [11], [9], [7], [6], [3], [8], [13], [12], [17], [16], [15], [14], [22], [23],
[18], [20], [4], [5], [19], and [1].

1. Finite Valued Function

For simplicity, we adopt the following rules: X is a non empty set, x is an
element of X, f , g are partial functions from X to R, S is a σ-field of subsets
of X, F is a function from Q into S, p is a rational number, r is a real number,
n, m are natural numbers, and A, B are elements of S.

Let us consider X and let us consider f . We say that f is finite if and only
if:

(Def. 1) For every x such that x ∈ dom f holds |f(x)| < +∞.

Next we state three propositions:

(1) f = 1 f.

(2) For all f , g, A such that f is finite or g is finite holds dom(f + g) =
dom f ∩ dom g and dom(f − g) = dom f ∩ dom g.
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(3) Let given f , g, F , r, A. Suppose f is finite and g is finite and for every
p holds F (p) = A ∩ LE-dom(f,R(p)) ∩ (A ∩ LE-dom(g,R(r − p))). Then
A ∩ LE-dom(f + g,R(r)) =

⋃
rng F.

2. Measurability of f + g and f − g

The following propositions are true:

(4) There exists a function F from N into Q such that F is one-to-one and
dom F = N and rng F = Q.

(5) Let X, Y , Z be non empty sets and F be a function from X into Z. If
X ≈ Y, then there exists a function G from Y into Z such that rng F =
rng G.

(6) Let given S, f , g, A. Suppose f is measurable on A and g is measurable on
A. Then there exists a function F fromQ into S such that for every rational
number p holds F (p) = A∩LE-dom(f,R(p))∩ (A∩LE-dom(g,R(r− p))).

(7) Let given f , g, A. Suppose f is finite and g is finite and f is measurable
on A and g is measurable on A. Then f + g is measurable on A.

(8) For all sets E, F , G and for every partial function f from E to F holds
f−1(G) ⊆ E.

(9) For every non empty set C and for all partial functions f1, f2 from C to
R holds f1 − f2 = f1 +−f2.

(10) For every real number r holds R(−r) = −R(r).
(11) For every non empty set C and for every partial function f from C to R

holds −f = (−1) f.

(12) Let C be a non empty set, f be a partial function from C to R, and r

be a real number. If f is finite, then r f is finite.

(13) Let given f , g, A. Suppose f is finite and g is finite and f is measurable
on A and g is measurable on A and A ⊆ dom g. Then f − g is measurable
on A.

3. Definitions of Extended Real Valued Functions max+(f) and
max−(f) and their Basic Properties

Let C be a non empty set and let f be a partial function from C to R. The
functor max+(f) yields a partial function from C to R and is defined as follows:

(Def. 2) dom max+(f) = dom f and for every element x of C such that x ∈
dom max+(f) holds (max+(f))(x) = max(f(x), 0R).
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The functor max−(f) yielding a partial function from C to R is defined by:

(Def. 3) dom max−(f) = dom f and for every element x of C such that x ∈
dom max−(f) holds (max−(f))(x) = max(−f(x), 0R).

The following propositions are true:

(14) Let C be a non empty set, f be a partial function from C to R, and x

be an element of C. If x ∈ dom f, then 0R ¬ (max+(f))(x).

(15) Let C be a non empty set, f be a partial function from C to R, and x

be an element of C. If x ∈ dom f, then 0R ¬ (max−(f))(x).

(16) For every non empty set C and for every partial function f from C to R
holds max−(f) = max+(−f).

(17) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and 0R < (max+(f))(x), then
(max−(f))(x) = 0R.

(18) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and 0R < (max−(f))(x), then
(max+(f))(x) = 0R.

(19) For every non empty set C and for every partial function f from C to R
holds dom f = dom(max+(f) −max−(f)) and dom f = dom(max+(f) +
max−(f)).

(20) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f, then (max+(f))(x) = f(x) or
(max+(f))(x) = 0R but (max−(f))(x) = −f(x) or (max−(f))(x) = 0R.

(21) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and (max+(f))(x) = f(x), then
(max−(f))(x) = 0R.

(22) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and (max+(f))(x) = 0R, then
(max−(f))(x) = −f(x).

(23) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and (max−(f))(x) = −f(x), then
(max+(f))(x) = 0R.

(24) Let C be a non empty set, f be a partial function from C to R, and
x be an element of C. If x ∈ dom f and (max−(f))(x) = 0R, then
(max+(f))(x) = f(x).

(25) For every non empty set C and for every partial function f from C to R
holds f = max+(f)−max−(f).

(26) For every non empty set C and for every partial function f from C to R
holds |f | = max+(f) + max−(f).
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4. Measurability of max+(f), max−(f) and |f |

Next we state three propositions:

(27) If f is measurable on A, then max+(f) is measurable on A.

(28) If f is measurable on A and A ⊆ dom f, then max−(f) is measurable on
A.

(29) For all f , A such that f is measurable on A and A ⊆ dom f holds |f | is
measurable on A.

5. Definition and Measurability of Characteristic Function

One can prove the following proposition

(30) For all sets A, X holds rng(χA,X) ⊆ {0R, 1}.
Let A, X be sets. Then χA,X is a partial function from X to R.
Next we state two propositions:

(31) χA,X is finite.

(32) χA,X is measurable on B.

6. Definition and Measurability of Simple Function

Let X be a set and let S be a σ-field of subsets of X. One can check that there
exists a finite sequence of elements of S which is disjoint valued.

Let X be a set and let S be a σ-field of subsets of X. A finite sequence of
separated subsets of S is a disjoint valued finite sequence of elements of S.

The following propositions are true:

(33) Suppose F is a finite sequence of separated subsets of S. Then there exists
a sequence G of separated subsets of S such that

⋃
rng F =

⋃
rng G and

for every n such that n ∈ dom F holds F (n) = G(n) and for every m such
that m /∈ dom F holds G(m) = ∅.

(34) If F is a finite sequence of separated subsets of S, then
⋃

rng F ∈ S.

Let X be a non empty set, let S be a σ-field of subsets of X, and let f be a
partial function from X to R. We say that f is simple function in S if and only
if the conditions (Def. 5) are satisfied.

(Def. 5)1(i) f is finite, and
(ii) there exists a finite sequence F of separated subsets of S such that

dom f =
⋃

rng F and for every natural number n and for all elements x, y

of X such that n ∈ dom F and x ∈ F (n) and y ∈ F (n) holds f(x) = f(y).

1The definition (Def. 4) has been removed.
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One can prove the following propositions:

(35) If f is finite, then rng f is a subset of R.

(36) Suppose F is a finite sequence of separated subsets of S. Let given n.
Then F ¹ Seg n is a finite sequence of separated subsets of S.

(37) If f is simple function in S, then f is measurable on A.
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The notation and terminology used in this paper are introduced in the following
papers: [25], [2], [11], [26], [21], [12], [3], [5], [30], [7], [28], [6], [18], [22], [17], [24],
[20], [23], [8], [10], [16], [1], [27], [9], [4], [15], [32], [19], [29], [31], [13], and [14].

For simplicity, we adopt the following convention: E denotes a compact non
vertical non horizontal subset of E2

T, C denotes a compact connected non vertical
non horizontal subset of E2

T, G denotes a Go-board, i, j, m, n denote natural
numbers, and p denotes a point of E2

T.
Let us observe that every simple closed curve is non vertical and non hori-

zontal.
Let T be a non empty topological space. Note that there exists a union of

components of T which is non empty.
The following propositions are true:

(1) Let T be a non empty topological space and A be a non empty union of
components of T . If A is connected, then A is a component of T .

(2) For every finite sequence f holds f is empty iff Rev(f) is empty.

(3) Let D be a non empty set, f be a finite sequence of elements of D, and
given i, j. If 1 ¬ i and i ¬ len f and 1 ¬ j and j ¬ len f, then mid(f, i, j)
is non empty.

(4) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If 1 ¬ len f and p ∈ L̃(f), then (º f, p)(1) = f(1).

(5) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If f is a special sequence and p ∈ L̃(f), then (¼ p, f)(len ¼ p, f) =

f(len f).
1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(6) For every simple closed curve P holds W-max P 6= E-max P.

(7) Let D be a non empty set and f be a finite sequence of elements of D. If
1 ¬ i and i < len f, then (mid(f, i, len f −′ 1)) a 〈flen f 〉 = mid(f, i, len f).

(8) For all points p, q of E2
T such that p 6= q and L(p, q) is vertical holds 〈p,

q〉 is a special sequence.

(9) For all points p, q of E2
T such that p 6= q and L(p, q) is horizontal holds

〈p, q〉 is a special sequence.

(10) Let p, q be finite sequences of elements of E2
T and v be a point of E2

T. If
p is in the area of q, then pv

ª is in the area of q.

(11) For every non trivial finite sequence p of elements of E2
T and for every

point v of E2
T holds pv

ª is in the area of p.

(12) For every finite sequence f holds Center f  1.

(13) For every finite sequence f such that len f  1 holds Center f ¬ len f.

(14) Center G ¬ len G.

(15) For every finite sequence f such that len f  2 holds Center f > 1.

(16) For every finite sequence f such that len f  3 holds Center f < len f.

(17) Center Gauge(E,n) = 2n−′1 + 2.

(18) E ⊆ cell(Gauge(E, 0), 2, 2).
(19) cell(Gauge(E, 0), 2, 2) 6⊆ BDD E.

(20) (Gauge(C, 1))Center Gauge(C,1),1 =
[W-bound C+E-bound C

2 , S-bound L̃(Cage(C, 1))].
(21) (Gauge(C, 1))Center Gauge(C,1),len Gauge(C,1) =

[W-bound C+E-bound C
2 , N-bound L̃(Cage(C, 1))].

(22) If 1 ¬ j and j < width G and 1 ¬ m and m ¬ len G and 1 ¬ n and
n ¬ width G and p ∈ cell(G, len G, j) and p1 = (Gm,n)1, then len G = m.

(23) Suppose 1 ¬ i and i ¬ len G and 1 ¬ j and j < width G and 1 ¬ m

and m ¬ len G and 1 ¬ n and n ¬ width G and p ∈ cell(G, i, j) and
p1 = (Gm,n)1. Then i = m or i = m−′ 1.

(24) If 1 ¬ i and i < len G and 1 ¬ m and m ¬ len G and 1 ¬ n and n ¬
width G and p ∈ cell(G, i, width G) and p2 = (Gm,n)2, then width G = n.

(25) Suppose 1 ¬ i and i < len G and 1 ¬ j and j ¬ width G and 1 ¬ m

and m ¬ len G and 1 ¬ n and n ¬ width G and p ∈ cell(G, i, j) and
p2 = (Gm,n)2. Then j = n or j = n−′ 1.

(26) For every simple closed curve C and for every real number r such
that W-bound C ¬ r and r ¬ E-bound C holds L([r, S-bound C], [r,
N-bound C]) meets UpperArc C.

(27) For every simple closed curve C and for every real number r such
that W-bound C ¬ r and r ¬ E-bound C holds L([r, S-bound C], [r,
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N-bound C]) meets LowerArc C.

(28) Let C be a simple closed curve and i be a natural number. If 1 < i and
i < len Gauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,len Gauge(C,n))
meets UpperArc C.

(29) Let C be a simple closed curve and i be a natural number. If 1 < i and
i < len Gauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,len Gauge(C,n))
meets LowerArc C.

(30) For every simple closed curve C holds L((Gauge(C, n))Center Gauge(C,n),1,

(Gauge(C, n))Center Gauge(C,n),len Gauge(C,n)) meets UpperArc C.

(31) For every simple closed curve C holds L((Gauge(C, n))Center Gauge(C,n),1,

(Gauge(C, n))Center Gauge(C,n),len Gauge(C,n)) meets LowerArc C.

(32) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and i be a natural number. If 1 ¬ i and i ¬
len Gauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,len Gauge(C,n)) me-
ets UpperArc L̃(Cage(C, n)).

(33) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and i be a natural number. If 1 ¬ i and i ¬
len Gauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,len Gauge(C,n)) me-
ets LowerArc L̃(Cage(C, n)).

(34) For every compact connected non vertical non horizontal subset C of E2
T

holds L((Gauge(C, n))Center Gauge(C,n),1,

(Gauge(C, n))Center Gauge(C,n),len Gauge(C,n)) meets UpperArc L̃(Cage(C, n)).

(35) For every compact connected non vertical non horizontal subset C of E2
T

holds L((Gauge(C, n))Center Gauge(C,n),1,

(Gauge(C, n))Center Gauge(C,n),len Gauge(C,n)) meets LowerArc L̃(Cage(C, n)).

(36) If j ¬ width G, then cell(G, 0, j) is not Bounded.

(37) If i ¬ width G, then cell(G, len G, i) is not Bounded.

(38) If j ¬ width Gauge(C, n), then cell(Gauge(C, n), 0, j) ⊆ UBD C.

(39) If j ¬ len Gauge(E,n), then cell(Gauge(E, n), len Gauge(E, n), j) ⊆
UBD E.

(40) If i ¬ len Gauge(C, n) and j ¬ width Gauge(C, n) and cell(Gauge(C, n), i, j) ⊆
BDD C, then j > 1.

(41) If i ¬ len Gauge(C, n) and j ¬ width Gauge(C, n) and cell(Gauge(C, n), i, j) ⊆
BDD C, then i > 1.

(42) If i ¬ len Gauge(C, n) and j ¬ width Gauge(C, n) and cell(Gauge(C, n), i, j) ⊆
BDD C, then j + 1 < width Gauge(C, n).

(43) If i ¬ len Gauge(C, n) and j ¬ width Gauge(C, n) and cell(Gauge(C, n), i, j) ⊆
BDD C, then i + 1 < len Gauge(C, n).
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(44) If there exist i, j such that i ¬ len Gauge(C, n) and j ¬
width Gauge(C, n) and cell(Gauge(C, n), i, j) ⊆ BDD C, then n  1.
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Summary. This article is divided into two parts. In the first part, we prove
some useful theorems on finite topological spaces. In the second part, in order to
consider a family of neighborhoods to a point in a space, we extend the notion of
finite topological space and define a new topological space, which we call formal
topological space. We show the relation between formal topological space struct
(FMT Space Str) and the TopStruct by giving a function (NeighSp). And the
following notions are introduced in formal topological spaces: boundary, closure,
interior, isolated point, connected point, open set and close set, then some basic
facts concerning them are proved. We will discuss the relation between the formal
topological space and the finite topological space in future work.

MML Identifier: FINTOPO2.

The papers [5], [3], [2], [1], [6], and [4] provide the notation and terminology for
this paper.

1. Some Useful Theorems on Finite Topological Spaces

In this paper F1 denotes a non empty finite topology space and A denotes a
subset of the carrier of F1.

The following propositions are true:

(1) Let F1 be a non empty finite topology space and A, B be subsets of the
carrier of F1. If A ⊆ B, then Ai ⊆ Bi.

(2) Aδ = Ab ∩ (Ai)c.
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(3) Aδ = Ab \Ai.

(4) If Ac is open, then A is closed.

(5) If Ac is closed, then A is open.

Let F1 be a non empty finite topology space, let x be an element of the
carrier of F1, let y be an element of the carrier of F1, and let A be a subset of
the carrier of F1. The functor P1(x, y,A) yields an element of Boolean and is
defined by:

(Def. 1) P1(x, y, A) =
{

true, if y ∈ U(x) and y ∈ A,

false, otherwise.
Let F1 be a non empty finite topology space, let x be an element of the

carrier of F1, let y be an element of the carrier of F1, and let A be a subset
of the carrier of F1. The functor P2(x, y, A) yielding an element of Boolean is
defined as follows:

(Def. 2) P2(x, y, A) =
{

true, if y ∈ U(x) and y ∈ Ac,

false, otherwise.
We now state three propositions:

(6) Let x, y be elements of the carrier of F1 and A be a subset of the carrier
of F1. Then P1(x, y, A) = true if and only if y ∈ U(x) and y ∈ A.

(7) Let x, y be elements of the carrier of F1 and A be a subset of the carrier
of F1. Then P2(x, y, A) = true if and only if y ∈ U(x) and y ∈ Ac.

(8) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Aδ if and only if there exist elements y1, y2 of the carrier
of F1 such that P1(x, y1, A) = true and P2(x, y2, A) = true.

Let F1 be a non empty finite topology space, let x be an element of the
carrier of F1, and let y be an element of the carrier of F1. The functor P0(x, y)
yielding an element of Boolean is defined as follows:

(Def. 3) P0(x, y) =
{

true, if y ∈ U(x),
false, otherwise.

We now state three propositions:

(9) For all elements x, y of the carrier of F1 holds P0(x, y) = true iff y ∈
U(x).

(10) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Ai if and only if for every element y of the carrier of F1

such that P0(x, y) = true holds P1(x, y, A) = true.

(11) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Ab if and only if there exists an element y1 of the carrier
of F1 such that P1(x, y1, A) = true.

Let F1 be a non empty finite topology space, let x be an element of the
carrier of F1, and let A be a subset of the carrier of F1. The functor PA(x,A)
yielding an element of Boolean is defined as follows:
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(Def. 4) PA(x,A) =
{

true, if x ∈ A,

false, otherwise.
One can prove the following three propositions:

(12) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then PA(x,A) = true if and only if x ∈ A.

(13) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Aδi if and only if the following conditions are satisfied:

(i) there exist elements y1, y2 of the carrier of F1 such that P1(x, y1, A) =
true and P2(x, y2, A) = true, and

(ii) PA(x,A) = true.

(14) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Aδo if and only if the following conditions are satisfied:

(i) there exist elements y1, y2 of the carrier of F1 such that P1(x, y1, A) =
true and P2(x, y2, A) = true, and

(ii) PA(x,A) = false.

Let F1 be a non empty finite topology space, let x be an element of the
carrier of F1, and let y be an element of the carrier of F1. The functor Pe(x, y)
yielding an element of Boolean is defined by:

(Def. 5) Pe(x, y) =
{

true, if x = y,

false, otherwise.
The following four propositions are true:

(15) For all elements x, y of the carrier of F1 holds Pe(x, y) = true iff x = y.

(16) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ As if and only if the following conditions are satisfied:

(i) PA(x,A) = true, and
(ii) it is not true that there exists an element y of the carrier of F1 such

that P1(x, y, A) = true and Pe(x, y) = false.

(17) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ An if and only if the following conditions are satisfied:

(i) PA(x,A) = true, and
(ii) there exists an element y of the carrier of F1 such that P1(x, y,A) = true

and Pe(x, y) = false.

(18) Let x be an element of the carrier of F1 and A be a subset of the carrier
of F1. Then x ∈ Af if and only if there exists an element y of the carrier
of F1 such that PA(y, A) = true and P0(y, x) = true.
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2. Formal Topological Spaces

We introduce formal topological spaces which are extensions of 1-sorted
structure and are systems
〈 a carrier, a Neighbour-map 〉,

where the carrier is a set and the Neighbour-map is a function from the carrier
into 22the carrier

.
Let us observe that there exists a formal topological space which is non

empty and strict.
In the sequel T is a non empty topological structure, F2 is a non empty

formal topological space, and x is an element of the carrier of F2.
Let us consider F2 and let x be an element of the carrier of F2. The functor

UF (x) yielding a subset of 2the carrier of F2 is defined as follows:

(Def. 6) UF (x) = (the Neighbour-map of F2)(x).
Next we state the proposition

(19) Let F2 be a non empty formal topological space and x be an element of
the carrier of F2. Then UF (x) = (the Neighbour-map of F2)(x).

Let us consider T . The functor NeighSp T yielding a non empty strict formal
topological space is defined by the conditions (Def. 7).

(Def. 7)(i) The carrier of NeighSp T = the carrier of T , and
(ii) for every point x of NeighSp T holds UF (x) = {V ;V ranges over subsets

of T : V ∈ the topology of T ∧ x ∈ V }.
In the sequel A, B, W , V denote subsets of the carrier of F2.
Let I1 be a non empty formal topological space. We say that I1 is filled if

and only if:

(Def. 8) For every element x of the carrier of I1 and for every subset D of the
carrier of I1 such that D ∈ UF (x) holds x ∈ D.

Let us consider F2 and let us consider A. The functor AFδ yielding a subset
of the carrier of F2 is defined as follows:

(Def. 9) AFδ = {x :
∧

W (W ∈ UF (x) ⇒ W ∩A 6= ∅ ∧ W ∩Ac 6= ∅)}.
The following proposition is true

(20) x ∈ AFδ iff for every W such that W ∈ UF (x) holds W ∩ A 6= ∅ and
W ∩Ac 6= ∅.

Let us consider F2 and let us consider A. The functor AFb yielding a subset
of the carrier of F2 is defined as follows:

(Def. 10) AFb = {x :
∧

W (W ∈ UF (x) ⇒ W ∩A 6= ∅)}.
One can prove the following proposition

(21) x ∈ AFb iff for every W such that W ∈ UF (x) holds W ∩A 6= ∅.
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Let us consider F2 and let us consider A. The functor AFi yielding a subset
of the carrier of F2 is defined as follows:

(Def. 11) AFi = {x :
∨

V (V ∈ UF (x) ∧ V ⊆ A)}.
Next we state the proposition

(22) x ∈ AFi iff there exists V such that V ∈ UF (x) and V ⊆ A.

Let us consider F2 and let us consider A. The functor AFs yields a subset of
the carrier of F2 and is defined by:

(Def. 12) AFs = {x : x ∈ A ∧ ∨
V (V ∈ UF (x) ∧ (V \ {x}) ∩A = ∅)}.

One can prove the following proposition

(23) x ∈ AFs iff x ∈ A and there exists V such that V ∈ UF (x) and (V \
{x}) ∩A = ∅.

Let us consider F2 and let us consider A. The functor AFon yields a subset
of the carrier of F2 and is defined by:

(Def. 13) AFon = A \AFs .

We now state a number of propositions:

(24) x ∈ AFon iff x ∈ A and for every V such that V ∈ UF (x) holds (V \
{x}) ∩A 6= ∅.

(25) Let F2 be a non empty formal topological space and A, B be subsets of
the carrier of F2. If A ⊆ B, then AFb ⊆ BFb .

(26) Let F2 be a non empty formal topological space and A, B be subsets of
the carrier of F2. If A ⊆ B, then AFi ⊆ BFi .

(27) AFb ∪BFb ⊆ A ∪BFb .

(28) A ∩BFb ⊆ AFb ∩BFb .

(29) AFi ∪BFi ⊆ A ∪BFi .

(30) A ∩BFi ⊆ AFi ∩BFi .

(31) Let F2 be a non empty formal topological space. Then the following
statements are equivalent

(i) for every element x of the carrier of F2 and for all subsets V1, V2 of the
carrier of F2 such that V1 ∈ UF (x) and V2 ∈ UF (x) there exists a subset
W of the carrier of F2 such that W ∈ UF (x) and W ⊆ V1 ∩ V2,

(ii) for all subsets A, B of the carrier of F2 holds A ∪BFb = AFb ∪BFb .

(32) Let F2 be a non empty formal topological space. Then the following
statements are equivalent

(i) for every element x of the carrier of F2 and for all subsets V1, V2 of the
carrier of F2 such that V1 ∈ UF (x) and V2 ∈ UF (x) there exists a subset
W of the carrier of F2 such that W ∈ UF (x) and W ⊆ V1 ∩ V2,

(ii) for all subsets A, B of the carrier of F2 holds AFi ∩BFi = A ∩BFi .

(33) Let F2 be a non empty formal topological space and A, B be subsets
of the carrier of F2. Suppose that for every element x of the carrier of
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F2 and for all subsets V1, V2 of the carrier of F2 such that V1 ∈ UF (x)
and V2 ∈ UF (x) there exists a subset W of the carrier of F2 such that
W ∈ UF (x) and W ⊆ V1 ∩ V2. Then A ∪BFδ ⊆ AFδ ∪BFδ.

(34) Let F2 be a non empty formal topological space. Suppose F2 is filled.
Suppose that for all subsets A, B of the carrier of F2 holds A ∪ BFδ =
AFδ∪BFδ. Let x be an element of the carrier of F2 and V1, V2 be subsets of
the carrier of F2. Suppose V1 ∈ UF (x) and V2 ∈ UF (x). Then there exists
a subset W of the carrier of F2 such that W ∈ UF (x) and W ⊆ V1 ∩ V2.

(35) Let x be an element of the carrier of F2 and A be a subset of the carrier
of F2. Then x ∈ AFs if and only if the following conditions are satisfied:

(i) x ∈ A, and
(ii) x /∈ A \ {x}Fb .

(36) Let F2 be a non empty formal topological space. Then F2 is filled if and
only if for every subset A of the carrier of F2 holds A ⊆ AFb .

(37) Let F2 be a non empty formal topological space. Then F2 is filled if and
only if for every subset A of the carrier of F2 holds AFi ⊆ A.

(38) (AcFb)c = AFi .

(39) (AcFi)c = AFb .

(40) AFδ = AFb ∩AcFb .

(41) AFδ = AFb ∩ (AFi)c.

(42) AFδ = AcFδ.

(43) AFδ = AFb \AFi .

Let us consider F2 and let us consider A. The functor AFδi yields a subset
of the carrier of F2 and is defined by:

(Def. 14) AFδi = A ∩AFδ.

The functor AFδo yields a subset of the carrier of F2 and is defined by:

(Def. 15) AFδo = Ac ∩AFδ.

The following proposition is true

(44) AFδ = AFδi ∪AFδo .

Let us consider F2 and let G be a subset of the carrier of F2. We say that G

is open if and only if:

(Def. 16) G = GFi .

We say that G is closed if and only if:

(Def. 17) G = GFb .

Next we state four propositions:

(45) If Ac is open, then A is closed.

(46) If Ac is closed, then A is open.
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(47) Let F2 be a non empty formal topological space and A, B be subsets of
the carrier of F2. Suppose F2 is filled. Suppose that for every element x of
the carrier of F2 holds {x} ∈ UF (x). Then A ∩BFb = AFb ∩BFb .

(48) Let F2 be a non empty formal topological space and A, B be subsets of
the carrier of F2. Suppose F2 is filled. Suppose that for every element x of
the carrier of F2 holds {x} ∈ UF (x). Then AFi ∪BFi = A ∪BFi .
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The terminology and notation used in this paper are introduced in the following
articles: [20], [25], [2], [7], [18], [21], [8], [3], [4], [16], [13], [23], [14], [17], [5], [11],
[12], [1], [19], [6], [10], [15], [22], [24], and [9].

We adopt the following convention: C denotes a simple closed curve, i, j, n

denote natural numbers, and p denotes a point of E2
T.

The following propositions are true:

(1) BDD C is Bounded.

(2) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i + 1, j〉〉 ∈ the
indices of Gauge(C, n), then ρ((Gauge(C, n))1,1, (Gauge(C, n))2,1) =
|((Gauge(C, n))i+1,j)1 − ((Gauge(C, n))i,j)1|.

(3) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i, j + 1〉〉 ∈ the
indices of Gauge(C, n), then ρ((Gauge(C, n))1,1, (Gauge(C, n))1,2) =
|((Gauge(C, n))i,j+1)2 − ((Gauge(C, n))i,j)2|.

(4) For every subset S of E2
T such that S is Bounded holds (proj1)◦S is

bounded.

(5) Let C1 be a non empty compact subset of E2
T and C2, S be non empty

subsets of E2
T. If S = C1 ∪ C2 and (proj1)◦C2 is non empty and lower

bounded, then W-bound S = min(W-bound C1, W-bound C2).
(6) For every subset X of E2

T such that p ∈ X and X is Bounded holds
W-bound X ¬ p1 and p1 ¬ E-bound X and S-bound X ¬ p2 and p2 ¬
N-bound X.

(7) p ∈WestHalfline p and p ∈ EastHalfline p.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(8) WestHalfline p is non Bounded.

(9) EastHalfline p is non Bounded.

(10) NorthHalfline p is non Bounded.

(11) SouthHalfline p is non Bounded.

(12) If UBD C 6= ∅, then UBD C is a component of Cc.

(13) For every connected subset W1 of E2
T such that W1 is non Bounded and

W1 ∩ C = ∅ holds W1 ⊆ UBD C.

(14) For every point p of E2
T such that WestHalfline p ∩ C = ∅ holds

WestHalfline p ⊆ UBD C.

(15) For every point p of E2
T such that EastHalfline p ∩ C = ∅ holds

EastHalfline p ⊆ UBD C.

(16) For every point p of E2
T such that SouthHalfline p ∩ C = ∅ holds

SouthHalfline p ⊆ UBD C.

(17) For every point p of E2
T such that NorthHalfline p ∩ C = ∅ holds

NorthHalfline p ⊆ UBD C.

(18) If BDD C 6= ∅, then W-bound C ¬W-bound BDD C.

(19) If BDD C 6= ∅, then E-bound C  E-bound BDD C.

(20) If BDD C 6= ∅, then S-bound C ¬ S-bound BDD C.

(21) If BDD C 6= ∅, then N-bound C  N-bound BDD C.

(22) For every integer I such that p ∈ BDD C and I = b p1−W-bound C
E-bound C−W-bound C ·

2n + 2c holds 1 < I.

(23) For every integer I such that p ∈ BDD C and I = b p1−W-bound C
E-bound C−W-bound C ·

2n + 2c holds I + 1 ¬ len Gauge(C, n).

(24) For every integer J such that p ∈ BDD C and J = b p2−S-bound C
N-bound C−S-bound C ·

2n + 2c holds 1 < J and J + 1 ¬ width Gauge(C, n).

(25) For every integer I such that I = b p1−W-bound C
E-bound C−W-bound C · 2n + 2c holds

W-bound C + E-bound C−W-bound C
2n · (I − 2) ¬ p1.

(26) For every integer I such that I = b p1−W-bound C
E-bound C−W-bound C · 2n + 2c holds

p1 < W-bound C + E-bound C−W-bound C
2n · (I − 1).

(27) For every integer J such that J = b p2−S-bound C
N-bound C−S-bound C · 2n + 2c holds

S-bound C + N-bound C−S-bound C
2n · (J − 2) ¬ p2.

(28) For every integer J such that J = b p2−S-bound C
N-bound C−S-bound C · 2n + 2c holds

p2 < S-bound C + N-bound C−S-bound C
2n · (J − 1).

(29) Let C be a closed subset of E2
T and p be a point of E2. If p ∈ BDD C,

then there exists a real number r such that r > 0 and Ball(p, r) ⊆ BDD C.

(30) Let p, q be points of E2
T and r be a real number. Suppose

ρ((Gauge(C, n))1,1, (Gauge(C, n))1,2) < r and ρ((Gauge(C, n))1,1,
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(Gauge(C, n))2,1) < r and p ∈ cell(Gauge(C, n), i, j) and q ∈
cell(Gauge(C, n), i, j) and 1 ¬ i and i + 1 ¬ len Gauge(C, n) and 1 ¬ j

and j + 1 ¬ width Gauge(C, n). Then ρ(p, q) < 2 · r.
(31) If p ∈ BDD C, then p2 6= N-bound BDD C.

(32) If p ∈ BDD C, then p1 6= E-bound BDD C.

(33) If p ∈ BDD C, then p2 6= S-bound BDD C.

(34) If p ∈ BDD C, then p1 6= W-bound BDD C.

(35) Suppose p ∈ BDD C. Then there exist natural numbers n, i, j such that
1 < i and i < len Gauge(C, n) and 1 < j and j < width Gauge(C, n)
and p1 6= ((Gauge(C, n))i,j)1 and p ∈ cell(Gauge(C, n), i, j) and
cell(Gauge(C, n), i, j) ⊆ BDD C.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65–69, 1991.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Simple closed
curves. Formalized Mathematics, 2(5):663–664, 1991.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[13] Artur Korniłowicz. Properties of left and right components. Formalized Mathematics,
8(1):163–168, 1999.

[14] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges
and cages. Part I. Formalized Mathematics, 9(3):501–509, 2001.

[15] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[17] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.

[18] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[20] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.



548 adam grabowski et al.

[22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.

Received October 13, 2000



FORMALIZED MATHEMATICS

Volume 9, Number 3, 2001
University of Białystok

Again on the Order on a Special Polygon1

Andrzej Trybulec
University of Białystok

Yatsuka Nakamura
Shinshu University

Nagano

MML Identifier: SPRECT 5.

The terminology and notation used in this paper have been introduced in the
following articles: [6], [2], [14], [4], [12], [3], [11], [1], [5], [8], [16], [10], [9], [13],
[15], and [7].

1. Preliminaries

For simplicity, we use the following convention: D denotes a non empty set,
f denotes a finite sequence of elements of D, g denotes a circular finite sequence
of elements of D, and p, p1, p2, p3, q denote elements of D.

We now state several propositions:

(1) If q ∈ rng(f¹p " f), then q " f ¬ p " f.

(2) If p ∈ rng f and q ∈ rng f and p " f ¬ q " f, then q " (f :− p) =
(q " f − p " f) + 1.

(3) If p ∈ rng f and q ∈ rng f and p " f < q " f, then p " (f −: q) = p "
f.

(4) If p ∈ rng f and q ∈ rng f and p " f ¬ q " f, then q " (fp
ª) = (q "

f − p " f) + 1.
(5) If p1 ∈ rng f and p2 ∈ rng f and p3 ∈ rng f and p1 " f ¬ p2 " f and

p2 " f < p3 " f, then p2 " (fp1
ª ) < p3 " (fp1

ª ).
(6) If p1 ∈ rng f and p2 ∈ rng f and p3 ∈ rng f and p1 " f < p2 " f and

p2 " f ¬ p3 " f, then p2 " (fp1
ª ) ¬ p3 " (fp1

ª ).
(7) If p ∈ rng g and len g > 1, then p " g < len g.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

549
c© 2001 University of Białystok

ISSN 1426–2630



550 andrzej trybulec and yatsuka nakamura

2. Ordering of Special Points on a Standard Special Sequence

We adopt the following rules: f denotes a non constant standard special
circular sequence and p, p1, p2, p3, q denote points of E2

T.
The following propositions are true:

(8) fº1 is one-to-one.

(9) If 1 < q " f and q ∈ rng f, then (π1f) " (f q
ª) = (len f + 1)− q " f.

(10) If p ∈ rng f and q ∈ rng f and p " f < q " f, then p " (f q
ª) =

(len f + p " f)− q " f.

(11) If p1 ∈ rng f and p2 ∈ rng f and p3 ∈ rng f and p1 " f < p2 " f and
p2 " f < p3 " f, then p3 " (fp2

ª ) < p1 " (fp2
ª ).

(12) If p1 ∈ rng f and p2 ∈ rng f and p3 ∈ rng f and p1 " f < p2 " f and
p2 " f < p3 " f, then p1 " (fp3

ª ) < p2 " (fp3
ª ).

(13) If p1 ∈ rng f and p2 ∈ rng f and p3 ∈ rng f and p1 " f ¬ p2 " f and
p2 " f < p3 " f, then p1 " (fp3

ª ) ¬ p2 " (fp3
ª ).

(14) (S-min L̃(f)) " f < len f.

(15) (S-max L̃(f)) " f < len f.

(16) (E-min L̃(f)) " f < len f.

(17) (E-max L̃(f)) " f < len f.

(18) (N-min L̃(f)) " f < len f.

(19) (N-max L̃(f)) " f < len f.

(20) (W-max L̃(f)) " f < len f.

(21) (W-min L̃(f)) " f < len f.

3. Ordering of Special Points on a Clockwise Oriented Sequence

In the sequel z is a clockwise oriented non constant standard special circular
sequence.

Next we state a number of propositions:

(22) If π1f = W-min L̃(f), then (W-min L̃(f)) " f < (W-max L̃(f)) " f.

(23) If π1f = W-min L̃(f), then (W-max L̃(f)) " f > 1.

(24) If π1z = W-min L̃(z) and W-max L̃(z) 6= N-min L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(25) If π1z = W-min L̃(z), then (N-min L̃(z)) " z < (N-max L̃(z)) " z.

(26) If π1z = W-min L̃(z) and N-max L̃(z) 6= E-max L̃(z), then
(N-max L̃(z)) " z < (E-max L̃(z)) " z.
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(27) If π1z = W-min L̃(z), then (E-max L̃(z)) " z < (E-min L̃(z)) " z.

(28) If π1z = W-min L̃(z) and E-min L̃(z) 6= S-max L̃(z), then
(E-min L̃(z)) " z < (S-max L̃(z)) " z.

(29) If π1z = W-min L̃(z) and S-min L̃(z) 6= W-min L̃(z), then
(S-max L̃(z)) " z < (S-min L̃(z)) " z.

(30) If π1f = S-max L̃(f), then (S-max L̃(f)) " f < (S-min L̃(f)) " f.

(31) If π1f = S-max L̃(f), then (S-min L̃(f)) " f > 1.

(32) If π1z = S-max L̃(z) and S-min L̃(z) 6= W-min L̃(z), then
(S-min L̃(z)) " z < (W-min L̃(z)) " z.

(33) If π1z = S-max L̃(z), then (W-min L̃(z)) " z < (W-max L̃(z)) " z.

(34) If π1z = S-max L̃(z) and W-max L̃(z) 6= N-min L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(35) If π1z = S-max L̃(z), then (N-min L̃(z)) " z < (N-max L̃(z)) " z.

(36) If π1z = S-max L̃(z) and N-max L̃(z) 6= E-max L̃(z), then
(N-max L̃(z)) " z < (E-max L̃(z)) " z.

(37) If π1z = S-max L̃(z) and E-min L̃(z) 6= S-max L̃(z), then
(E-max L̃(z)) " z < (E-min L̃(z)) " z.

(38) If π1f = E-max L̃(f), then (E-max L̃(f)) " f < (E-min L̃(f)) " f.

(39) If π1f = E-max L̃(f), then (E-min L̃(f)) " f > 1.

(40) If π1z = E-max L̃(z) and S-max L̃(z) 6= E-min L̃(z), then
(E-min L̃(z)) " z < (S-max L̃(z)) " z.

(41) If π1z = E-max L̃(z), then (S-max L̃(z)) " z < (S-min L̃(z)) " z.

(42) If π1z = E-max L̃(z) and S-min L̃(z) 6= W-min L̃(z), then
(S-min L̃(z)) " z < (W-min L̃(z)) " z.

(43) If π1z = E-max L̃(z), then (W-min L̃(z)) " z < (W-max L̃(z)) " z.

(44) If π1z = E-max L̃(z) and W-max L̃(z) 6= N-min L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(45) If π1z = E-max L̃(z) and N-max L̃(z) 6= E-max L̃(z), then
(N-min L̃(z)) " z < (N-max L̃(z)) " z.

(46) If π1f = N-max L̃(f) and N-max L̃(f) 6= E-max L̃(f), then
(N-max L̃(f)) " f < (E-max L̃(f)) " f.

(47) If π1z = N-max L̃(z), then (E-max L̃(z)) " z < (E-min L̃(z)) " z.

(48) If π1z = N-max L̃(z) and E-min L̃(z) 6= S-max L̃(z), then
(E-min L̃(z)) " z < (S-max L̃(z)) " z.

(49) If π1z = N-max L̃(z), then (S-max L̃(z)) " z < (S-min L̃(z)) " z.

(50) If π1z = N-max L̃(z) and S-min L̃(z) 6= W-min L̃(z), then
(S-min L̃(z)) " z < (W-min L̃(z)) " z.

(51) If π1z = N-max L̃(z), then (W-min L̃(z)) " z < (W-max L̃(z)) " z.
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(52) If π1z = N-max L̃(z) and N-min L̃(z) 6= W-max L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(53) If π1f = E-min L̃(f) and E-min L̃(f) 6= S-max L̃(f), then
(E-min L̃(f)) " f < (S-max L̃(f)) " f.

(54) If π1z = E-min L̃(z), then (S-max L̃(z)) " z < (S-min L̃(z)) " z.

(55) If π1z = E-min L̃(z) and S-min L̃(z) 6= W-min L̃(z), then (S-min L̃(z)) "
z < (W-min L̃(z)) " z.

(56) If π1z = E-min L̃(z), then (W-min L̃(z)) " z < (W-max L̃(z)) " z.

(57) If π1z = E-min L̃(z) and W-max L̃(z) 6= N-min L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(58) If π1z = E-min L̃(z), then (N-min L̃(z)) " z < (N-max L̃(z)) " z.

(59) If π1z = E-min L̃(z) and E-max L̃(z) 6= N-max L̃(z), then
(N-max L̃(z)) " z < (E-max L̃(z)) " z.

(60) If π1f = S-min L̃(f) and S-min L̃(f) 6= W-min L̃(f), then
(S-min L̃(f)) " f < (W-min L̃(f)) " f.

(61) If π1z = S-min L̃(z), then (W-min L̃(z)) " z < (W-max L̃(z)) " z.

(62) If π1z = S-min L̃(z) and W-max L̃(z) 6= N-min L̃(z), then
(W-max L̃(z)) " z < (N-min L̃(z)) " z.

(63) If π1z = S-min L̃(z), then (N-min L̃(z)) " z < (N-max L̃(z)) " z.

(64) If π1z = S-min L̃(z) and N-max L̃(z) 6= E-max L̃(z), then
(N-max L̃(z)) " z < (E-max L̃(z)) " z.

(65) If π1z = S-min L̃(z), then (E-max L̃(z)) " z < (E-min L̃(z)) " z.

(66) If π1z = S-min L̃(z) and S-max L̃(z) 6= E-min L̃(z), then (E-min L̃(z)) "
z < (S-max L̃(z)) " z.

(67) If π1f = W-max L̃(f) and W-max L̃(f) 6= N-min L̃(f), then
(W-max L̃(f)) " f < (N-min L̃(f)) " f.

(68) If π1z = W-max L̃(z), then (N-min L̃(z)) " z < (N-max L̃(z)) " z.

(69) If π1z = W-max L̃(z) and N-max L̃(z) 6= E-max L̃(z), then
(N-max L̃(z)) " z < (E-max L̃(z)) " z.

(70) If π1z = W-max L̃(z), then (E-max L̃(z)) " z < (E-min L̃(z)) " z.

(71) If π1z = W-max L̃(z) and E-min L̃(z) 6= S-max L̃(z), then
(E-min L̃(z)) " z < (S-max L̃(z)) " z.

(72) If π1z = W-max L̃(z), then (S-max L̃(z)) " z < (S-min L̃(z)) " z.

(73) If π1z = W-max L̃(z) and W-min L̃(z) 6= S-min L̃(z), then
(S-min L̃(z)) " z < (W-min L̃(z)) " z.
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The articles [16], [7], [17], [8], [2], [15], [4], [19], [3], [6], [11], [1], [13], [5], [10],
[21], [14], [20], [18], [9], and [12] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we use the following convention: a, b, i, k, m, n are natural
numbers, r, s are real numbers, D is a non empty subset of E2

T, and C is a
compact connected non vertical non horizontal subset of E2

T.
Next we state the proposition

(1) For all sets A, B such that for every set x such that x ∈ A there exists
a set K such that K ⊆ B and x ⊆ ⋃

K holds
⋃

A ⊆ ⋃
B.

Let m be an even integer. Note that m + 2 is even.
Let m be an odd integer. Observe that m + 2 is odd.
Let m be a non empty natural number. Observe that 2m is even.
Let n be an even natural number and let m be a non empty natural number.

Note that nm is even.
We now state several propositions:

(2) If r 6= 0, then 1
r · ri+1 = ri.

(3) If r
s is an integer and s 6= 0, then −b rsc = b−r

s c+ 1.

(4) If r
s is an integer, then −b rsc = b−r

s c.
(5) If n > 0 and k mod n 6= 0, then −(k ÷ n) = (−k ÷ n) + 1.

(6) If n > 0 and k mod n = 0, then −(k ÷ n) = −k ÷ n.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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2. Gauges and Cages

We now state a number of propositions:

(7) If 2 ¬ m and m < len Gauge(D, i) and 1 ¬ a and a ¬ len Gauge(D, i)
and 1 ¬ b and b ¬ len Gauge(D, i + 1), then ((Gauge(D, i))m,a)1 =
((Gauge(D, i + 1))2·m−′2,b)1.

(8) If 2 ¬ n and n < len Gauge(D, i) and 1 ¬ a and a ¬ len Gauge(D, i)
and 1 ¬ b and b ¬ len Gauge(D, i + 1), then ((Gauge(D, i))a,n)2 =
((Gauge(D, i + 1))b,2·n−′2)2.

(9) Let D be a compact non vertical non horizontal subset of E2
T. Suppose

2 ¬ m and m+1 < len Gauge(D, i) and 2 ¬ n and n+1 < len Gauge(D, i).
Then cell(Gauge(D, i),m, n) = cell(Gauge(D, i + 1), 2 ·m−′ 2, 2 ·n−′ 2)∪
cell(Gauge(D, i + 1), 2 ·m −′ 1, 2 · n −′ 2) ∪ cell(Gauge(D, i + 1), 2 ·m −′
2, 2 · n−′ 1) ∪ cell(Gauge(D, i + 1), 2 ·m−′ 1, 2 · n−′ 1).

(10) Let D be a compact non vertical non horizontal subset of E2
T and k

be a natural number. Suppose 2 ¬ m and m + 1 < len Gauge(D, i)
and 2 ¬ n and n + 1 < len Gauge(D, i). Then cell(Gauge(D, i),m, n) =⋃{cell(Gauge(D, i+k), a, b); a ranges over natural numbers, b ranges over
natural numbers: (2k ·m− 2k+1) + 2 ¬ a ∧ a ¬ (2k ·m− 2k) + 1 ∧ (2k ·
n− 2k+1) + 2 ¬ b ∧ b ¬ (2k · n− 2k) + 1}.

(11) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and N-max C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(12) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and N-max C ∈ rightcell(Cage(C, n), i).

(13) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and E-min C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(14) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and E-min C ∈ rightcell(Cage(C, n), i).

(15) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and E-max C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(16) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and E-max C ∈ rightcell(Cage(C, n), i).

(17) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and S-min C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(18) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and S-min C ∈ rightcell(Cage(C, n), i).

(19) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and S-max C ∈ right cell(Cage(C, n), i, Gauge(C, n)).
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(20) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and S-max C ∈ rightcell(Cage(C, n), i).

(21) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and W-min C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(22) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and W-min C ∈ rightcell(Cage(C, n), i).

(23) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and W-max C ∈ right cell(Cage(C, n), i, Gauge(C, n)).

(24) There exists a natural number i such that 1 ¬ i and i < len Cage(C, n)
and W-max C ∈ rightcell(Cage(C, n), i).

(25) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and N-min L̃(Cage(C, n)) = (Gauge(C, n))i,width Gauge(C,n).

(26) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and N-max L̃(Cage(C, n)) = (Gauge(C, n))i,width Gauge(C,n).

(27) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and (Gauge(C, n))i,width Gauge(C,n) ∈ rng Cage(C, n).

(28) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and E-min L̃(Cage(C, n)) = (Gauge(C, n))len Gauge(C,n),j .

(29) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and E-max L̃(Cage(C, n)) = (Gauge(C, n))len Gauge(C,n),j .

(30) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and (Gauge(C, n))len Gauge(C,n),j ∈ rng Cage(C, n).

(31) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and S-min L̃(Cage(C, n)) = (Gauge(C, n))i,1.

(32) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and S-max L̃(Cage(C, n)) = (Gauge(C, n))i,1.

(33) There exists a natural number i such that 1 ¬ i and i ¬ len Gauge(C, n)
and (Gauge(C, n))i,1 ∈ rng Cage(C, n).

(34) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and W-min L̃(Cage(C, n)) = (Gauge(C, n))1,j .

(35) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and W-max L̃(Cage(C, n)) = (Gauge(C, n))1,j .

(36) There exists a natural number j such that 1 ¬ j and j ¬
width Gauge(C, n) and (Gauge(C, n))1,j ∈ rng Cage(C, n).
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The articles [5], [7], [2], [3], [8], [1], [6], [11], [9], [10], and [4] provide the termi-
nology and notation for this paper.

1. Preliminaries

Let L be a non empty loop structure. We say that L is add-left-cancelable
if and only if:

(Def. 1) For all elements a, b, c of L such that a + b = a + c holds b = c.

We say that L is add-right-cancelable if and only if:

(Def. 2) For all elements a, b, c of L such that b + a = c + a holds b = c.

We say that L is add-cancelable if and only if:

(Def. 3) For all elements a, b, c of L holds if a + b = a + c, then b = c and if
b + a = c + a, then b = c.

One can check the following observations:

∗ there exists a non empty loop structure which is add-left-cancelable,

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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∗ there exists a non empty loop structure which is add-right-cancelable,
and

∗ there exists a non empty loop structure which is add-cancelable.

Let us note that every non empty loop structure which is add-left-cancelable
and add-right-cancelable is also add-cancelable and every non empty loop struc-
ture which is add-cancelable is also add-left-cancelable and add-right-cancelable.

One can verify that every non empty loop structure which is Abelian and
add-right-cancelable is also add-left-cancelable and every non empty loop struc-
ture which is Abelian and add-left-cancelable is also add-right-cancelable.

Let us observe that every non empty loop structure which is right zeroed,
right complementable, and add-associative is also add-right-cancelable.

Let us observe that there exists a non empty double loop structure which
is Abelian, add-associative, left zeroed, right zeroed, commutative, associative,
add-cancelable, distributive, and unital.

We now state two propositions:

(1) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure and a be an element of R. Then 0R · a = 0R.

(2) Let R be a left zeroed add-right-cancelable right distributive non empty
double loop structure and a be an element of R. Then a · 0R = 0R.

In this article we present several logical schemes. The scheme Ind2 deals
with a natural number A and a unary predicate P, and states that:

For every natural number i such that A ¬ i holds P[i]
provided the following conditions are satisfied:
• P[A], and
• For every natural number j such that A ¬ j holds if P[j], then
P[j + 1].

The scheme RecDef1 deals with a non empty set A, an element B of A, and
a binary operation C on A, and states that:

There exists a function g from [:N, A :] into A such that for every
element a of A holds

g(0, a) = B and for every natural number n holds g(n + 1,
a) = C(a, g(n, a))

for all values of the parameters.
The scheme RecDef2 deals with a non empty set A, an element B of A, and

a binary operation C on A, and states that:
There exists a function g from [:A, N :] into A such that for every
element a of A holds

g(a, 0) = B and for every natural number n holds g(a, n+1) =
C(g(a, n), a)

for all values of the parameters.
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2. On Finite Sequences

One can prove the following propositions:

(3) For every left zeroed non empty loop structure L and for every element
a of L holds

∑〈a〉 = a.

(4) Let R be a left zeroed add-right-cancelable right distributive non empty
double loop structure, a be an element of R, and p be a finite sequence of
elements of the carrier of R. Then

∑
(a · p) = a ·∑ p.

(5) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure, a be an element of R, and p be a finite sequence of
elements of the carrier of R. Then

∑
(p · a) =

∑
p · a.

(6) Let R be a commutative non empty double loop structure, a be an
element of R, and p be a finite sequence of elements of the carrier of R.
Then

∑
(p · a) =

∑
(a · p).

Let R be a non empty loop structure and let p, q be finite sequences of
elements of the carrier of R. Let us assume that dom p = dom q. The functor
p + q yields a finite sequence of elements of the carrier of R and is defined by:

(Def. 4) dom(p + q) = dom p and for every natural number i such that 1 ¬ i and
i ¬ len(p + q) holds (p + q)i = pi + qi.

The following proposition is true

(7) Let R be an Abelian right zeroed add-associative non empty loop struc-
ture and p, q be finite sequences of elements of the carrier of R. If
dom p = dom q, then

∑
(p + q) =

∑
p +

∑
q.

3. On Powers in Rings

Let R be a unital non empty groupoid, let a be an element of R, and let
n be a natural number. The functor an yielding an element of R is defined as
follows:

(Def. 5) an = powerR(a, n).
We now state several propositions:

(8) For every unital non empty groupoid R and for every element a of R

holds a0 = 1R and a1 = a.

(9) For every unital non empty groupoid R and for every element a of R

and for every natural number n holds an+1 = an · a.

(10) Let R be a unital associative commutative non empty groupoid, a, b be
elements of R, and n be a natural number. Then (a · b)n = an · bn.
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(11) Let R be a unital associative non empty groupoid, a be an element of
R, and n, m be natural numbers. Then an+m = an · am.

(12) Let R be a unital associative non empty groupoid, a be an element of
R, and n, m be natural numbers. Then (an)m = an·m.

4. On Natural Products in Rings

Let R be a non empty loop structure. The functor Nat-mult-left R yielding
a function from [:N, the carrier of R :] into the carrier of R is defined by:

(Def. 6) For every element a of R holds (Nat-mult-left R)(0, a) = 0R and
for every natural number n holds (Nat-mult-left R)(n + 1, a) = a +
(Nat-mult-left R)(n, a).

The functor Nat-mult-right R yields a function from [: the carrier of R, N :] into
the carrier of R and is defined by:

(Def. 7) For every element a of R holds (Nat-mult-right R)(a, 0) = 0R and
for every natural number n holds (Nat-mult-right R)(a, n + 1) =
(Nat-mult-right R)(a, n) + a.

Let R be a non empty loop structure, let a be an element of R, and let n be
a natural number. The functor n · a yields an element of R and is defined by:

(Def. 8) n · a = (Nat-mult-left R)(n, a).
The functor a · n yields an element of R and is defined as follows:

(Def. 9) a · n = (Nat-mult-right R)(a, n).
One can prove the following propositions:

(13) For every non empty loop structure R and for every element a of R holds
0 · a = 0R and a · 0 = 0R.

(14) For every right zeroed non empty loop structure R and for every element
a of R holds 1 · a = a.

(15) For every left zeroed non empty loop structure R and for every element
a of R holds a · 1 = a.

(16) Let R be a left zeroed add-associative non empty loop structure, a be an
element of R, and n, m be natural numbers. Then (n+m) ·a = n ·a+m ·a.

(17) Let R be a right zeroed add-associative non empty loop structure, a be an
element of R, and n, m be natural numbers. Then a ·(n+m) = a ·n+a ·m.

(18) Let R be a left zeroed right zeroed add-associative non empty loop struc-
ture, a be an element of R, and n be a natural number. Then n · a = a ·n.

(19) Let R be an Abelian non empty loop structure, a be an element of R,
and n be a natural number. Then n · a = a · n.
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(20) Let R be a left zeroed right zeroed add-left-cancelable add-associative
left distributive non empty double loop structure, a, b be elements of R,
and n be a natural number. Then (n · a) · b = n · (a · b).

(21) Let R be a left zeroed right zeroed add-right-cancelable add-associative
distributive non empty double loop structure, a, b be elements of R, and
n be a natural number. Then b · (n · a) = (b · a) · n.

(22) Let R be a left zeroed right zeroed add-associative add-cancelable distri-
butive non empty double loop structure, a, b be elements of R, and n be
a natural number. Then (a · n) · b = a · (n · b).

5. The Binomial Theorem

Let k, n be natural numbers. Then
(
n
k

)
is a natural number.

Let R be a unital non empty double loop structure, let a, b be elements of
R, and let n be a natural number. The functor 〈(n

0

)
a0bn, . . . ,

(
n
n

)
anb0〉 yields a

finite sequence of elements of the carrier of R and is defined by the conditions
(Def. 10).

(Def. 10)(i) len〈(n
0

)
a0bn, . . . ,

(
n
n

)
anb0〉 = n + 1, and

(ii) for all natural numbers i, l, m such that i ∈ dom〈(n
0

)
a0bn, . . . ,

(
n
n

)
anb0〉

and m = i− 1 and l = n−m holds 〈(n
0

)
a0bn, . . . ,

(
n
n

)
anb0〉i =

(
n
m

) · al · bm.

The following four propositions are true:

(23) For every right zeroed unital non empty double loop structure R and for
all elements a, b of R holds 〈(0

0

)
a0b0, . . . ,

(
0
0

)
a0b0〉 = 〈1R〉.

(24) Let R be a right zeroed unital non empty double loop struc-
ture, a, b be elements of R, and n be a natural number. Then
〈(n

0

)
a0bn, . . . ,

(
n
n

)
anb0〉(1) = an.

(25) Let R be a right zeroed unital non empty double loop structure, a, b be
elements of R, and n be a natural number. Then 〈(n

0

)
a0bn, . . . ,

(
n
n

)
anb0〉(n+

1) = bn.

(26) Let R be an Abelian add-associative left zeroed right zeroed commu-
tative associative add-cancelable distributive unital non empty double
loop structure, a, b be elements of R, and n be a natural number. Then
(a + b)n =

∑〈(n
0

)
a0bn, . . . ,

(
n
n

)
anb0〉.
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1. Preliminaries

Let us note that there exists a non empty loop structure which is add-
associative, left zeroed, and right zeroed.

Let us observe that there exists a non empty double loop structure which is
Abelian, left zeroed, right zeroed, add-cancelable, well unital, add-associative,
associative, commutative, distributive, and non trivial.

One can prove the following proposition
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(1) Let V be an add-associative left zeroed right zeroed non empty loop
structure and v, u be elements of V . Then

∑〈v, u〉 = v + u.

2. Ideals

Let L be a non empty loop structure and let F be a subset of L. We say
that F is add closed if and only if:

(Def. 1) For all elements x, y of the carrier of L such that x ∈ F and y ∈ F holds
x + y ∈ F.

Let L be a non empty groupoid and let F be a subset of L. We say that F

is left ideal if and only if:

(Def. 2) For all elements p, x of the carrier of L such that x ∈ F holds p · x ∈ F.

We say that F is right ideal if and only if:

(Def. 3) For all elements p, x of the carrier of L such that x ∈ F holds x · p ∈ F.

Let L be a non empty loop structure. Observe that there exists a non empty
subset of L which is add closed.

Let L be a non empty groupoid. One can verify that there exists a non empty
subset of L which is left ideal and there exists a non empty subset of L which
is right ideal.

Let L be a non empty double loop structure. One can verify the following
observations:

∗ there exists a non empty subset of L which is add closed, left ideal, and
right ideal,

∗ there exists a non empty subset of L which is add closed and right ideal,
and

∗ there exists a non empty subset of L which is add closed and left ideal.

Let R be a commutative non empty groupoid. Observe that every non empty
subset of R which is left ideal is also right ideal and every non empty subset of
R which is right ideal is also left ideal.

Let L be a non empty double loop structure. An ideal of L is an add closed
left ideal right ideal non empty subset of L.

Let L be a non empty double loop structure. A right ideal of L is an add
closed right ideal non empty subset of L.

Let L be a non empty double loop structure. A left ideal of L is an add
closed left ideal non empty subset of L.

The following propositions are true:

(2) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure and I be a left ideal non empty subset of R. Then
0R ∈ I.
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(3) Let R be a left zeroed add-right-cancelable right distributive non empty
double loop structure and I be a right ideal non empty subset of R. Then
0R ∈ I.

(4) For every right zeroed non empty double loop structure L holds {0L} is
add closed.

(5) Let L be a left zeroed add-right-cancelable right distributive non empty
double loop structure. Then {0L} is left ideal.

(6) Let L be a right zeroed add-left-cancelable left distributive non empty
double loop structure. Then {0L} is right ideal.

(7) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure. Then {0L} is an ideal of L.

(8) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure. Then {0L} is a left ideal of
L.

(9) Let L be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure. Then {0L} is a right ideal of
L.

(10) For every non empty double loop structure L holds the carrier of L is
an ideal of L.

(11) For every non empty double loop structure L holds the carrier of L is a
left ideal of L.

(12) For every non empty double loop structure L holds the carrier of L is a
right ideal of L.

Let R be a left zeroed right zeroed add-cancelable distributive non empty
double loop structure and let I be an ideal of R. Let us observe that I is trivial
if and only if:

(Def. 4) I = {0R}.
Let S be a 1-sorted structure and let T be a subset of S. We say that T is

proper if and only if:

(Def. 5) T 6= the carrier of S.

Let S be a non empty 1-sorted structure. Note that there exists a subset of
S which is proper.

Let R be a non trivial left zeroed right zeroed add-cancelable distributive
non empty double loop structure. One can check that there exists an ideal of R

which is proper.
The following propositions are true:

(13) Let L be an add-associative right zeroed right complementable left di-
stributive left unital non empty double loop structure, I be a left ideal
non empty subset of L, and x be an element of the carrier of L. If x ∈ I,

then −x ∈ I.
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(14) Let L be an add-associative right zeroed right complementable right
distributive right unital non empty double loop structure, I be a right
ideal non empty subset of L, and x be an element of the carrier of L. If
x ∈ I, then −x ∈ I.

(15) Let L be an add-associative right zeroed right complementable left di-
stributive left unital non empty double loop structure, I be a left ideal
of L, and x, y be elements of the carrier of L. If x ∈ I and y ∈ I, then
x− y ∈ I.

(16) Let L be an add-associative right zeroed right complementable right
distributive right unital non empty double loop structure, I be a right
ideal of L, and x, y be elements of the carrier of L. If x ∈ I and y ∈ I,

then x− y ∈ I.

(17) Let R be a left zeroed right zeroed add-cancelable add-associative di-
stributive non empty double loop structure, I be an add closed right ideal
non empty subset of R, a be an element of I, and n be a natural number.
Then n · a ∈ I.

(18) Let R be a unital left zeroed right zeroed add-cancelable associative
distributive non empty double loop structure, I be a right ideal non empty
subset of R, a be an element of I, and n be a natural number. If n 6= 0,

then an ∈ I.

Let R be a non empty loop structure and let I be an add closed non empty
subset of R. The functor add |(I, R) yielding a binary operation on I is defined
as follows:

(Def. 6) add |(I,R) = (the addition of R)¹[: I, I :].
Let R be a non empty groupoid and let I be a right ideal non empty subset

of R. The functor mult |(I, R) yielding a binary operation on I is defined as
follows:

(Def. 7) mult |(I, R) = (the multiplication of R)¹[: I, I :].
Let R be a non empty loop structure and let I be an add closed non empty

subset of R. The functor Gr(I,R) yields a non empty loop structure and is
defined by:

(Def. 8) Gr(I,R) = 〈I, add |(I, R), 0R(∈ I)〉.
Let R be a left zeroed right zeroed add-cancelable add-associative distribu-

tive non empty double loop structure and let I be an add closed non empty
subset of R. Note that Gr(I,R) is add-associative.

Let R be a left zeroed right zeroed add-cancelable add-associative distribu-
tive non empty double loop structure and let I be an add closed right ideal non
empty subset of R. Observe that Gr(I, R) is right zeroed.

Let R be an Abelian non empty double loop structure and let I be an add
closed non empty subset of R. Observe that Gr(I, R) is Abelian.
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Let R be an Abelian right unital left zeroed right zeroed right complemen-
table add-associative distributive non empty double loop structure and let I be
an add closed right ideal non empty subset of R. Note that Gr(I, R) is right
complementable.

We now state four propositions:

(19) Let R be a right unital non empty double loop structure and I be a left
ideal non empty subset of R. Then I is proper if and only if 1R /∈ I.

(20) Let R be a left unital right unital non empty double loop structure and
I be a right ideal non empty subset of R. Then I is proper if and only if
for every element u of R such that u is unital holds u /∈ I.

(21) Let R be a right unital non empty double loop structure and I be a left
ideal right ideal non empty subset of R. Then I is proper if and only if for
every element u of R such that u is unital holds u /∈ I.

(22) Let R be a non degenerated commutative ring. Then R is a field if and
only if for every ideal I of R holds I = {0R} or I = the carrier of R.

3. Linear Combinations

Let R be a non empty multiplicative loop structure and let A be a non empty
subset of the carrier of R. A finite sequence of elements of the carrier of R is
said to be a linear combination of A if:

(Def. 9) For every set i such that i ∈ dom it there exist elements u, v of R and
there exists an element a of A such that iti = u · a · v.

A finite sequence of elements of the carrier of R is said to be a left linear
combination of A if:

(Def. 10) For every set i such that i ∈ dom it there exists an element u of R and
there exists an element a of A such that iti = u · a.

A finite sequence of elements of the carrier of R is said to be a right linear
combination of A if:

(Def. 11) For every set i such that i ∈ dom it there exists an element u of R and
there exists an element a of A such that iti = a · u.

Let R be a non empty multiplicative loop structure and let A be a non empty
subset of the carrier of R. One can verify the following observations:

∗ there exists a linear combination of A which is non empty,

∗ there exists a left linear combination of A which is non empty, and

∗ there exists a right linear combination of A which is non empty.

Let R be a non empty multiplicative loop structure, let A, B be non empty
subsets of the carrier of R, let F be a linear combination of A, and let G be a
linear combination of B. Then F a G is a linear combination of A ∪B.
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One can prove the following three propositions:

(23) Let R be an associative non empty multiplicative loop structure, A be a
non empty subset of the carrier of R, a be an element of the carrier of R,
and F be a linear combination of A. Then a ·F is a linear combination of
A.

(24) Let R be an associative non empty multiplicative loop structure, A be a
non empty subset of the carrier of R, a be an element of the carrier of R,
and F be a linear combination of A. Then F · a is a linear combination of
A.

(25) Let R be a right unital non empty multiplicative loop structure and A be
a non empty subset of the carrier of R. Then every left linear combination
of A is a linear combination of A.

Let R be a non empty multiplicative loop structure, let A, B be non empty
subsets of the carrier of R, let F be a left linear combination of A, and let G be
a left linear combination of B. Then F a G is a left linear combination of A∪B.

One can prove the following three propositions:

(26) Let R be an associative non empty multiplicative loop structure, A be
a non empty subset of the carrier of R, a be an element of the carrier of
R, and F be a left linear combination of A. Then a · F is a left linear
combination of A.

(27) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, a be an element of the carrier of R, and F be
a left linear combination of A. Then F · a is a linear combination of A.

(28) Let R be a left unital non empty multiplicative loop structure and A be a
non empty subset of the carrier of R. Then every right linear combination
of A is a linear combination of A.

Let R be a non empty multiplicative loop structure, let A, B be non empty
subsets of the carrier of R, let F be a right linear combination of A, and let G

be a right linear combination of B. Then F a G is a right linear combination of
A ∪B.

Next we state several propositions:

(29) Let R be an associative non empty multiplicative loop structure, A be
a non empty subset of the carrier of R, a be an element of the carrier of
R, and F be a right linear combination of A. Then F · a is a right linear
combination of A.

(30) Let R be an associative non empty multiplicative loop structure, A be
a non empty subset of the carrier of R, a be an element of the carrier
of R, and F be a right linear combination of A. Then a · F is a linear
combination of A.

(31) Let R be a commutative associative non empty multiplicative loop struc-
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ture and A be a non empty subset of the carrier of R. Then every linear
combination of A is a left linear combination of A and a right linear com-
bination of A.

(32) Let S be a non empty double loop structure, F be a non empty subset
of the carrier of S, and l1 be a non empty linear combination of F . Then
there exists a linear combination p of F and there exists an element e of
the carrier of S such that l1 = p a 〈e〉 and 〈e〉 is a linear combination of
F .

(33) Let S be a non empty double loop structure, F be a non empty subset of
the carrier of S, and l1 be a non empty left linear combination of F . Then
there exists a left linear combination p of F and there exists an element e

of the carrier of S such that l1 = pa 〈e〉 and 〈e〉 is a left linear combination
of F .

(34) Let S be a non empty double loop structure, F be a non empty subset
of the carrier of S, and l1 be a non empty right linear combination of F .
Then there exists a right linear combination p of F and there exists an
element e of the carrier of S such that l1 = p a 〈e〉 and 〈e〉 is a right linear
combination of F .

Let R be a non empty multiplicative loop structure, let A be a non empty
subset of the carrier of R, let L be a linear combination of A, and let E be a
finite sequence of elements of [: the carrier of R, the carrier of R, the carrier of
R :]. We say that E represents L if and only if:

(Def. 12) len E = len L and for every set i such that i ∈ dom L holds L(i) =
(Ei)1 · (Ei)2 · (Ei)3 and (Ei)2 ∈ A.

The following propositions are true:

(35) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, and L be a linear combination of A. Then there
exists a finite sequence E of elements of [: the carrier of R, the carrier of
R, the carrier of R :] such that E represents L.

(36) Let R, S be non empty multiplicative loop structures, F be a non empty
subset of the carrier of R, l1 be a linear combination of F , G be a non
empty subset of the carrier of S, P be a function from the carrier of
R into the carrier of S, and E be a finite sequence of elements of [: the
carrier of R, the carrier of R, the carrier of R :]. Suppose P ◦F ⊆ G and
E represents l1. Then there exists a linear combination L1 of G such that
len l1 = len L1 and for every set i such that i ∈ dom L1 holds L1(i) =
P ((Ei)1) · P ((Ei)2) · P ((Ei)3).

Let R be a non empty multiplicative loop structure, let A be a non empty
subset of the carrier of R, let L be a left linear combination of A, and let E be a
finite sequence of elements of [: the carrier of R, the carrier of R :]. We say that
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E represents L if and only if:

(Def. 13) len E = len L and for every set i such that i ∈ dom L holds L(i) =
(Ei)1 · (Ei)2 and (Ei)2 ∈ A.

One can prove the following two propositions:

(37) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, and L be a left linear combination of A. Then
there exists a finite sequence E of elements of [: the carrier of R, the carrier
of R :] such that E represents L.

(38) Let R, S be non empty multiplicative loop structures, F be a non empty
subset of the carrier of R, l1 be a left linear combination of F , G be a non
empty subset of the carrier of S, P be a function from the carrier of R into
the carrier of S, and E be a finite sequence of elements of [: the carrier of
R, the carrier of R :]. Suppose P ◦F ⊆ G and E represents l1. Then there
exists a left linear combination L1 of G such that len l1 = len L1 and for
every set i such that i ∈ dom L1 holds L1(i) = P ((Ei)1) · P ((Ei)2).

Let R be a non empty multiplicative loop structure, let A be a non empty
subset of the carrier of R, let L be a right linear combination of A, and let E

be a finite sequence of elements of [: the carrier of R, the carrier of R :]. We say
that E represents L if and only if:

(Def. 14) len E = len L and for every set i such that i ∈ dom L holds L(i) =
(Ei)1 · (Ei)2 and (Ei)1 ∈ A.

One can prove the following propositions:

(39) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, and L be a right linear combination of A. Then
there exists a finite sequence E of elements of [: the carrier of R, the carrier
of R :] such that E represents L.

(40) Let R, S be non empty multiplicative loop structures, F be a non empty
subset of the carrier of R, l1 be a right linear combination of F , G be a non
empty subset of the carrier of S, P be a function from the carrier of R into
the carrier of S, and E be a finite sequence of elements of [: the carrier of
R, the carrier of R :]. Suppose P ◦F ⊆ G and E represents l1. Then there
exists a right linear combination L1 of G such that len l1 = len L1 and for
every set i such that i ∈ dom L1 holds L1(i) = P ((Ei)1) · P ((Ei)2).

(41) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, l be a linear combination of A, and n be a
natural number. Then l¹ Seg n is a linear combination of A.

(42) Let R be a non empty multiplicative loop structure, A be a non empty
subset of the carrier of R, l be a left linear combination of A, and n be a
natural number. Then l¹ Seg n is a left linear combination of A.

(43) Let R be a non empty multiplicative loop structure, A be a non empty
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subset of the carrier of R, l be a right linear combination of A, and n be
a natural number. Then l¹ Seg n is a right linear combination of A.

4. Generated Ideals

Let L be a non empty double loop structure and let F be a subset of the
carrier of L. Let us assume that F is non empty. The functor F–ideal yielding
an ideal of L is defined by:

(Def. 15) F ⊆ F–ideal and for every ideal I of L such that F ⊆ I holds F–ideal ⊆
I.

The functor F–left-ideal yields a left ideal of L and is defined by:

(Def. 16) F ⊆ F–left-ideal and for every left ideal I of L such that F ⊆ I holds
F–left-ideal ⊆ I.

The functor F–right-ideal yields a right ideal of L and is defined as follows:

(Def. 17) F ⊆ F–right-ideal and for every right ideal I of L such that F ⊆ I holds
F–right-ideal ⊆ I.

One can prove the following three propositions:

(44) For every non empty double loop structure L and for every ideal I of L

holds I–ideal = I.

(45) For every non empty double loop structure L and for every left ideal I

of L holds I–left-ideal = I.

(46) For every non empty double loop structure L and for every right ideal I

of L holds I–right-ideal = I.

Let L be a non empty double loop structure and let I be an ideal of L. A
non empty subset of L is said to be a basis of I if:

(Def. 18) It–ideal = I.

We now state a number of propositions:

(47) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure. Then {0L}–ideal = {0L}.

(48) For every left zeroed right zeroed add-cancelable distributive non empty
double loop structure L holds {0L}–ideal = {0L}.

(49) Let L be a left zeroed right zeroed add-right-cancelable right distributive
non empty double loop structure. Then {0L}–left-ideal = {0L}.

(50) For every right zeroed add-left-cancelable left distributive non empty
double loop structure L holds {0L}–right-ideal = {0L}.

(51) For every well unital non empty double loop structure L holds
{1L}–ideal = the carrier of L.
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(52) For every right unital non empty double loop structure L holds
{1L}–left-ideal = the carrier of L.

(53) For every left unital non empty double loop structure L holds
{1L}–right-ideal = the carrier of L.

(54) For every non empty double loop structure L holds ΩL–ideal = the
carrier of L.

(55) For every non empty double loop structure L holds ΩL–left-ideal = the
carrier of L.

(56) For every non empty double loop structure L holds ΩL–right-ideal = the
carrier of L.

(57) Let L be a non empty double loop structure and A, B be non empty
subsets of the carrier of L. If A ⊆ B, then A–ideal ⊆ B–ideal.

(58) Let L be a non empty double loop structure and A, B be non empty
subsets of the carrier of L. If A ⊆ B, then A–left-ideal ⊆ B–left-ideal.

(59) Let L be a non empty double loop structure and A, B be non empty
subsets of the carrier of L. If A ⊆ B, then A–right-ideal ⊆ B–right-ideal.

(60) Let L be an add-associative left zeroed right zeroed add-cancelable as-
sociative distributive well unital non empty double loop structure, F be a
non empty subset of the carrier of L, and x be a set. Then x ∈ F–ideal if
and only if there exists a linear combination f of F such that x =

∑
f.

(61) Let L be an add-associative left zeroed right zeroed add-cancelable asso-
ciative distributive well unital non empty double loop structure, F be a non
empty subset of the carrier of L, and x be a set. Then x ∈ F–left-ideal if
and only if there exists a left linear combination f of F such that x =

∑
f.

(62) Let L be an add-associative left zeroed right zeroed add-cancelable asso-
ciative distributive well unital non empty double loop structure, F be a non
empty subset of the carrier of L, and x be a set. Then x ∈ F–right-ideal
if and only if there exists a right linear combination f of F such that
x =

∑
f.

(63) Let R be an add-associative left zeroed right zeroed add-cancelable well
unital associative commutative distributive non empty double loop struc-
ture and F be a non empty subset of the carrier of R. Then F–ideal =
F–left-ideal and F–ideal = F–right-ideal.

(64) Let R be an add-associative left zeroed right zeroed add-cancelable well
unital associative commutative distributive non empty double loop struc-
ture and a be an element of R. Then {a}–ideal = {a · r : r ranges over
elements of R}.

(65) Let R be an Abelian left zeroed right zeroed add-cancelable well unital
add-associative associative commutative distributive non empty double
loop structure and a, b be elements of R. Then {a, b}–ideal = {a·r+b·s : r
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ranges over elements of R, s ranges over elements of R}.
(66) For every non empty double loop structure R and for every element a of

R holds a ∈ {a}–ideal.

(67) Let R be an Abelian left zeroed right zeroed right complementable add-
associative associative commutative distributive well unital non empty
double loop structure, A be a non empty subset of R, and a be an element
of R. If a ∈ A–ideal, then {a}–ideal ⊆ A–ideal.

(68) For every non empty double loop structure R and for all elements a, b

of R holds a ∈ {a, b}–ideal and b ∈ {a, b}–ideal.

(69) For every non empty double loop structure R and for all elements a, b

of R holds {a}–ideal ⊆ {a, b}–ideal and {b}–ideal ⊆ {a, b}–ideal.

5. Some Operations on Ideals

Let R be a non empty groupoid, let I be a subset of R, and let a be an
element of R. The functor a · I yielding a subset of R is defined by:

(Def. 19) a · I = {a · i; i ranges over elements of R: i ∈ I}.
Let R be a non empty multiplicative loop structure, let I be a non empty

subset of R, and let a be an element of R. Observe that a · I is non empty.
Let R be a distributive non empty double loop structure, let I be an add

closed subset of R, and let a be an element of R. Observe that a ·I is add closed.
Let R be an associative non empty double loop structure, let I be a right

ideal subset of R, and let a be an element of R. One can check that a · I is right
ideal.

One can prove the following propositions:

(70) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure and I be a non empty subset of R. Then 0R · I =
{0R}.

(71) For every left unital non empty double loop structure R and for every
subset I of R holds 1R · I = I.

Let R be a non empty loop structure and let I, J be subsets of R. The
functor I + J yielding a subset of R is defined by:

(Def. 20) I +J = {a+ b; a ranges over elements of R, b ranges over elements of R:
a ∈ I ∧ b ∈ J}.

Let R be a non empty loop structure and let I, J be non empty subsets of
R. One can check that I + J is non empty.

Let R be an Abelian non empty loop structure and let I, J be subsets of R.
Let us observe that the functor I + J is commutative.
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Let R be an Abelian add-associative non empty loop structure and let I, J

be add closed subsets of R. Note that I + J is add closed.
Let R be a left distributive non empty double loop structure and let I, J be

right ideal subsets of R. Observe that I + J is right ideal.
Let R be a right distributive non empty double loop structure and let I, J

be left ideal subsets of R. One can check that I + J is left ideal.
One can prove the following propositions:

(72) For every add-associative non empty loop structure R and for all subsets
I, J , K of R holds I + (J + K) = (I + J) + K.

(73) Let R be a left zeroed right zeroed add-right-cancelable right distributive
non empty double loop structure and I, J be right ideal non empty subsets
of R. Then I ⊆ I + J.

(74) Let R be a left zeroed add-right-cancelable right distributive non empty
double loop structure and I, J be right ideal non empty subsets of R.
Then J ⊆ I + J.

(75) Let R be a non empty loop structure, I, J be subsets of R, and K be
an add closed subset of R. If I ⊆ K and J ⊆ K, then I + J ⊆ K.

(76) Let R be an Abelian left zeroed right zeroed add-cancelable well unital
add-associative associative commutative distributive non empty double
loop structure and a, b be elements of R. Then {a, b}–ideal = {a}–ideal +
{b}–ideal.

Let R be a non empty 1-sorted structure and let I, J be subsets of R. The
functor I ∩ J yielding a subset of R is defined as follows:

(Def. 21) I ∩ J = {x;x ranges over elements of R: x ∈ I ∧ x ∈ J}.
Let R be a right zeroed add-left-cancelable left distributive non empty double

loop structure and let I, J be left ideal non empty subsets of R. Note that I ∩J

is non empty.
Let R be a non empty loop structure and let I, J be add closed subsets of

R. Note that I ∩ J is add closed.
Let R be a non empty multiplicative loop structure and let I, J be left ideal

subsets of R. Observe that I ∩ J is left ideal.
Let R be a non empty multiplicative loop structure and let I, J be right

ideal subsets of R. Note that I ∩ J is right ideal.
One can prove the following four propositions:

(77) For every non empty 1-sorted structure R and for all subsets I, J of R

holds I ∩ J ⊆ I and I ∩ J ⊆ J.

(78) For every non empty 1-sorted structure R and for all subsets I, J , K of
R holds I ∩ (J ∩K) = (I ∩ J) ∩K.

(79) For every non empty 1-sorted structure R and for all subsets I, J , K of
R such that K ⊆ I and K ⊆ J holds K ⊆ I ∩ J.
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(80) Let R be an Abelian left zeroed right zeroed right complementable left
unital add-associative left distributive non empty double loop structure, I

be an add closed left ideal non empty subset of R, J be a subset of R, and
K be a non empty subset of R. If J ⊆ I, then I ∩ (J + K) = J + I ∩K.

Let R be a non empty double loop structure and let I, J be subsets of R.
The functor I ∗ J yields a subset of R and is defined by the condition (Def. 22).

(Def. 22) I ∗ J = {∑ s; s ranges over finite sequences of elements of the carrier
of R:

∧
i : natural number (1 ¬ i ∧ i ¬ len s ⇒ ∨

a,b : element of R (s(i) =
a · b ∧ a ∈ I ∧ b ∈ J))}.

Let R be a non empty double loop structure and let I, J be subsets of R.
Note that I ∗ J is non empty.

Let R be a commutative non empty double loop structure and let I, J be
subsets of R. Let us observe that the functor I ∗ J is commutative.

Let R be a right zeroed add-associative non empty double loop structure
and let I, J be subsets of R. Note that I ∗ J is add closed.

Let R be a right zeroed add-left-cancelable associative left distributive non
empty double loop structure and let I, J be right ideal subsets of R. One can
check that I ∗ J is right ideal.

Let R be a left zeroed add-right-cancelable associative right distributive non
empty double loop structure and let I, J be left ideal subsets of R. Note that
I ∗ J is left ideal.

We now state several propositions:

(81) Let R be a left zeroed right zeroed add-left-cancelable left distributive
non empty double loop structure and I be a non empty subset of R. Then
{0R} ∗ I = {0R}.

(82) Let R be a left zeroed right zeroed add-cancelable distributive non empty
double loop structure, I be an add closed right ideal non empty subset
of R, and J be an add closed left ideal non empty subset of R. Then
I ∗ J ⊆ I ∩ J.

(83) Let R be an Abelian left zeroed right zeroed add-cancelable add-
associative associative distributive non empty double loop structure and I,
J , K be right ideal non empty subsets of R. Then I∗(J+K) = I∗J+I∗K.

(84) Let R be an Abelian left zeroed right zeroed add-cancelable add-
associative commutative associative distributive non empty double loop
structure and I, J be right ideal non empty subsets of R. Then (I + J) ∗
(I ∩ J) ⊆ I ∗ J.

(85) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure and I, J be add closed left ideal non empty subsets
of R. Then (I + J) ∗ (I ∩ J) ⊆ I ∩ J.

Let R be a non empty loop structure and let I, J be subsets of R. We say
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that I, J are co-prime if and only if:

(Def. 23) I + J = the carrier of R.

We now state two propositions:

(86) Let R be a left zeroed left unital non empty double loop structure and
I, J be non empty subsets of R. If I, J are co-prime, then I ∩ J ⊆
(I + J) ∗ (I ∩ J).

(87) Let R be an Abelian left zeroed right zeroed add-cancelable add-
associative left unital commutative associative distributive non empty do-
uble loop structure, I be an add closed left ideal right ideal non empty
subset of R, and J be an add closed left ideal non empty subset of R. If
I, J are co-prime, then I ∗ J = I ∩ J.

Let R be a non empty groupoid and let I, J be subsets of R. The functor
I % J yields a subset of R and is defined by:

(Def. 24) I % J = {a; a ranges over elements of R: a · J ⊆ I}.
Let R be a right zeroed add-left-cancelable left distributive non empty double

loop structure and let I, J be left ideal non empty subsets of R. One can check
that I % J is non empty.

Let R be a right zeroed add-left-cancelable left distributive non empty double
loop structure and let I, J be add closed left ideal non empty subsets of R. One
can check that I % J is add closed.

Let R be a right zeroed add-left-cancelable left distributive associative com-
mutative non empty double loop structure and let I, J be left ideal non empty
subsets of R. Note that I % J is left ideal and I % J is right ideal.

We now state several propositions:

(88) Let R be a non empty multiplicative loop structure, I be a right ideal
non empty subset of R, and J be a subset of R. Then I ⊆ I % J.

(89) Let R be a right zeroed add-left-cancelable left distributive non empty
double loop structure, I be an add closed left ideal non empty subset of
R, and J be a subset of R. Then (I % J) ∗ J ⊆ I.

(90) Let R be a left zeroed add-right-cancelable right distributive non empty
double loop structure, I be an add closed right ideal non empty subset of
R, and J be a subset of R. Then (I % J) ∗ J ⊆ I.

(91) Let R be a left zeroed add-right-cancelable right distributive commu-
tative associative non empty double loop structure, I be an add closed
right ideal non empty subset of R, and J , K be subsets of R. Then
(I % J) % K = I % (J ∗K).

(92) For every non empty multiplicative loop structure R and for all subsets
I, J , K of R holds (J ∩K) % I = (J % I) ∩ (K % I).

(93) Let R be a left zeroed right zeroed add-right-cancelable right distributive
non empty double loop structure, I be an add closed subset of R, and J , K
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be right ideal non empty subsets of R. Then I%(J+K) = (I%J)∩(I%K).

Let R be a unital non empty double loop structure and let I be a subset of
R. The functor

√
I yielding a subset of R is defined as follows:

(Def. 25)
√

I = {a; a ranges over elements of R:
∨

n : natural number an ∈ I}.
Let R be a unital non empty double loop structure and let I be a non empty

subset of R. One can verify that
√

I is non empty.
Let R be an Abelian add-associative left zeroed right zeroed commutative

associative add-cancelable distributive unital non empty double loop structure
and let I be an add closed right ideal non empty subset of R. Observe that

√
I

is add closed.
Let R be a unital commutative associative non empty double loop structure

and let I be a left ideal non empty subset of R. Observe that
√

I is left ideal
and
√

I is right ideal.
One can prove the following propositions:

(94) Let R be a unital associative non empty double loop structure, I be a
non empty subset of R, and a be an element of R. Then a ∈ √I if and
only if there exists a natural number n such that an ∈ √I.

(95) Let R be a left zeroed right zeroed add-cancelable distributive unital
associative non empty double loop structure, I be an add closed right
ideal non empty subset of R, and J be an add closed left ideal non empty
subset of R. Then

√
I ∗ J =

√
I ∩ J.

6. Noetherian Rings and PIDs

Let L be a non empty double loop structure and let I be an ideal of L. We
say that I is finitely generated if and only if:

(Def. 26) There exists a non empty finite subset F of the carrier of L such that
I = F–ideal.

Let L be a non empty double loop structure. Observe that there exists an
ideal of L which is finitely generated.

Let L be a non empty double loop structure and let F be a non empty finite
subset of L. Note that F–ideal is finitely generated.

Let L be a non empty double loop structure. We say that L is Noetherian if
and only if:

(Def. 27) Every ideal of L is finitely generated.

Let us observe that there exists a non empty double loop structure which
is Euclidian, Abelian, add-associative, right zeroed, right complementable, well
unital, distributive, commutative, associative, and non degenerated.
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Let L be a non empty double loop structure and let I be an ideal of L. We
say that I is principal if and only if:

(Def. 28) There exists an element e of the carrier of L such that I = {e}–ideal.

Let L be a non empty double loop structure. We say that L is PID if and
only if:

(Def. 29) Every ideal of L is principal.

One can prove the following three propositions:

(96) Let L be a non empty double loop structure and F be a non empty subset
of the carrier of L. Suppose F 6= {0L}. Then there exists an element x of
the carrier of L such that x 6= 0L and x ∈ F.

(97) Every add-associative left zeroed right zeroed right complementable di-
stributive left unital Euclidian non empty double loop structure is PID.

(98) For every non empty double loop structure L such that L is PID holds
L is Noetherian.

Let us note that INT.Ring is Noetherian.
Let us observe that there exists a non empty double loop structure which is

Noetherian, Abelian, add-associative, right zeroed, right complementable, well
unital, distributive, commutative, associative, and non degenerated.

Next we state two propositions:

(99) Let R be a Noetherian add-associative left zeroed right zeroed add-
cancelable associative distributive well unital non empty double loop struc-
ture and B be a non empty subset of the carrier of R. Then there exists
a non empty finite subset C of the carrier of R such that C ⊆ B and
C–ideal = B–ideal.

(100) Let R be a non empty double loop structure. Suppose that for every
non empty subset B of the carrier of R there exists a non empty finite
subset C of the carrier of R such that C ⊆ B and C–ideal = B–ideal. Let
a be a sequence of R. Then there exists a natural number m such that
a(m + 1) ∈ (rng(a¹Zm+1))–ideal.

Let X, Y be non empty sets, let f be a function from X into Y , and let A

be a non empty subset of X. One can check that f¹A is non empty.
The following two propositions are true:

(101) Let R be a non empty double loop structure. Suppose that for every
sequence a of R there exists a natural number m such that a(m + 1) ∈
(rng(a¹Zm+1))–ideal. Then there does not exist a function F from N into
2the carrier of R such that

(i) for every natural number i holds F (i) is an ideal of R, and
(ii) for all natural numbers j, k such that j < k holds F (j) ⊆ F (k) and

F (j) 6= F (k).
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(102) Let R be a non empty double loop structure. Suppose that it is not true
that there exists a function F from N into 2the carrier of R such that for
every natural number i holds F (i) is an ideal of R and for all natural
numbers j, k such that j < k holds F (j) ⊆ F (k) and F (j) 6= F (k). Then
R is Noetherian.
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Summary. We prove the Hilbert basis theorem following [5], page 145.
First we prove the theorem for the univariate case and then for the multivariate
case. Our proof for the latter is slightly different than in [5]. As a base case we
take the ring of polynomilas with no variables. We also prove that a polynomial
ring with infinite number of variables is not Noetherian.
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1. Preliminaries

One can prove the following propositions:

(1) Let A, B be finite sequences and f be a function. Suppose rng A∪rng B ⊆
dom f. Then there exist finite sequences f1, f2 such that f1 = f · A and
f2 = f ·B and f · (A a B) = f1

a f2.

(2) For every bag b of 0 holds decomp b = 〈〈∅, ∅〉〉.
(3) For all natural numbers i, j and for every bag b of j such that i ¬ j

holds b¹i is an element of Bags i.

(4) Let i, j be sets, b1, b2 be bags of j, and b′1, b′2 be bags of i. If b′1 = b1¹i
and b′2 = b2¹i and b1 divides b2, then b′1 divides b′2.
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(5) Let i, j be sets, b1, b2 be bags of j, and b′1, b′2 be bags of i. If b′1 = b1¹i
and b′2 = b2¹i, then (b1 −′ b2)¹i = b′1 −′ b′2 and (b1 + b2)¹i = b′1 + b′2.

Let n, k be natural numbers and let b be a bag of n. The functor b extended by k

yields an element of Bags n + 1 and is defined as follows:

(Def. 1) (b extended by k)¹n = b and (b extended by k)(n) = k.

We now state two propositions:

(6) For every natural number n holds EmptyBag n + 1 = EmptyBag n

extended by 0.

(7) For every ordinal number n and for all bags b, b1 of n holds b1 ∈
rng divisors b iff b1 divides b.

Let X be a set and let x be an element of X. The functor UnitBag x yields
an element of Bags X and is defined as follows:

(Def. 2) UnitBag x = EmptyBag X +· (x, 1).
Next we state four propositions:

(8) For every non empty set X and for every element x of X holds
support UnitBag x = {x}.

(9) Let X be a non empty set and x be an element of X. Then
(UnitBag x)(x) = 1 and for every element y of X such that x 6= y holds
(UnitBag x)(y) = 0.

(10) For every non empty set X and for all elements x1, x2 of X such that
UnitBag x1 = UnitBag x2 holds x1 = x2.

(11) Let X be a non empty ordinal number, x be an element of X, L be a
unital non trivial non empty double loop structure, and e be a function
from X into L. Then eval(UnitBag x, e) = e(x).

Let X be a set, let x be an element of X, and let L be a unital non empty
multiplicative loop with zero structure. The functor 1 1(x, L) yielding a Series
of X, L is defined by:

(Def. 3) 1 1(x, L) = 0 (X, L) +· (UnitBag x, 1L).
One can prove the following propositions:

(12) Let X be a set, L be a unital non trivial non empty double loop structure,
and x be an element of X. Then (1 1(x, L))(UnitBag x) = 1L and for every
bag b of X such that b 6= UnitBag x holds (1 1(x, L))(b) = 0L.

(13) Let X be a set, x be an element of X, and L be an add-associative
right zeroed right complementable unital right distributive non trivial non
empty double loop structure. Then Support 1 1(x, L) = {UnitBag x}.

Let X be an ordinal number, let x be an element of X, and let L be an
add-associative right zeroed right complementable unital right distributive non
trivial non empty double loop structure. Observe that 1 1(x, L) is finite-Support.

One can prove the following three propositions:
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(14) Let L be an add-associative right zeroed right complementable unital
right distributive non trivial non empty double loop structure, X be a
non empty set, and x1, x2 be elements of X. If 1 1(x1, L) = 1 1(x2, L),
then x1 = x2.

(15) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, x be an element of the carrier of
Polynom-Ring L, and p be a sequence of L. If x = p, then −x = −p.

(16) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, x, y be elements of the carrier of
Polynom-Ring L, and p, q be sequences of L. If x = p and y = q, then
x− y = p− q.

Let L be a right zeroed add-associative right complementable unital distri-
butive non empty double loop structure and let I be a non empty subset of the
carrier of Polynom-Ring L. The functor minlen I yields a non empty subset of I

and is defined by:

(Def. 4) minlen I = {x;x ranges over elements of I:
∧

x′,y′ : Polynomial of L (x′ =
x ∧ y′ ∈ I ⇒ len x′ ¬ len y′)}.

We now state the proposition

(17) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, I be a non empty subset
of the carrier of Polynom-Ring L, and i1, i2 be Polynomials of L. If i1 ∈
minlen I and i2 ∈ I, then i1 ∈ I and len i1 ¬ len i2.

Let L be a right zeroed add-associative right complementable unital distri-
butive non empty double loop structure, let n be a natural number, and let a be
an element of the carrier of L. The functor monomial(a, n) yields a Polynomial
of L and is defined as follows:

(Def. 5) For every natural number x holds if x = n, then (monomial(a, n))(x) = a

and if x 6= n, then (monomial(a, n))(x) = 0L.

The following four propositions are true:

(18) Let L be a right zeroed add-associative right complementable uni-
tal distributive non empty double loop structure, n be a natural num-
ber, and a be an element of the carrier of L. Then if a 6= 0L, then
len monomial(a, n) = n + 1 and if a = 0L, then len monomial(a, n) = 0
and len monomial(a, n) ¬ n + 1.

(19) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, n, x be natural numbers,
a be an element of the carrier of L, and p be a Polynomial of L. Then
(monomial(a, n) ∗ p)(x + n) = a · p(x).

(20) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, n, x be natural numbers,
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a be an element of the carrier of L, and p be a Polynomial of L. Then
(p ∗monomial(a, n))(x + n) = p(x) · a.

(21) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure and p, q be Polynomials of
L. Then len(p ∗ q) ¬ (len p + len q)−′ 1.

2. On Ring Isomorphism

The following propositions are true:

(22) Let R, S be non empty double loop structures, I be an ideal of R, and
P be a map from R into S. If P is a ring isomorphism, then P ◦I is an
ideal of S.

(23) Let R, S be add-associative right zeroed right complementable non
empty double loop structures and f be a map from R into S. If f is a
ring homomorphism, then f(0R) = 0S .

(24) Let R, S be add-associative right zeroed right complementable non
empty double loop structures, F be a non empty subset of the carrier
of R, G be a non empty subset of the carrier of S, P be a map from R

into S, l1 be a linear combination of F , L1 be a linear combination of G,
and E be a finite sequence of elements of [: the carrier of R, the carrier of
R, the carrier of R :]. Suppose that

(i) P is a ring homomorphism,
(ii) len l1 = len L1,

(iii) E represents l1, and
(iv) for every set i such that i ∈ dom L1 holds L1(i) = P ((Ei)1) ·P ((Ei)2) ·

P ((Ei)3).
Then P (

∑
l1) =

∑
L1.

(25) Let R, S be non empty double loop structures and P be a map from R

into S. Suppose P is a ring isomorphism. Then there exists a map P1 from
S into R such that P1 is a ring isomorphism and P1 = P−1.

(26) Let R, S be Abelian add-associative right zeroed right complementable
associative distributive well unital non empty double loop structures, F

be a non empty subset of the carrier of R, and P be a map from R into
S. If P is a ring isomorphism, then P ◦F–ideal = (P ◦F )–ideal.

(27) Let R, S be Abelian add-associative right zeroed right complementable
associative distributive well unital non empty double loop structures and
P be a map from R into S. If P is a ring isomorphism and R is Noetherian,
then S is Noetherian.
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(28) Let R be an add-associative right zeroed right complementable associa-
tive distributive well unital non trivial non empty double loop structure.
Then there exists a map from R into Polynom-Ring(0, R) which is a ring
isomorphism.

(29) Let R be a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure, n be a natural
number, b be a bag of n, p1 be a Polynomial of n, R, and F be a finite sequ-
ence of elements of the carrier of Polynom-Ring(n,R). Suppose p1 =

∑
F.

Then there exists a function g from the carrier of Polynom-Ring(n,R) into
the carrier of R such that for every Polynomial p of n, R holds g(p) = p(b)
and p1(b) =

∑
(g · F ).

Let R be an Abelian add-associative right zeroed right complementable asso-
ciative distributive well unital commutative non trivial non empty double loop
structure and let n be a natural number. The functor upm(n,R) yielding a map
from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1, R) is defined
by the condition (Def. 6).

(Def. 6) Let p1 be a Polynomial of Polynom-Ring(n,R), p2 be a Polynomial of
n, R, p3 be a Polynomial of n + 1, R, and b be a bag of n + 1. If p3 =
(upm(n,R))(p1) and p2 = p1(b(n)), then p3(b) = p2(b¹n).

Let R be an Abelian add-associative right zeroed right complementable asso-
ciative distributive well unital commutative non trivial non empty double loop
structure and let n be a natural number. One can verify the following observa-
tions:

∗ upm(n,R) is additive,

∗ upm(n,R) is multiplicative,

∗ upm(n,R) is unity-preserving, and

∗ upm(n,R) is one-to-one.

Let R be an Abelian add-associative right zeroed right complementable as-
sociative distributive well unital commutative non trivial non empty double
loop structure and let n be a natural number. The functor mpu(n,R) yields a
map from Polynom-Ring(n + 1, R) into Polynom-Ring Polynom-Ring(n,R) and
is defined by the condition (Def. 7).

(Def. 7) Let p1 be a Polynomial of n + 1, R, p2 be a Polynomial of n, R, p3

be a Polynomial of Polynom-Ring(n,R), i be a natural number, and b

be a bag of n. If p3 = (mpu(n,R))(p1) and p2 = p3(i), then p2(b) =
p1(b extended by i).

Next we state two propositions:

(30) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital commutative non trivial non empty
double loop structure, n be a natural number, and p be an element of the
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carrier of Polynom-Ring(n+1, R). Then (upm(n,R))((mpu(n,R))(p)) = p.

(31) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital commutative non trivial non empty
double loop structure and n be a natural number. Then there exists a
map from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1, R)
which is a ring isomorphism.

3. Hilbert Basis Theorem

Let R be a Noetherian Abelian add-associative right zeroed right comple-
mentable associative distributive well unital commutative non empty double
loop structure. Observe that Polynom-Ring R is Noetherian.

One can prove the following propositions:

(32) Let R be a Noetherian Abelian add-associative right zeroed right com-
plementable associative distributive well unital commutative non empty
double loop structure. Then Polynom-Ring R is Noetherian.

(33) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital non trivial commutative non empty do-
uble loop structure. Suppose R is Noetherian. Let n be a natural number.
Then Polynom-Ring(n,R) is Noetherian.

(34) Every field is Noetherian.

(35) For every field F and for every natural number n holds
Polynom-Ring(n, F ) is Noetherian.

(36) Let R be an Abelian right zeroed add-associative right complemen-
table well unital distributive associative commutative non trivial non
empty double loop structure and X be an infinite ordinal number. Then
Polynom-Ring(X,R) is non Noetherian.
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Summary. This article formalizes the proof of Dynkin’s lemma in measure
theory. Dynkin’s lemma is a useful tool in measure theory and probability theory:
it helps frequently to generalize a statement about all elements of a intersection-
stable set system to all elements of the sigma-field generated by that system.

MML Identifier: DYNKIN.

The terminology and notation used in this paper have been introduced in the
following articles: [5], [11], [1], [4], [2], [3], [7], [6], [12], [13], [8], [10], and [9].

1. Preliminaries

For simplicity, we adopt the following rules: O1 denotes a non empty set, f

denotes a sequence of subsets of O1, X, A, B denote subsets of O1, D denotes a
non empty subset of 2O1 , n, m denote natural numbers, F denotes a non empty
set, and x, Y denote sets.

Next we state two propositions:

(1) For every sequence f of subsets of O1 and for every x holds x ∈ rng f iff
there exists n such that f(n) = x.

(2) For every n holds PSeg n is finite.

Let us consider n. One can verify that PSeg n is finite.
Next we state the proposition

(3) For all sets x, y, z such that x ⊆ y holds x misses z \ y.

Let a, b, c be sets. The functor a, b followed by c is defined as follows:

(Def. 1) a, b followed by c = (N 7−→ c)+·[0 7−→ a, 1 7−→ b].
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Let a, b, c be sets. Observe that a, b followed by c is function-like and relation-
like.

Let X be a non empty set and let a, b, c be elements of X. Then a, b followed by c

is a function from N into X.
Next we state the proposition

(4) For every non empty set X and for all elements a, b, c of X holds
a, b followed by c is a function from N into X.

Let O1 be a non empty set and let a, b, c be subsets of O1. Then a, b followed by c

is a sequence of subsets of O1.
One can prove the following propositions:

(5) For all sets a, b, c holds (a, b followed by c)(0) = a and
(a, b followed by c)(1) = b and for every n such that n 6= 0 and n 6= 1
holds (a, b followed by c)(n) = c.

(6) For all subsets a, b of O1 holds
⋃

rng(a, b followed by ∅) = a ∪ b.

Let O1 be a non empty set, let f be a sequence of subsets of O1, and let X

be a subset of O1. The functor seqIntersection(X, f) yields a sequence of subsets
of O1 and is defined by:

(Def. 2) For every n holds (seqIntersection(X, f))(n) = X ∩ f(n).

2. Disjoint-valued Functions and Intersection

Let us consider O1 and let us consider f . Let us observe that f is disjoint
valued if and only if:

(Def. 3) If n < m, then f(n) misses f(m).
We now state the proposition

(7) For every non empty set Y and for every x holds x ⊆ ⋂
Y iff for every

element y of Y holds x ⊆ y.

Let x be a set. We introduce x is intersection stable as a synonym of x is
multiplicative.

Let O1 be a non empty set, let f be a sequence of subsets of O1, and let n

be an element of N. The functor disjointify(f, n) yielding an element of 2O1 is
defined by:

(Def. 5)1 disjointify(f, n) = f(n) \⋃
rng(f¹ PSeg n).

Let O1 be a non empty set and let g be a sequence of subsets of O1. The
functor disjointify g yielding a sequence of subsets of O1 is defined as follows:

(Def. 6) For every n holds (disjointify g)(n) = disjointify(g, n).
The following propositions are true:

1The definition (Def. 4) has been removed.
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(8) For every n holds (disjointify f)(n) = f(n) \⋃
rng(f¹ PSeg n).

(9) For every sequence f of subsets of O1 holds disjointify f is disjoint valued.

(10) For every sequence f of subsets of O1 holds
⋃

rng disjointify f =
⋃

rng f.

(11) For all subsets x, y of O1 such that x misses y holds x, y followed by ∅(O1)

is disjoint valued.

(12) Let f be a sequence of subsets of O1. Suppose f is disjoint valued. Let
X be a subset of O1. Then seqIntersection(X, f) is disjoint valued.

(13) For every sequence f of subsets of O1 and for every subset X of O1 holds
X ∩Union f = Union seqIntersection(X, f).

3. Dynkin Systems: Definition and Closure Properties

Let us consider O1. A subset of 2O1 is called a Dynkin system of O1 if:

(Def. 7) For every f such that rng f ⊆ it and f is disjoint valued holds Union f ∈
it and for every X such that X ∈ it holds Xc ∈ it and ∅ ∈ it.

Let us consider O1. One can check that every Dynkin system of O1 is non
empty.

The following propositions are true:

(14) 2O1 is a Dynkin system of O1.

(15) If for every Y such that Y ∈ F holds Y is a Dynkin system of O1, then⋂
F is a Dynkin system of O1.

(16) If D is a Dynkin system of O1 and intersection stable, then if A ∈ D

and B ∈ D, then A \B ∈ D.

(17) If D is a Dynkin system of O1 and intersection stable, then if A ∈ D

and B ∈ D, then A ∪B ∈ D.

(18) Suppose D is a Dynkin system of O1 and intersection stable. Let x be a
finite set. If x ⊆ D, then

⋃
x ∈ D.

(19) Suppose D is a Dynkin system of O1 and intersection stable. Let f be a
sequence of subsets of O1. If rng f ⊆ D, then rng disjointify f ⊆ D.

(20) Suppose D is a Dynkin system of O1 and intersection stable. Let f be a
sequence of subsets of O1. If rng f ⊆ D, then

⋃
rng f ∈ D.

(21) For every Dynkin system D of O1 and for all elements x, y of D such
that x misses y holds x ∪ y ∈ D.

(22) For every Dynkin system D of O1 and for all elements x, y of D such
that x ⊆ y holds y \ x ∈ D.
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4. Main Steps for Dynkin’s Lemma

One can prove the following proposition

(23) If D is a Dynkin system of O1 and intersection stable, then D is a σ-field
of subsets of O1.

Let O1 be a non empty set and let E be a subset of 2O1 . The functor
GenDynSys E yielding a Dynkin system of O1 is defined by:

(Def. 8) E ⊆ GenDynSys E and for every Dynkin system D of O1 such that
E ⊆ D holds GenDynSys E ⊆ D.

Let O1 be a non empty set, let G be a set, and let X be a subset of O1. The
functor DynSys(X, G) yields a subset of 2O1 and is defined as follows:

(Def. 9) For every subset A of O1 holds A ∈ DynSys(X,G) iff A ∩X ∈ G.

Let O1 be a non empty set, let G be a Dynkin system of O1, and let X be
an element of G. Then DynSys(X,G) is a Dynkin system of O1.

Next we state four propositions:

(24) Let E be a subset of 2O1 and X, Y be subsets of O1. If X ∈ E and Y ∈
GenDynSys E and E is intersection stable, then X ∩ Y ∈ GenDynSys E.

(25) Let E be a subset of 2O1 and X, Y be subsets of O1. If X ∈ GenDynSys E

and Y ∈ GenDynSys E and E is intersection stable, then X ∩ Y ∈
GenDynSys E.

(26) For every subset E of 2O1 such that E is intersection stable holds
GenDynSys E is intersection stable.

(27) Let E be a subset of 2O1 . Suppose E is intersection stable. Let D be a
Dynkin system of O1. If E ⊆ D, then σ(E) ⊆ D.
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Summary. The paper introduces some preliminary notions concerning
the Wroclaw taxonomy according to [16]. The classifications and tolerances are
defined and considered w.r.t. sets and metric spaces. We prove theorems showing
various classifications based on tolerances.

MML Identifier: TAXONOM1.

The articles [14], [15], [20], [4], [9], [5], [6], [8], [12], [1], [13], [17], [19], [2], [23],
[25], [24], [3], [18], [22], [21], [10], [11], and [7] provide the terminology and
notation for this paper.

1. Preliminaries

In this paper A, X are non empty sets, f is a partial function from [:X, X :]
to R, and a is a real number.

Let us note that there exists a real number which is non negative.
We now state a number of propositions:

(1) For every finite sequence p and for every natural number k such that
k + 1 ∈ dom p and k /∈ dom p holds k = 0.

(2) Let p be a finite sequence and i, j be natural numbers. Suppose i ∈ dom p

and j ∈ dom p and for every natural number k such that k ∈ dom p and
k + 1 ∈ dom p holds p(k) = p(k + 1). Then p(i) = p(j).

1This work has been partially supported by the European Community TYPES grant IST-
1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102.
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(3) For every set X and for every binary relation R on X such that R is
reflexive in X holds dom R = X.

(4) For every set X and for every binary relation R on X such that R is
reflexive in X holds rng R = X.

(5) For every set X and for every binary relation R on X such that R is
reflexive in X holds R∗ is reflexive in X.

(6) Let X, x, y be sets and R be a binary relation on X. Suppose R is
reflexive in X. If R reduces x to y and x ∈ X, then 〈〈x, y〉〉 ∈ R∗.

(7) Let X be a set and R be a binary relation on X. If R is reflexive in X

and symmetric in X, then R∗ is symmetric in X.

(8) For every set X and for every binary relation R on X such that R is
reflexive in X holds R∗ is transitive in X.

(9) Let X be a non empty set and R be a binary relation on X. Suppose R

is reflexive in X and symmetric in X. Then R∗ is an equivalence relation
of X.

(10) For all binary relations R1, R2 on X such that R1 ⊆ R2 holds R1
∗ ⊆ R2

∗.
(11) SmallestPartition(A) is finer than {A}.

2. The Notion of Classification

Let A be a non empty set. A subset of PARTITIONS(A) is called a classifi-
cation of A if:

(Def. 1) For all partitions X, Y of A such that X ∈ it and Y ∈ it holds X is finer
than Y or Y is finer than X.

One can prove the following propositions:

(12) {{A}} is a classification of A.

(13) {SmallestPartition(A)} is a classification of A.

(14) For every subset S of PARTITIONS(A) such that S = {{A},
SmallestPartition(A)} holds S is a classification of A.

Let A be a non empty set. A subset of PARTITIONS(A) is called a strong
classification of A if:

(Def. 2) It is a classification of A and {A} ∈ it and SmallestPartition(A) ∈ it.

Next we state the proposition

(15) For every subset S of PARTITIONS(A) such that S = {{A},
SmallestPartition(A)} holds S is a strong classification of A.
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3. The Tolerance on a Non Empty Set

Let X be a non empty set, let f be a partial function from [:X, X :] to R,
and let a be a real number. The functor Tl(f, a) yields a binary relation on X

and is defined as follows:

(Def. 3) For all elements x, y of X holds 〈〈x, y〉〉 ∈ Tl(f, a) iff f(x, y) ¬ a.

The following four propositions are true:

(16) If f is Reflexive and a  0, then Tl(f, a) is reflexive in X.

(17) If f is symmetric, then Tl(f, a) is symmetric in X.

(18) If a  0 and f is Reflexive and symmetric, then Tl(f, a) is a tolerance
of X.

(19) Let X be a non empty set, f be a partial function from [:X, X :] to R,
and a1, a2 be real numbers. If a1 ¬ a2, then Tl(f, a1) ⊆ Tl(f, a2).

Let X be a set and let f be a partial function from [:X, X :] to R. We say
that f is non-negative if and only if:

(Def. 4) For all elements x, y of X holds f(x, y)  0.

We now state three propositions:

(20) Let X be a non empty set, f be a partial function from [:X, X :] to R,
and x, y be sets. Suppose f is non-negative, Reflexive, and discernible. If
〈〈x, y〉〉 ∈ Tl(f, 0), then x = y.

(21) Let X be a non empty set, f be a partial function from [:X, X :] to
R, and x be an element of X. If f is Reflexive and discernible, then 〈〈x,

x〉〉 ∈ Tl(f, 0).
(22) Let X be a non empty set, f be a partial function from [:X, X :] to R, and

a be a real number. Suppose Tl(f, a) is reflexive in X and f is symmetric.
Then (Tl(f, a))∗ is an equivalence relation of X.

4. The Partitions Defined by Lower Tolerance

Next we state several propositions:

(23) Let X be a non empty set and f be a partial function from [:X, X :] to R.
Suppose f is non-negative, Reflexive, and discernible. Then (Tl(f, 0))∗ =
Tl(f, 0).

(24) Let X be a non empty set, f be a partial function from [:X, X :] to R,
and R be an equivalence relation of X. Suppose R = (Tl(f, 0))∗ and f is
non-negative, Reflexive, and discernible. Then R = 4X .
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(25) Let X be a non empty set, f be a partial function from [:X, X :] to
R, and R be an equivalence relation of X. Suppose R = (Tl(f, 0))∗

and f is non-negative, Reflexive, and discernible. Then Classes R =
SmallestPartition(X).

(26) Let X be a finite non empty subset of R, f be a function from [:X, X :]
into R, z be a finite non empty subset of R, and A be a real number.
If z = rng f and A  max z, then for all elements x, y of X holds f(x,

y) ¬ A.

(27) Let X be a finite non empty subset of R, f be a function from [:X, X :]
into R, z be a finite non empty subset of R, and A be a real number.
Suppose z = rng f and A  max z. Let R be an equivalence relation of X.
If R = (Tl(f,A))∗, then Classes R = {X}.

(28) Let X be a finite non empty subset of R, f be a function from [:X, X :]
into R, z be a finite non empty subset of R, and A be a real number. If
z = rng f and A  max z, then (Tl(f,A))∗ = Tl(f, A).

5. The Classification on a Non Empty Set

Let X be a non empty set and let f be a partial function from [:X, X :] to
R. The functor FamClass f yielding a subset of PARTITIONS(X) is defined by
the condition (Def. 5).

(Def. 5) Let x be a set. Then x ∈ FamClass f if and only if there exists a non
negative real number a and there exists an equivalence relation R of X

such that R = (Tl(f, a))∗ and Classes R = x.

We now state four propositions:

(29) Let X be a non empty set, f be a partial function from [:X, X :] to R,
and a be a non negative real number. If Tl(f, a) is reflexive in X and f is
symmetric, then FamClass f is a non empty set.

(30) Let X be a finite non empty subset of R and f be a function from [:X,

X :] into R. If f is symmetric and non-negative, then {X} ∈ FamClass f.

(31) For every non empty set X and for every partial function f from [:X,

X :] to R holds FamClass f is a classification of X.

(32) Let X be a finite non empty subset of R and f be a function from [:X, X :]
into R. Suppose SmallestPartition(X) ∈ FamClass f and f is symmetric
and non-negative. Then FamClass f is a strong classification of X.
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6. The Classification on a Metric Space

Let M be a metric structure, let a be a real number, and let x, y be elements
of the carrier of M . We say that x, y are in tolerance w.r.t. a if and only if:

(Def. 6) ρ(x, y) ¬ a.

Let M be a non empty metric structure and let a be a real number. The
functor Tm(M, a) yielding a binary relation on M is defined by:

(Def. 7) For all elements x, y of the carrier of M holds 〈〈x, y〉〉 ∈ Tm(M,a) iff x,
y are in tolerance w.r.t. a.

Next we state two propositions:

(33) For every non empty metric structure M and for every real number a

holds Tm(M,a) = Tl(the distance of M , a).
(34) Let M be a non empty Reflexive symmetric metric structure, a be a real

number, and T be a relation between the carrier of M and the carrier of
M . If T = Tm(M, a) and a  0, then T is a tolerance of the carrier of M .

Let M be a Reflexive symmetric non empty metric structure. The func-
tor MetricFamClass M yielding a subset of PARTITIONS(the carrier of M) is
defined by the condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ MetricFamClass M if and only if there exists a
non negative real number a and there exists an equivalence relation R of
M such that R = (Tm(M, a))∗ and Classes R = x.

The following propositions are true:

(35) For every Reflexive symmetric non empty metric structure M holds
MetricFamClass M = FamClass the distance of M .

(36) Let M be a non empty metric space and R be an equivalence relation of
M . If R = (Tm(M, 0))∗, then Classes R = SmallestPartition(the carrier of
M).

(37) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds Tm(M, a) = ∇the carrier of M .

(38) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds Tm(M, a) = (Tm(M,a))∗.
(39) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds (Tm(M,a))∗ = ∇the carrier of M .

(40) Let M be a Reflexive symmetric bounded non empty metric structure,
R be an equivalence relation of M , and a be a non negative real number.
If a  Ø(ΩM ) and R = (Tm(M, a))∗, then Classes R = {the carrier of M}.

Let M be a Reflexive symmetric triangle non empty metric structure and
let C be a non empty bounded subset of M . Observe that ØC is non negative.

We now state three propositions:
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(41) For every bounded non empty metric space M holds {the carrier of
M} ∈ MetricFamClass M.

(42) For every Reflexive symmetric non empty metric structure M holds
MetricFamClass M is a classification of the carrier of M .

(43) For every bounded non empty metric space M holds MetricFamClass M

is a strong classification of the carrier of M .
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Summary. In the paper, we develop the notation of duality and equiva-
lence of categories and concrete categories based on [9]. The development was
motivated by the duality theory for continuous lattices (see [5, p. 189]), where we
need to cope with concrete categories of lattices and maps preserving their pro-
perties. For example, the category UPS of complete lattices and directed suprema
preserving maps; or the category INF of complete lattices and infima preserving
maps. As the main result of this paper it is shown that every category is isomor-
phic to its concretization (the concrete category with the same objects). Some
useful schemes to construct categories and functors are also presented.

MML Identifier: YELLOW18.

The notation and terminology used here are introduced in the following articles:
[9], [10], [7], [2], [13], [11], [6], [3], [4], [1], [14], [15], [12], and [8].

1. Definability of Categories and Functors

In this article we present several logical schemes. The scheme AltCatStr-
Lambda deals with a non empty set A, a binary functor F yielding a set, and a
5-ary functor G yielding a set, and states that:

There exists a strict non empty transitive category structure C

such that
(i) the carrier of C = A,

(ii) for all objects a, b of C holds 〈a, b〉 = F(a, b), and
(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅
and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)
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provided the following requirement is met:
• For all elements a, b, c of A and for all sets f , g such that f ∈
F(a, b) and g ∈ F(b, c) holds G(a, b, c, f, g) ∈ F(a, c).

The scheme CatAssocSch deals with a non empty transitive category struc-
ture A and a 5-ary functor F yielding a set, and states that:

A is associative
provided the parameters meet the following requirements:
• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let

f be a morphism from a to b and g be a morphism from b to c.
Then g · f = F(a, b, c, f, g), and

• Let a, b, c, d be objects of A and f , g, h be sets. If f ∈ 〈a, b〉
and g ∈ 〈b, c〉 and h ∈ 〈c, d〉, then F(a, c, d,F(a, b, c, f, g), h) =
F(a, b, d, f,F(b, c, d, g, h)).

The scheme CatUnitsSch deals with a non empty transitive category struc-
ture A and a 5-ary functor F yielding a set, and states that:

A has units
provided the parameters satisfy the following conditions:
• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let

f be a morphism from a to b and g be a morphism from b to c.
Then g · f = F(a, b, c, f, g),

• Let a be an object of A. Then there exists a set f such that
f ∈ 〈a, a〉 and for every object b of A and for every set g such
that g ∈ 〈a, b〉 holds F(a, a, b, f, g) = g, and

• Let a be an object of A. Then there exists a set f such that
f ∈ 〈a, a〉 and for every object b of A and for every set g such
that g ∈ 〈b, a〉 holds F(b, a, a, g, f) = g.

The scheme CategoryLambda deals with a non empty set A, a binary functor
F yielding a set, and a 5-ary functor G yielding a set, and states that:

There exists a strict category C such that
(i) the carrier of C = A,

(ii) for all objects a, b of C holds 〈a, b〉 = F(a, b), and
(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅
and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)
provided the parameters satisfy the following conditions:
• For all elements a, b, c of A and for all sets f , g such that f ∈
F(a, b) and g ∈ F(b, c) holds G(a, b, c, f, g) ∈ F(a, c),

• Let a, b, c, d be elements of A and f , g, h be sets. If f ∈ F(a, b)
and g ∈ F(b, c) and h ∈ F(c, d), then G(a, c, d,G(a, b, c, f, g), h) =
G(a, b, d, f,G(b, c, d, g, h)),

• Let a be an element of A. Then there exists a set f such that
f ∈ F(a, a) and for every element b of A and for every set g such
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that g ∈ F(a, b) holds G(a, a, b, f, g) = g, and
• Let a be an element of A. Then there exists a set f such that

f ∈ F(a, a) and for every element b of A and for every set g such
that g ∈ F(b, a) holds G(b, a, a, g, f) = g.

The scheme CategoryLambdaUniq deals with a non empty set A, a binary
functor F yielding a set, and a 5-ary functor G yielding a set, and states that:

Let C1, C2 be non empty transitive category structures. Suppose
that
(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 holds 〈a, b〉 = F(a, b),
(iii) for all objects a, b, c of C1 such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅
and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g),
(iv) the carrier of C2 = A,

(v) for all objects a, b of C2 holds 〈a, b〉 = F(a, b), and
(vi) for all objects a, b, c of C2 such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅
and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g).
Then the category structure of C1 = the category structure of

C2

for all values of the parameters.
The scheme CategoryQuasiLambda deals with a non empty set A, a binary

functor F yielding a set, a 5-ary functor G yielding a set, and a ternary predicate
P, and states that:

There exists a strict category C such that
(i) the carrier of C = A,

(ii) for all objects a, b of C and for every set f holds f ∈ 〈a, b〉
iff f ∈ F(a, b) and P[a, b, f ], and
(iii) for all objects a, b, c of C such that 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅
and for every morphism f from a to b and for every morphism g

from b to c holds g · f = G(a, b, c, f, g)
provided the following requirements are met:
• Let a, b, c be elements of A and f , g be sets. Suppose f ∈ F(a, b)

and P[a, b, f ] and g ∈ F(b, c) and P[b, c, g]. Then G(a, b, c, f, g) ∈
F(a, c) and P[a, c,G(a, b, c, f, g)],

• Let a, b, c, d be elements of A and f , g, h be sets. Suppose f ∈
F(a, b) and P[a, b, f ] and g ∈ F(b, c) and P[b, c, g] and h ∈ F(c, d)
and P[c, d, h]. Then G(a, c, d,G(a, b, c, f, g), h) = G(a, b, d, f,G(b, c,
d, g, h)),

• Let a be an element of A. Then there exists a set f such that f ∈
F(a, a) and P[a, a, f ] and for every element b of A and for every
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set g such that g ∈ F(a, b) and P[a, b, g] holds G(a, a, b, f, g) = g,

and
• Let a be an element of A. Then there exists a set f such that f ∈
F(a, a) and P[a, a, f ] and for every element b of A and for every
set g such that g ∈ F(b, a) and P[b, a, g] holds G(b, a, a, g, f) = g.

Let f be a function yielding function and let a, b, c be sets. Note that f(a,

b, c) is relation-like and function-like.
Now we present two schemes. The scheme SubcategoryEx deals with a cate-

gory A, a unary predicate P, and a ternary predicate Q, and states that:
There exists a subcategory B of A such that
(i) for every object a of A holds a is an object of B iff P[a],

and
(ii) for all objects a, b of A and for all objects a′, b′ of B such
that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f

from a to b holds f ∈ 〈a′, b′〉 iff Q[a, b, f ]
provided the parameters meet the following requirements:
• There exists an object a of A such that P[a],
• Let a, b, c be objects of A. Suppose P[a] and P[b] and P[c] and
〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b and
g be a morphism from b to c. If Q[a, b, f ] and Q[b, c, g], then
Q[a, c, g · f ], and

• For every object a of A such that P[a] holds Q[a, a, ida].
The scheme CovariantFunctorLambda deals with categories A, B, a unary

functor F yielding a set, and a ternary functor G yielding a set, and states that:
There exists a covariant strict functor F from A to B such that
(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f)

provided the parameters have the following properties:
• For every object a of A holds F(a) is an object of B,

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then G(a, b, f) ∈ (the arrows of B)(F(a), F(b)),

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅.
Let f be a morphism from a to b, g be a morphism from b to c,
and a′, b′, c′ be objects of B. Suppose a′ = F(a) and b′ = F(b)
and c′ = F(c). Let f ′ be a morphism from a′ to b′ and g′ be a
morphism from b′ to c′. If f ′ = G(a, b, f) and g′ = G(b, c, g), then
G(a, c, g · f) = g′ · f ′, and

• For every object a of A and for every object a′ of B such that
a′ = F(a) holds G(a, a, ida) = ida′ .

The following proposition is true
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(1) Let A, B be categories and F , G be covariant functors from A to B.
Suppose that

(i) for every object a of A holds F (a) = G(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (f) = G(f).
Then the functor structure of F = the functor structure of G.

The scheme ContravariantFunctorLambda deals with categoriesA, B, a unary
functor F yielding a set, and a ternary functor G yielding a set, and states that:

There exists a contravariant strict functor F from A to B such
that
(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f)

provided the parameters meet the following requirements:
• For every object a of A holds F(a) is an object of B,

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then G(a, b, f) ∈ (the arrows of B)(F(b), F(a)),

• Let a, b, c be objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅.
Let f be a morphism from a to b, g be a morphism from b to c,
and a′, b′, c′ be objects of B. Suppose a′ = F(a) and b′ = F(b)
and c′ = F(c). Let f ′ be a morphism from b′ to a′ and g′ be a
morphism from c′ to b′. If f ′ = G(a, b, f) and g′ = G(b, c, g), then
G(a, c, g · f) = f ′ · g′, and

• For every object a of A and for every object a′ of B such that
a′ = F(a) holds G(a, a, ida) = ida′ .

One can prove the following proposition

(2) Let A, B be categories and F , G be contravariant functors from A to B.
Suppose that

(i) for every object a of A holds F (a) = G(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (f) = G(f).
Then the functor structure of F = the functor structure of G.

2. Isomorphism and Equivalence of Categories

Let A, B, C be non empty sets and let f be a function from [:A, B :] into C.
Let us observe that f is one-to-one if and only if:

(Def. 1) For all elements a1, a2 of A and for all elements b1, b2 of B such that
f(a1, b1) = f(a2, b2) holds a1 = a2 and b1 = b2.
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Now we present four schemes. The scheme CoBijectiveSch deals with cate-
gories A, B, a covariant functor C from A to B, a unary functor F yielding a
set, and a ternary functor C yielding a set, and states that:

C is bijective
provided the parameters meet the following requirements:
• For every object a of A holds C(a) = F(a),
• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every mor-

phism f from a to b holds C(f) = C(a, b, f),
• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms
f , g from a to b such that C(a, b, f) = C(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then there exist objects c, d of A and there exists
a morphism g from c to d such that a = F(c) and b = F(d) and
〈c, d〉 6= ∅ and f = C(c, d, g).

The scheme CatIsomorphism deals with categories A, B, a unary functor F
yielding a set, and a ternary functor G yielding a set, and states that:

A and B are isomorphic
provided the parameters meet the following requirements:
• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms
f , g from a to b such that G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then there exist objects c, d of A and there exists
a morphism g from c to d such that a = F(c) and b = F(d) and
〈c, d〉 6= ∅ and f = G(c, d, g).

The scheme ContraBijectiveSch deals with categories A, B, a contravariant
functor C from A to B, a unary functor F yielding a set, and a ternary functor
C yielding a set, and states that:

C is bijective
provided the following conditions are met:
• For every object a of A holds C(a) = F(a),
• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every mor-

phism f from a to b holds C(f) = C(a, b, f),
• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms
f , g from a to b such that C(a, b, f) = C(a, b, g) holds f = g, and
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• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then there exist objects c, d of A and there exists
a morphism g from c to d such that b = F(c) and a = F(d) and
〈c, d〉 6= ∅ and f = C(c, d, g).

The scheme CatAntiIsomorphism deals with categories A, B, a unary functor
F yielding a set, and a ternary functor G yielding a set, and states that:

A, B are anti-isomorphic
provided the parameters meet the following conditions:
• There exists a contravariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f),

• For all objects a, b of A such that F(a) = F(b) holds a = b,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for all morphisms
f , g from a to b such that G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be objects of B. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b. Then there exist objects c, d of A and there exists
a morphism g from c to d such that b = F(c) and a = F(d) and
〈c, d〉 6= ∅ and f = G(c, d, g).

Let A, B be categories. We say that A and B are equivalent if and only if
the condition (Def. 2) is satisfied.

(Def. 2) There exists a covariant functor F from A to B and there exists a co-
variant functor G from B to A such that G · F and idA are naturally
equivalent and F ·G and idB are naturally equivalent.

Let us notice that the predicate A and B are equivalent is reflexive and sym-
metric.

The following propositions are true:

(3) Let A, B, C be non empty reflexive graphs, F1, F2 be feasible functor
structures from A to B, and G1, G2 be functor structures from B to C.
Suppose that

(i) the functor structure of F1 = the functor structure of F2, and
(ii) the functor structure of G1 = the functor structure of G2.

Then G1 · F1 = G2 · F2.

(4) Let A, B, C be categories. Suppose A and B are equivalent and B and
C are equivalent. Then A and C are equivalent.

(5) For all categories A, B such that A and B are isomorphic holds A and
B are equivalent.

Now we present two schemes. The scheme NatTransLambda deals with ca-
tegories A, B, covariant functors C, D from A to B, and a unary functor F
yielding a set, and states that:
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There exists a natural transformation t from C to D such that C
is naturally transformable to D and for every object a of A holds
t[a] = F(a)

provided the parameters have the following properties:
• For every object a of A holds F(a) ∈ 〈C(a),D(a)〉, and
• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism

from a to b and g1 be a morphism from C(a) to D(a). Suppose
g1 = F(a). Let g2 be a morphism from C(b) to D(b). If g2 = F(b),
then g2 · C(f) = D(f) · g1.

The scheme NatEquivalenceLambda deals with categories A, B, covariant
functors C, D from A to B, and a unary functor F yielding a set, and states
that:

There exists a natural equivalence t of C and D such that C and D
are naturally equivalent and for every object a of A holds t[a] =
F(a)

provided the following conditions are satisfied:
• Let a be an object ofA. Then F(a) ∈ 〈C(a),D(a)〉 and 〈D(a), C(a)〉 6=
∅ and for every morphism f from C(a) to D(a) such that f = F(a)
holds f is iso, and

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let f be a morphism
from a to b and g1 be a morphism from C(a) to D(a). Suppose
g1 = F(a). Let g2 be a morphism from C(b) to D(b). If g2 = F(b),
then g2 · C(f) = D(f) · g1.

3. Dual Categories

Let C1, C2 be non empty category structures. We say that C1 and C2 are
opposite if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) The carrier of C2 = the carrier of C1,
(ii) the arrows of C2 =x(the arrows of C1), and
(iii) for all objects a, b, c of C1 and for all objects a′, b′, c′ of C2 such

that a′ = a and b′ = b and c′ = c holds (the composition of C2)(a′, b′,
c′) =x(the composition of C1)(c, b, a).

Let us note that the predicate C1 and C2 are opposite is symmetric.
Next we state several propositions:

(6) For all non empty category structures A, B such that A and B are
opposite holds every object of A is an object of B.

(7) Let A, B be non empty category structures. Suppose A and B are op-
posite. Let a, b be objects of A and a′, b′ be objects of B. If a′ = a and
b′ = b, then 〈a, b〉 = 〈b′, a′〉.
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(8) Let A, B be non empty category structures. Suppose A and B are op-
posite. Let a, b be objects of A and a′, b′ be objects of B. If a′ = a and
b′ = b, then every morphism from a to b is a morphism from b′ to a′.

(9) Let C1, C2 be non empty transitive category structures. Then C1 and
C2 are opposite if and only if the following conditions are satisfied:

(i) the carrier of C2 = the carrier of C1, and
(ii) for all objects a, b, c of C1 and for all objects a′, b′, c′ of C2 such that

a′ = a and b′ = b and c′ = c holds 〈a, b〉 = 〈b′, a′〉 and if 〈a, b〉 6= ∅ and
〈b, c〉 6= ∅, then for every morphism f from a to b and for every morphism g

from b to c and for every morphism f ′ from b′ to a′ and for every morphism
g′ from c′ to b′ such that f ′ = f and g′ = g holds f ′ · g′ = g · f.

(10) Let A, B be categories. Suppose A and B are opposite. Let a be an
object of A and b be an object of B. If a = b, then ida = idb .

(11) Let C be a transitive non empty category structure. Then there exists a
strict transitive non empty category structure C ′ such that C and C ′ are
opposite.

(12) Let A, B be transitive non empty category structures. Suppose A and
B are opposite. If A is associative, then B is associative.

(13) For all transitive non empty category structures A, B such that A and
B are opposite holds if A has units, then B has units.

(14) Let C, C1, C2 be non empty category structures. Suppose C and C1 are
opposite. Then C and C2 are opposite if and only if the category structure
of C1 = the category structure of C2.

Let C be a transitive non empty category structure. The functor Cop yields
a strict transitive non empty category structure and is defined as follows:

(Def. 4) C and Cop are opposite.

Let C be an associative transitive non empty category structure. One can
check that Cop is associative.

Let C be a transitive non empty category structure with units. One can
verify that Cop has units.

Let A, B be categories. Let us assume that A and B are opposite. The
dualizing functor from A into B is a contravariant strict functor from A to B

and is defined by the conditions (Def. 5).

(Def. 5)(i) For every object a of A holds (the dualizing functor from A into
B)(a) = a, and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds (the dualizing functor from A into B)(f) = f.

Next we state two propositions:

(15) Let A, B be categories. Suppose A and B are opposite. Then (the duali-
zing functor from A into B) · (the dualizing functor from B into A) = idB.
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(16) Let A, B be categories. Suppose A and B are opposite. Then the duali-
zing functor from A into B is bijective.

Let A be a category. One can verify that the dualizing functor from A into
Aop is bijective and the dualizing functor from Aop into A is bijective.

Next we state a number of propositions:

(17) For all categories A, B such that A and B are opposite holds A, B are
anti-isomorphic.

(18) Let A, B, C be categories. Suppose A and B are opposite. Then A and
C are isomorphic if and only if B, C are anti-isomorphic.

(19) Let A, B, C, D be categories. Suppose A and B are opposite and C and
D are opposite. If A and C are isomorphic, then B and D are isomorphic.

(20) Let A, B, C, D be categories. Suppose A and B are opposite and C and
D are opposite. If A, C are anti-isomorphic, then B, D are anti-isomorphic.

(21) Let A, B be categories. Suppose A and B are opposite. Let a, b be objects
of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B. Suppose
a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a morphism
from b′ to a′. If f ′ = f, then f is retraction iff f ′ is coretraction.

(22) Let A, B be categories. Suppose A and B are opposite. Let a, b be objects
of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B. Suppose
a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a morphism
from b′ to a′. If f ′ = f, then f is coretraction iff f ′ is retraction.

(23) Let A, B be categories. Suppose A and B are opposite. Let a, b be
objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B.
Suppose a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be
a morphism from b′ to a′. If f ′ = f and f is retraction and coretraction,
then f ′−1 = f−1.

(24) Let A, B be categories. Suppose A and B are opposite. Let a, b be
objects of A. Suppose 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let a′, b′ be objects of B.
Suppose a′ = a and b′ = b. Let f be a morphism from a to b and f ′ be a
morphism from b′ to a′. If f ′ = f, then f is iso iff f ′ is iso.

(25) Let A, B, C, D be categories. Suppose A and B are opposite and C and
D are opposite. Let F , G be covariant functors from B to C. Suppose F

and G are naturally equivalent. Then (the dualizing functor from C into
D) · G · the dualizing functor from A into B and (the dualizing functor
from C into D) · F · the dualizing functor from A into B are naturally
equivalent.

(26) Let A, B, C, D be categories. Suppose A and B are opposite and C and
D are opposite. If A and C are equivalent, then B and D are equivalent.

Let A, B be categories. We say that A and B are dual if and only if:

(Def. 6) A and Bop are equivalent.
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Let us note that the predicate A and B are dual is symmetric.
We now state four propositions:

(27) For all categories A, B such that A, B are anti-isomorphic holds A and
B are dual.

(28) Let A, B, C be categories. Suppose A and B are opposite. Then A and
C are equivalent if and only if B and C are dual.

(29) For all categories A, B, C such that A and B are dual and B and C are
equivalent holds A and C are dual.

(30) For all categories A, B, C such that A and B are dual and B and C are
dual holds A and C are equivalent.

4. Concrete Categories

The following proposition is true

(31) For all sets X, Y , x holds x ∈ Y X iff x is a function and π1(x) = X and
π2(x) ⊆ Y.

Let C be a 1-sorted structure. A many sorted set indexed by C is a many
sorted set indexed by the carrier of C.

Let C be a category. We say that C is para-functional if and only if:

(Def. 7) There exists a many sorted set F indexed by C such that for all objects
a1, a2 of C holds 〈a1, a2〉 ⊆ F (a2)F (a1).

Let us note that every category which is quasi-functional is also para-functional.
Let C be a category and let a be a set. C-carrier of a is defined as follows:

(Def. 8)(i) There exists an object b of C such that b = a and C-carrier of a =
π1(idb) if a is an object of C,

(ii) C-carrier of a = ∅, otherwise.

Let C be a category and let a be an object of C. Then C-carrier of a can be
characterized by the condition:

(Def. 9) C-carrier of a = π1(ida).
We introduce the carrier of a as a synonym of C-carrier of a.

We now state two propositions:

(32) For every non empty set A and for every object a of EnsA holds the
identity morphism of a = the identity function on a.

(33) For every non empty set A and for every object a of EnsA holds the
carrier of a = a.

Let C be a category. We say that C is set-id-inheriting if and only if:

(Def. 10) For every object a of C holds ida = idthe carrier of a.
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Let A be a non empty set. Observe that EnsA is set-id-inheriting.
Let C be a category. We say that C is concrete if and only if:

(Def. 11) C is para-functional, semi-functional, and set-id-inheriting.

One can verify that every category which is concrete is also para-functional,
semi-functional, and set-id-inheriting and every category which is para-functional,
semi-functional, and set-id-inheriting is also concrete.

Let us mention that there exists a category which is concrete, quasi-functional,
and strict.

The following propositions are true:

(34) Let C be a category. Then C is para-functional if and only if for all
objects a1, a2 of C holds 〈a1, a2〉 ⊆ (the carrier of a2)the carrier of a1 .

(35) Let C be a para-functional category and a, b be objects of C. Suppose
〈a, b〉 6= ∅. Then every morphism from a to b is a function from the carrier
of a into the carrier of b.

Let A be a para-functional category and let a, b be objects of A. One can
verify that every morphism from a to b is function-like and relation-like.

We now state four propositions:

(36) Let C be a para-functional category and a, b be objects of C. Suppose
〈a, b〉 6= ∅. Let f be a morphism from a to b. Then dom f = the carrier of
a and rng f ⊆ the carrier of b.

(37) For every para-functional semi-functional category C and for every ob-
ject a of C holds the carrier of a = dom(ida).

(38) Let C be a para-functional semi-functional category and a, b, c be objects
of C. Suppose 〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b

and g be a morphism from b to c. Then g · f = (g qua function) · (f qua
function).

(39) Let C be a para-functional semi-functional category and a be an object
of C. If idthe carrier of a ∈ 〈a, a〉, then ida = idthe carrier of a.

Now we present several schemes. The scheme ConcreteCategoryLambda deals
with a non empty set A, a binary functor F yielding a set, and a unary functor
G yielding a set, and states that:

There exists a concrete strict category C such that
(i) the carrier of C = A,

(ii) for every object a of C holds the carrier of a = G(a), and
(iii) for all objects a, b of C holds 〈a, b〉 = F(a, b)

provided the following requirements are met:
• For all elements a, b, c of A and for all functions f , g such that

f ∈ F(a, b) and g ∈ F(b, c) holds g · f ∈ F(a, c),
• For all elements a, b of A holds F(a, b) ⊆ G(b)G(a), and
• For every element a of A holds idG(a) ∈ F(a, a).
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The scheme ConcreteCategoryQuasiLambda deals with a non empty set A,

a unary functor F yielding a set, and a ternary predicate P, and states that:
There exists a concrete strict category C such that
(i) the carrier of C = A,

(ii) for every object a of C holds the carrier of a = F(a), and
(iii) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ]

provided the parameters satisfy the following conditions:
• For all elements a, b, c of A and for all functions f , g such that
P[a, b, f ] and P[b, c, g] holds P[a, c, g · f ], and

• For every element a of A holds P[a, a, idF(a)].
The scheme ConcreteCategoryEx deals with a non empty set A, a unary

functor F yielding a set, a binary predicate P, and a ternary predicate Q, and
states that:

There exists a concrete strict category C such that
(i) the carrier of C = A,

(ii) for every object a of C and for every set x holds x ∈ the
carrier of a iff x ∈ F(a) and P[a, x], and
(iii) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C)(a, b) iff f ∈ (C-carrier of b)C-carrier of a and
Q[a, b, f ]

provided the following requirements are met:
• For all elements a, b, c of A and for all functions f , g such that
Q[a, b, f ] and Q[b, c, g] holds Q[a, c, g · f ], and

• Let a be an element of A and X be a set. If for every set x holds
x ∈ X iff x ∈ F(a) and P[a, x], then Q[a, a, idX ].

The scheme ConcreteCategoryUniq1 deals with a non empty set A and a
binary functor F yielding a set, and states that:

Let C1, C2 be para-functional semi-functional categories. Suppose
that
(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 holds 〈a, b〉 = F(a, b),
(iii) the carrier of C2 = A, and
(iv) for all objects a, b of C2 holds 〈a, b〉 = F(a, b).

Then the category structure of C1 = the category structure of
C2

for all values of the parameters.
The scheme ConcreteCategoryUniq2 deals with a non empty set A, a unary

functor F yielding a set, and a ternary predicate P, and states that:
Let C1, C2 be para-functional semi-functional categories. Suppose
that
(i) the carrier of C1 = A,
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(ii) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C1)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ],
(iii) the carrier of C2 = A, and
(iv) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C2)(a, b) iff f ∈ F(b)F(a) and P[a, b, f ].

Then the category structure of C1 = the category structure of
C2

for all values of the parameters.
The scheme ConcreteCategoryUniq3 deals with a non empty set A, a unary

functor F yielding a set, a binary predicate P, and a ternary predicate Q, and
states that:

Let C1, C2 be para-functional semi-functional categories. Suppose
that
(i) the carrier of C1 = A,

(ii) for every object a of C1 and for every set x holds x ∈ the
carrier of a iff x ∈ F(a) and P[a, x],
(iii) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C1)(a, b) iff f ∈ (C1-carrier of b)C1-carrier of a

and Q[a, b, f ],
(iv) the carrier of C2 = A,

(v) for every object a of C2 and for every set x holds x ∈ the
carrier of a iff x ∈ F(a) and P[a, x], and
(vi) for all elements a, b of A and for every function f holds
f ∈ (the arrows of C2)(a, b) iff f ∈ (C2-carrier of b)C2-carrier of a

and Q[a, b, f ].
Then the category structure of C1 = the category structure of

C2

for all values of the parameters.

5. Equivalence Between Concrete Categories

One can prove the following propositions:

(40) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅
and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is retraction, then
rng f = the carrier of b.

(41) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅
and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is coretraction, then
f is one-to-one.



concrete categories 619

(42) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅
and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then f is one-
to-one and rng f = the carrier of b.

(43) Let C be a para-functional semi-functional category and a, b be objects
of C. Suppose 〈a, b〉 6= ∅. Let f be a morphism from a to b. If f is one-to-one
and (f qua function) −1 ∈ 〈b, a〉, then f is iso.

(44) Let C be a concrete category and a, b be objects of C. Suppose 〈a, b〉 6= ∅
and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then f−1 =
(f qua function) −1.

The scheme ConcreteCatEquivalence deals with para-functional semi-functional
categories A, B, two unary functors F and G yielding sets, two ternary functors
H and I yielding functions, and two unary functors A and B yielding functions,
and states that:

A and B are equivalent
provided the following conditions are met:
• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = H(a, b, f),

• There exists a covariant functor G from B to A such that
(i) for every object a of B holds G(a) = G(a), and
(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds G(f) = I(a, b, f),

• For all objects a, b of A such that a = G(F(b)) holds A(b) ∈ 〈a, b〉
and A(b)−1 ∈ 〈b, a〉 and A(b) is one-to-one,

• For all objects a, b of B such that b = F(G(a)) holds B(a) ∈ 〈a, b〉
and B(a)−1 ∈ 〈b, a〉 and B(a) is one-to-one,

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds A(b) · I(F(a),F(b),H(a, b, f)) =
f · A(a), and

• For all objects a, b of B such that 〈a, b〉 6= ∅ and for every mor-
phism f from a to b holds H(G(a),G(b), I(a, b, f))·B(a) = B(b)·f.

6. Concretization of Categories

Let C be a category. The concretized C is a concrete strict category and is
defined by the conditions (Def. 12).

(Def. 12)(i) The carrier of the concretized C = the carrier of C,
(ii) for every object a of the concretized C and for every set x holds x ∈ the

carrier of a iff x ∈ Union disjoint (the arrows of C) and a = x2,2, and
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(iii) for all elements a, b of the carrier of C and for every function f holds f ∈
(the arrows of the concretized C)(a, b) iff f ∈ ((the concretized C)-carrier
of b)(the concretized C)-carrier of a and there exist objects f1, f2 of C and there
exists a morphism g from f1 to f2 such that f1 = a and f2 = b and
〈f1, f2〉 6= ∅ and for every object o of C such that 〈o, f1〉 6= ∅ and for every
morphism h from o to f1 holds f(〈〈h, 〈〈o, f1〉〉〉〉) = 〈〈g · h, 〈〈o, f2〉〉〉〉.

One can prove the following proposition

(45) Let A be a category, a be an object of A, and x be a set. Then x ∈
(the concretized A)-carrier of a if and only if there exists an object b of A

and there exists a morphism f from b to a such that 〈b, a〉 6= ∅ and x = 〈〈f,

〈〈b, a〉〉〉〉.
Let A be a category and let a be an object of A. Observe that (the concretized

A)-carrier of a is non empty.
One can prove the following two propositions:

(46) Let A be a category and a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let
f be a morphism from a to b. Then there exists a function F from (the
concretized A)-carrier of a into (the concretized A)-carrier of b such that

(i) F ∈ (the arrows of the concretized A)(a, b), and
(ii) for every object c of A and for every morphism g from c to a such that
〈c, a〉 6= ∅ holds F (〈〈g, 〈〈c, a〉〉〉〉) = 〈〈f · g, 〈〈c, b〉〉〉〉.

(47) Let A be a category and a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let
F1, F2 be functions. Suppose that

(i) F1 ∈ (the arrows of the concretized A)(a, b),
(ii) F2 ∈ (the arrows of the concretized A)(a, b), and
(iii) F1(〈〈 ida, 〈〈a, a〉〉〉〉) = F2(〈〈 ida, 〈〈a, a〉〉〉〉).

Then F1 = F2.

The scheme NonUniqMSFunctionEx deals with a set A, many sorted sets B,

C indexed by A, and a ternary predicate P, and states that:
There exists a many sorted function F from B into C such that
for all sets i, x if i ∈ A and x ∈ B(i), then F (i)(x) ∈ C(i) and
P[i, x, F (i)(x)]

provided the following condition is met:
• For all sets i, x such that i ∈ A and x ∈ B(i) there exists a set y

such that y ∈ C(i) and P[i, x, y].
Let A be a category. The concretization of A is a covariant strict functor

from A to the concretized A and is defined by the conditions (Def. 13).

(Def. 13)(i) For every object a of A holds (the concretization of A)(a) = a, and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds (the concretization of A)(f)(〈〈 ida, 〈〈a, a〉〉〉〉) = 〈〈f, 〈〈a, b〉〉〉〉.
Let A be a category. One can check that the concretization of A is bijective.
The following proposition is true
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(48) For every category A holds A and the concretized A are isomorphic.
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The terminology and notation used in this paper have been introduced in the
following articles: [1], [3], [4], [5], [9], [2], [10], [12], [11], [7], [6], and [8].

1. Preliminaries

Let X, Y be sets and let R, S be relations between X and Y . Let us observe
that R ⊆ S if and only if:

(Def. 1) For every element x of X and for every element y of Y such that 〈〈x,

y〉〉 ∈ R holds 〈〈x, y〉〉 ∈ S.

For simplicity, we adopt the following rules: Y is a non empty set, a is an
element of BooleanY , G is a subset of PARTITIONS(Y ), and P , Q are partitions
of Y .

Let Y be a non empty set and let G be a non empty subset of PARTITIONS(Y ).
We see that the element of G is a partition of Y .

One can prove the following propositions:

(1)
∧ ∅PARTITIONS(Y ) = O(Y ).

(2) For all equivalence relations R, S of Y holds R ∪ S ⊆ R · S.

(3) For every binary relation R on Y holds R ⊆ ∇Y .

(4) For every equivalence relation R of Y holds ∇Y ·R = ∇Y and R · ∇Y =
∇Y .
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(5) For every partition P of Y and for all elements x, y of Y holds 〈〈x,

y〉〉 ∈ ≡P iff x ∈ EqClass(y, P ).
(6) Let P , Q, R be partitions of Y . Suppose ≡R = ≡P · ≡Q. Let x, y be

elements of Y . Then x ∈ EqClass(y,R) if and only if there exists an
element z of Y such that x ∈ EqClass(z, P ) and z ∈ EqClass(y,Q).

(7) Let R, S be binary relations and Y be a set. If R is reflexive in Y and
S is reflexive in Y , then R · S is reflexive in Y .

(8) For every binary relation R and for every set Y such that R is reflexive
in Y holds Y ⊆ field R.

(9) For every set Y and for every binary relation R on Y such that R is
reflexive in Y holds Y = field R.

(10) For all equivalence relations R, S of Y such that R ·S = S ·R holds R ·S
is an equivalence relation of Y .

2. Boolean-Valued Functions

The following propositions are true:

(11) For all elements a, b of BooleanY such that a b b holds ¬b b ¬a.

(12) For every element a of BooleanY and for every subset G of
PARTITIONS(Y ) and for every partition A of Y holds ∀a,AG b a.

(13) Let a, b be elements of BooleanY , G be a subset of PARTITIONS(Y ),
and P be a partition of Y . If a b b, then ∀a,P G b ∀b,P G.

(14) For every element a of BooleanY and for every subset G of
PARTITIONS(Y ) and for every partition A of Y holds a b ∃a,AG.

(15) Let a, b be elements of BooleanY , G be a subset of PARTITIONS(Y ),
and P be a partition of Y . If a b b, then ∃a,P G b ∃b,P G.

3. Independent Classes of Partitions

One can prove the following four propositions:

(16) If G is independent, then for all subsets P , Q of PARTITIONS(Y ) such
that P ⊆ G and Q ⊆ G holds ≡VP · ≡VQ = ≡VQ · ≡VP .

(17) If G is independent, then ∀∀a,P G,QG = ∀∀a,QG,P G.

(18) If G is independent, then ∃∃a,P G,QG = ∃∃a,QG,P G.

(19) Let a be an element of BooleanY , G be a subset of PARTITIONS(Y ), and
P , Q be partitions of Y . If G is independent, then ∃∀a,P G,QG b ∀∃a,QG,P G.
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Summary. The article is the second part of a paper proving the funda-
mental Urysohn Theorem concerning the existence of a real valued continuous
function on a normal topological space. The paper is divided into two parts. In
the first part, we introduce some definitions and theorems concerning properties
of intervals; in the second we prove some of properties of dyadic numbers used
in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

The terminology and notation used here have been introduced in the following
articles: [9], [10], [11], [3], [4], [8], [7], [6], [12], [1], [2], and [5].

The following proposition is true

(1) For every interval A such that A 6= ∅ holds if inf A < sup A, then
vol(A) = sup A− inf A and if sup A = inf A, then vol(A) = 0R.

Let A be a subset of R and let x be a real number. The functor x ·A yielding
a subset of R is defined as follows:

(Def. 1) For every real number y holds y ∈ x · A iff there exists a real number z

such that z ∈ A and y = x · z.

Next we state a number of propositions:

(2) For every subset A of R and for every real number x such that x 6= 0
holds x−1 · (x ·A) = A.

(3) For every real number x such that x 6= 0 and for every subset A of R
such that A = R holds x ·A = A.

(4) For every subset A of R such that A 6= ∅ holds 0 ·A = {0}.
(5) For every subset A of R such that A 6= ∅ holds 0 ·A = {0}.
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(6) For every real number x holds x · ∅ = ∅.
(7) For every real number y holds y < 0 or y = 0 or 0 < y.

(8) Let a, b be extended real numbers. Suppose a ¬ b. Then a = −∞ and
b = −∞ or a = −∞ and b ∈ R or a = −∞ and b = +∞ or a ∈ R and
b ∈ R or a ∈ R and b = +∞ or a = +∞ and b = +∞.

(9) For every extended real number x holds [x, x] is an interval.

(10) For every interval A holds 0 ·A is an interval.

(11) For all real numbers q, x such that x 6= 0 holds q = x · q
x .

(12) For all real numbers p, q, x such that 0 < x and x · p < x · q holds p < q.

(13) For all real numbers p, q, x such that x < 0 and x · p < x · q holds q < p.

(14) For all real numbers p, q, x such that 0 < x and x · p ¬ x · q holds p ¬ q.

(15) For all real numbers p, q, x such that x < 0 and x · p ¬ x · q holds q ¬ p.

(16) Let A be an interval and x be a real number. If x 6= 0, then if A is open
interval, then x ·A is open interval.

(17) Let A be an interval and x be a real number. If x 6= 0, then if A is closed
interval, then x ·A is closed interval.

(18) Let A be an interval and x be a real number. Suppose 0 < x. If A is
right open interval, then x ·A is right open interval.

(19) Let A be an interval and x be a real number. Suppose x < 0. If A is
right open interval, then x ·A is left open interval.

(20) Let A be an interval and x be a real number. Suppose 0 < x. If A is left
open interval, then x ·A is left open interval.

(21) Let A be an interval and x be a real number. Suppose x < 0. If A is left
open interval, then x ·A is right open interval.

(22) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose
0 < x. Let B be an interval. Suppose B = x·A. Suppose A = [inf A, sup A].
Then B = [inf B, sup B] and for all real numbers s, t such that s = inf A

and t = sup A holds inf B = x · s and sup B = x · t.
(23) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = ]inf A, sup A].
Then B = ]inf B, sup B] and for all real numbers s, t such that s = inf A

and t = sup A holds inf B = x · s and sup B = x · t.
(24) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = ]inf A, sup A[.
Then B = ]inf B, sup B[ and for all real numbers s, t such that s = inf A

and t = sup A holds inf B = x · s and sup B = x · t.
(25) Let A be an interval. Suppose A 6= ∅. Let x be a real number. Suppose

0 < x. Let B be an interval. Suppose B = x·A. Suppose A = [inf A, sup A[.
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Then B = [inf B, sup B[ and for all real numbers s, t such that s = inf A

and t = sup A holds inf B = x · s and sup B = x · t.
(26) For every interval A and for every real number x holds x·A is an interval.

Let A be an interval and let x be a real number. Observe that x·A is interval.
The following propositions are true:

(27) Let A be an interval and x be a real number. If 0 ¬ x, then for every
real number y such that y = vol(A) holds x · y = vol(x ·A).

(28) For all real numbers x, y, z such that x < y and y ¬ z or x ¬ y and
y < z holds x < z.

(29) For every natural number n holds n < 2n.

(30) For every integer n such that 0 ¬ n holds n is a natural number.

(31) For all natural numbers n, m such that n < m holds 2n < 2m.

(32) For every real number e1 such that 0 < e1 there exists a natural number
n such that 1 < 2n · e1.

(33) For all real numbers a, b such that 0 ¬ a and 1 < b − a there exists a
natural number n such that a < n and n < b.

(34) For every integer n such that 0 < n holds n is a natural number.

(35) For every rational number n such that 0 ¬ n holds 0 ¬ num n.

(36) For every rational number n such that 0 < n holds 0 < num n.

(37) For all real numbers a, b, c, d such that 0 < b and 0 < d or b < 0 and
d < 0 holds if a

b < c
d , then a · d < c · b.

(38) For every natural number n holds dyadic(n) ⊆ DYADIC .

(39) For all real numbers a, b such that a < b and 0 ¬ a and b ¬ 1 there
exists a real number c such that c ∈ DYADIC and a < c and c < b.

(40) For all real numbers a, b such that a < b there exists a real number c

such that c ∈ DOM and a < c and c < b.

(41) For every non empty subset A of R and for all extended real numbers a,
b such that A ⊆ [a, b] holds a ¬ inf A and sup A ¬ b.

(42) 0 ∈ DYADIC and 1 ∈ DYADIC .

(43) For all extended real numbers a, b such that a = 0 and b = 1 holds
DYADIC ⊆ [a, b].

(44) For all natural numbers n, k such that n ¬ k holds dyadic(n) ⊆
dyadic(k).

(45) For all real numbers a, b, c, d such that a < c and c < b and a < d and
d < b holds |d− c| < b− a.

(46) Let e1 be a real number. Suppose 0 < e1. Let d be a real number.
Suppose 0 < d and d ¬ 1. Then there exist real numbers r1, r2 such that
r1 ∈ DYADIC∪R>1 and r2 ∈ DYADIC∪R>1 and 0 < r1 and r1 < d and
d < r2 and r2 − r1 < e1.
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and [5].

Let D be a non empty subset of R. One can check that every element of D

is real.
One can prove the following proposition

(1) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A∩B = ∅. Let n be a natural number. Then there exists a function G from
dyadic(n) into 2the carrier of T such that for all elements r1, r2 of dyadic(n)
if r1 < r2, then G(r1) is open and G(r2) is open and G(r1) ⊆ G(r2) and
A ⊆ G(0) and B = ΩT \G(1).

Let T be a non empty topological space, let A, B be subsets of T , and let n be
a natural number. Let us assume that T is a T4 space and A 6= ∅ and A is closed
and B is closed and A ∩ B = ∅. A function from dyadic(n) into 2the carrier of T

is said to be a drizzle of A, B, n if it satisfies the condition (Def. 1).

(Def. 1) Let r1, r2 be elements of dyadic(n). Suppose r1 < r2. Then it(r1) is open
and it(r2) is open and it(r1) ⊆ it(r2) and A ⊆ it(0) and B = ΩT \ it(1).
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One can prove the following propositions:

(2) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩ B = ∅. Let n be a natural number and D be a drizzle of A, B, n.
Then A ⊆ D(0) and B = ΩT \D(1).

(3) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩ B = ∅. Let n be a natural number and G be a drizzle of A, B, n.
Then there exists a drizzle F of A, B, n + 1 such that for every element r

of dyadic(n + 1) if r ∈ dyadic(n), then F (r) = G(r).
Let A, B be non empty sets, let F be a function from N into A→̇B, and let

n be a natural number. Then F (n) is a partial function from A to B.
Next we state the proposition

(4) Let T be a non empty topological space, A, B be subsets of T , and
n be a natural number. Then every drizzle of A, B, n is an element of
DYADIC →̇2the carrier of T .

Let A, B be non empty sets, let F be a function from N into A→̇B, and let
n be a natural number. Then F (n) is an element of A→̇B.

One can prove the following proposition

(5) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed
and A ∩ B = ∅. Then there exists a sequence F of partial functions from
DYADIC into 2the carrier of T such that for every natural number n holds
F (n) is a drizzle of A, B, n and for every element r of dom F (n) holds
F (n)(r) = F (n + 1)(r).

Let T be a non empty topological space and let A, B be subsets of T . Let
us assume that T is a T4 space and A 6= ∅ and A is closed and B is closed and
A∩B = ∅. A sequence of partial functions from DYADIC into 2the carrier of T is
said to be a rain of A, B if it satisfies the condition (Def. 2).

(Def. 2) Let n be a natural number. Then it(n) is a drizzle of A, B, n and for
every element r of dom it(n) holds it(n)(r) = it(n + 1)(r).

Let x be a real number. Let us assume that x ∈ DYADIC . The functor
InfDyadic x yields a natural number and is defined by:

(Def. 3) x ∈ dyadic(0) iff InfDyadic x = 0 and for every natural number n such
that x ∈ dyadic(n + 1) and x /∈ dyadic(n) holds InfDyadic x = n + 1.

The following propositions are true:

(6) For every real number x such that x ∈ DYADIC holds x ∈
dyadic(InfDyadic x).

(7) For every real number x such that x ∈ DYADIC and for every natural
number n such that InfDyadic x ¬ n holds x ∈ dyadic(n).
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(8) For every real number x such that x ∈ DYADIC and for every natural
number n such that x ∈ dyadic(n) holds InfDyadic x ¬ n.

(9) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed
and A ∩ B = ∅. Let G be a rain of A, B and x be a real number. If
x ∈ DYADIC, then for every natural number n holds G(InfDyadic x)(x) =
G(InfDyadic x + n)(x).

(10) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩ B = ∅. Let G be a rain of A, B and x be a real number. Suppose
x ∈ DYADIC . Then there exists an element y of 2the carrier of T such that
for every natural number n if x ∈ dyadic(n), then y = G(n)(x).

(11) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩B = ∅. Let G be a rain of A, B. Then there exists a function F from
DOM into 2the carrier of T such that for every real number x holds

(i) if x ∈ R<0, then F (x) = ∅,
(ii) if x ∈ R>1, then F (x) = the carrier of T , and
(iii) if x ∈ DYADIC, then for every natural number n such that x ∈

dyadic(n) holds F (x) = G(n)(x).
Let T be a non empty topological space and let A, B be subsets of T . Let

us assume that T is a T4 space and A 6= ∅ and A is closed and B is closed and
A∩B = ∅. Let R be a rain of A, B. The functor Tempest R yielding a function
from DOM into 2the carrier of T is defined by the condition (Def. 4).

(Def. 4) Let x be a real number such that x ∈ DOM . Then
(i) if x ∈ R<0, then (Tempest R)(x) = ∅,
(ii) if x ∈ R>1, then (Tempest R)(x) = the carrier of T , and
(iii) if x ∈ DYADIC, then for every natural number n such that x ∈

dyadic(n) holds (Tempest R)(x) = R(n)(x).
Let X be a non empty set, let T be a topological space, let F be a function

from X into 2the carrier of T , and let x be an element of X. Then F (x) is a subset
of T .

One can prove the following three propositions:

(12) Let T be a non empty topological space and A, B be subsets of T .
Suppose T is a T4 space and A 6= ∅ and A is closed and B is closed and
A ∩B = ∅. Let G be a rain of A, B and r be a real number. If r ∈ DOM,

then for every subset C of T such that C = (Tempest G)(r) holds C is
open.

(13) Let T be a non empty topological space and A, B be subsets of T .
Suppose T is a T4 space and A 6= ∅ and A is closed and B is closed and
A ∩ B = ∅. Let G be a rain of A, B and r1, r2 be real numbers. Suppose
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r1 ∈ DOM and r2 ∈ DOM and r1 < r2. Let C be a subset of T . If
C = (Tempest G)(r1), then C ⊆ (Tempest G)(r2).

(14) Let T be a non empty topological space, A, B be subsets of T , G be a
rain of A, B, and p be a point of T . Then there exists a subset R of R such
that for every set x holds x ∈ R if and only if the following conditions are
satisfied:

(i) x ∈ DYADIC, and
(ii) for every real number s such that s = x holds p /∈ (Tempest G)(s).

Let T be a non empty topological space, let A, B be subsets of T , let R be
a rain of A, B, and let p be a point of T . The functor Rainbow(p,R) yielding a
subset of R is defined by:

(Def. 5) For every set x holds x ∈ Rainbow(p,R) iff x ∈ DYADIC and for every
real number s such that s = x holds p /∈ (Tempest R)(s).

Let T , S be non empty topological spaces, let F be a function from the
carrier of T into the carrier of S, and let p be a point of T . Then F (p) is a point
of S.

One can prove the following propositions:

(15) Let T be a non empty topological space, A, B be subsets of T , G be a
rain of A, B, and p be a point of T . Then Rainbow(p,G) ⊆ DYADIC .

(16) Let T be a non empty topological space, A, B be subsets of T , and R

be a rain of A, B. Then there exists a map F from T into R1 such that
for every point p of T holds
if Rainbow(p,R) = ∅, then F (p) = 0 and for every non empty subset S of
R such that S = Rainbow(p, R) holds F (p) = sup S.

Let T be a non empty topological space, let A, B be subsets of T , and let
R be a rain of A, B. The functor Thunder R yielding a map from T into R1 is
defined by the condition (Def. 6).

(Def. 6) Let p be a point of T . Then if Rainbow(p,R) = ∅, then (Thunder R)(p) =
0 and for every non empty subset S of R such that S = Rainbow(p,R)
holds (Thunder R)(p) = sup S.

Let T be a non empty topological space, let F be a map from T into R1,
and let p be a point of T . Then F (p) is a real number.

One can prove the following propositions:

(17) Let T be a non empty topological space, A, B be subsets of T , G be a
rain of A, B, p be a point of T , and S be a non empty subset of R. Suppose
S = Rainbow(p,G). Let `1 be an extended real number. If `1 = 1, then
0R ¬ sup S and sup S ¬ `1.

(18) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A∩B = ∅. Let G be a rain of A, B, r be an element of DOM, and p be a
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point of T . If (Thunder G)(p) < r, then p ∈ (Tempest G)(r).

(19) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed
and A∩B = ∅. Let G be a rain of A, B and r be a real number. Suppose
r ∈ DYADIC∪R>1 and 0 < r. Let p be a point of T . If p ∈ (Tempest G)(r),
then (Thunder G)(p) ¬ r.

(20) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed
and A ∩ B = ∅. Let G be a rain of A, B, n be a natural number, and r1

be an element of DOM. If 0 < r1, then for every point p of T such that
r1 < (Thunder G)(p) holds p /∈ (Tempest G)(r1).

(21) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩B = ∅. Let G be a rain of A, B. Then

(i) Thunder G is continuous, and
(ii) for every point x of T holds 0 ¬ (Thunder G)(x) and (Thunder G)(x) ¬

1 and if x ∈ A, then (Thunder G)(x) = 0 and if x ∈ B, then
(Thunder G)(x) = 1.

(22) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A 6= ∅ and A is closed and B is closed and
A ∩B = ∅. Then there exists a map F from T into R1 such that

(i) F is continuous, and
(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.

(23) Let T be a non empty topological space. Suppose T is a T4 space. Let
A, B be subsets of T . Suppose A is closed and B is closed and A∩B = ∅.
Then there exists a map F from T into R1 such that

(i) F is continuous, and
(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.

(24) Let T be a non empty topological space. Suppose T is a T2 space and
compact. Let A, B be subsets of T . Suppose A is closed and B is closed
and A ∩B = ∅. Then there exists a map F from T into R1 such that

(i) F is continuous, and
(ii) for every point x of T holds 0 ¬ F (x) and F (x) ¬ 1 and if x ∈ A, then

F (x) = 0 and if x ∈ B, then F (x) = 1.
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Summary. In this paper we define the algebra of formal power series and
the algebra of polynomials over an arbitrary field and prove some properties of
these structures. We also formulate and prove theorems showing some general
properties of sequences. These preliminaries will be used for defining and consi-
dering linear functionals on the algebra of polynomials.
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The notation and terminology used here are introduced in the following papers:
[9], [13], [1], [2], [3], [12], [8], [7], [11], [16], [5], [14], [10], [15], [6], and [4].

1. Preliminaries

Let F be a 1-sorted structure. We introduce algebra structures over F which
are extensions of double loop structure and vector space structure over F and
are systems
〈 a carrier, an addition, a multiplication, a reverse-map, a zero, a unity, a

left multiplication 〉,
where the carrier is a set, the addition and the multiplication are binary ope-
rations on the carrier, the reverse-map is a unary operation on the carrier, the
zero and the unity are elements of the carrier, and the left multiplication is a
function from [: the carrier of F , the carrier :] into the carrier.

Let L be a non empty double loop structure. Note that there exists an
algebra structure over L which is strict and non empty.

Let L be a non empty double loop structure and let A be a non empty
algebra structure over L. We say that A is mix-associative if and only if:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(Def. 1) For every element a of L and for all elements x, y of A holds a · (x · y) =
(a · x) · y.

Let L be a non empty double loop structure. Note that there exists a non
empty algebra structure over L which is well unital, distributive, vector space-
like, and mix-associative.

Let L be a non empty double loop structure. An algebra of L is a well unital
distributive vector space-like mix-associative non empty algebra structure over
L.

Next we state two propositions:

(1) For all sets X, Y and for every function f from [:X, Y :] into X holds
dom f = [:X, Y :].

(2) For all sets X, Y and for every function f from [:X, Y :] into Y holds
dom f = [:X, Y :].

2. The Algebra of Formal Power Series

Let L be a non empty double loop structure. The functor Formal-Series L

yields a strict non empty algebra structure over L and is defined by the condi-
tions (Def. 2).

(Def. 2) For every set x holds x ∈ the carrier of Formal-Series L iff x is a sequence
of L and for all elements x, y of the carrier of Formal-Series L and for all
sequences p, q of L such that x = p and y = q holds x + y = p + q and for
all elements x, y of the carrier of Formal-Series L and for all sequences p,
q of L such that x = p and y = q holds x · y = p ∗ q and for every element
x of the carrier of Formal-Series L and for every sequence p of L such that
x = p holds −x = −p and for every element a of L and for every element
x of the carrier of Formal-Series L and for every sequence p of L such that
x = p holds a ·x = a ·p and 0Formal-Series L = 0. L and 1Formal-Series L = 1. L.

Let L be an Abelian non empty double loop structure. Note that
Formal-Series L is Abelian.

Let L be an add-associative non empty double loop structure. Note that
Formal-Series L is add-associative.

Let L be a right zeroed non empty double loop structure. Note that
Formal-Series L is right zeroed.

Let L be an add-associative right zeroed right complementable non empty
double loop structure. Note that Formal-Series L is right complementable.

Let L be an Abelian add-associative right zeroed commutative non empty
double loop structure. Observe that Formal-Series L is commutative.
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Let L be an Abelian add-associative right zeroed right complementable
unital associative distributive non empty double loop structure. Note that
Formal-Series L is associative.

Let L be an add-associative right zeroed right complementable right unital
right distributive non empty double loop structure. Note that Formal-Series L

is right unital.
One can verify that there exists a non empty double loop structure which

is add-associative, associative, right zeroed, left zeroed, right unital, left unital,
right complementable, and distributive.

We now state three propositions:

(3) For every non empty set D and for every non empty finite sequence f of
elements of D holds fº1 = f¹1.

(4) For every non empty set D and for every non empty finite sequence f of
elements of D holds f = 〈f(1)〉 a (f¹1).

(5) Let L be an add-associative right zeroed left unital right complementable
left distributive non empty double loop structure and p be a sequence of
L. Then 1. L ∗ p = p.

Let L be an add-associative right zeroed right complementable left uni-
tal left distributive non empty double loop structure. One can verify that
Formal-Series L is left unital.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive non empty double loop structure. One can check that Formal-Series L

is right distributive and Formal-Series L is left distributive.
We now state four propositions:

(6) Let L be an Abelian add-associative right zeroed right complementable
distributive non empty double loop structure, a be an element of L, and
p, q be sequences of L. Then a · (p + q) = a · p + a · q.

(7) Let L be an Abelian add-associative right zeroed right complementable
distributive non empty double loop structure, a, b be elements of L, and
p be a sequence of L. Then (a + b) · p = a · p + b · p.

(8) Let L be an associative non empty double loop structure, a, b be elements
of L, and p be a sequence of L. Then (a · b) · p = a · (b · p).

(9) Let L be an associative left unital non empty double loop structure and
p be a sequence of L. Then (the unity of L) · p = p.

Let L be an Abelian add-associative associative right zeroed right comple-
mentable left unital distributive non empty double loop structure. One can check
that Formal-Series L is vector space-like.

We now state the proposition

(10) Let L be an Abelian left zeroed add-associative associative right zeroed
right complementable distributive non empty double loop structure, a be
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an element of L, and p, q be sequences of L. Then a · (p ∗ q) = (a · p) ∗ q.

Let L be an Abelian left zeroed add-associative associative right zeroed right
complementable distributive non empty double loop structure. One can verify
that Formal-Series L is mix-associative.

Let L be a left zeroed right zeroed add-associative left unital right unital
right complementable distributive non empty double loop structure. Observe
that Formal-Series L is well unital.

Let L be a 1-sorted structure and let A be an algebra structure over L.
An algebra structure over L is said to be a subalgebra of A if it satisfies the
conditions (Def. 3).

(Def. 3) The carrier of it ⊆ the carrier of A and 1it = 1A and 0it = 0A and the
addition of it = (the addition of A)¹[: the carrier of it, the carrier of it :]
and the multiplication of it = (the multiplication of A)¹[: the carrier of it,
the carrier of it :] and the reverse-map of it = (the reverse-map of A)¹(the
carrier of it) and the left multiplication of it = (the left multiplication of
A)¹[: the carrier of L, the carrier of it :].

We now state four propositions:

(11) For every 1-sorted structure L holds every algebra structure A over L is
a subalgebra of A.

(12) Let L be a 1-sorted structure and A, B, C be algebra structures over L.
Suppose A is a subalgebra of B and B is a subalgebra of C. Then A is a
subalgebra of C.

(13) Let L be a 1-sorted structure and A, B be algebra structures over L.
Suppose A is a subalgebra of B and B is a subalgebra of A. Then the
algebra structure of A = the algebra structure of B.

(14) Let L be a 1-sorted structure and A, B be algebra structures over L.
Suppose the algebra structure of A = the algebra structure of B. Then A

is a subalgebra of B and B is a subalgebra of A.

Let L be a non empty 1-sorted structure. Observe that there exists an algebra
structure over L which is non empty and strict.

Let L be a 1-sorted structure and let B be an algebra structure over L.
Observe that there exists a subalgebra of B which is strict.

Let L be a non empty 1-sorted structure and let B be a non empty algebra
structure over L. Note that there exists a subalgebra of B which is strict and
non empty.

Let L be a non empty groupoid, let B be a non empty algebra structure over
L, and let A be a subset of B. We say that A is operations closed if and only if
the conditions (Def. 4) are satisfied.

(Def. 4)(i) A is linearly closed,
(ii) for all elements x, y of B such that x ∈ A and y ∈ A holds x · y ∈ A,
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(iii) for every element x of B such that x ∈ A holds −x ∈ A,

(iv) 1B ∈ A, and
(v) 0B ∈ A.

The following propositions are true:

(15) Let L be a non empty groupoid, B be a non empty algebra structure
over L, A be a non empty subalgebra of B, x, y be elements of the carrier
of B, and x′, y′ be elements of the carrier of A. If x = x′ and y = y′, then
x + y = x′ + y′.

(16) Let L be a non empty groupoid, B be a non empty algebra structure
over L, A be a non empty subalgebra of B, x, y be elements of the carrier
of B, and x′, y′ be elements of the carrier of A. If x = x′ and y = y′, then
x · y = x′ · y′.

(17) Let L be a non empty groupoid, B be a non empty algebra structure
over L, A be a non empty subalgebra of B, a be an element of the carrier
of L, x be an element of the carrier of B, and x′ be an element of the
carrier of A. If x = x′, then a · x = a · x′.

(18) Let L be a non empty groupoid, B be a non empty algebra structure
over L, A be a non empty subalgebra of B, x be an element of the carrier
of B, and x′ be an element of the carrier of A. If x = x′, then −x = −x′.

(19) Let L be a non empty groupoid, B be a non empty algebra structure
over L, and A be a non empty subalgebra of B. Then there exists a subset
C of B such that the carrier of A = C and C is operations closed.

(20) Let L be a non empty groupoid, B be a non empty algebra structure
over L, and A be a subset of B. Suppose A is operations closed. Then
there exists a strict subalgebra C of B such that the carrier of C = A.

(21) Let L be a non empty groupoid, B be a non empty algebra structure over
L, A be a non empty subset of B, and X be a family of subsets of the carrier
of B. Suppose that for every set Y holds Y ∈ X iff Y ∈ 2the carrier of B

and there exists a subalgebra C of B such that Y = the carrier of C and
A ⊆ Y. Then

⋂
X is operations closed.

Let L be a non empty groupoid, let B be a non empty algebra structure
over L, and let A be a non empty subset of B. The functor GenAlg A yielding
a strict non empty subalgebra of B is defined by the conditions (Def. 5).

(Def. 5)(i) A ⊆ the carrier of GenAlg A, and
(ii) for every subalgebra C of B such that A ⊆ the carrier of C holds the

carrier of GenAlg A ⊆ the carrier of C.

We now state the proposition

(22) Let L be a non empty groupoid, B be a non empty algebra structure
over L, and A be a non empty subset of B. If A is operations closed, then
the carrier of GenAlg A = A.
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3. The Algebra of Polynomials

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. The functor Polynom-Algebra L yields a strict
non empty algebra structure over L and is defined as follows:

(Def. 6) There exists a non empty subset A of Formal-Series L such that A = the
carrier of Polynom-Ring L and Polynom-Algebra L = GenAlg A.

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. One can verify that Polynom-Ring L is loop-
like.

The following propositions are true:

(23) Let L be an add-associative right zeroed right complementable distri-
butive non empty double loop structure and A be a non empty subset of
Formal-Series L. If A = the carrier of Polynom-Ring L, then A is opera-
tions closed.

(24) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure. Then the double loop structure of
Polynom-Algebra L = Polynom-Ring L.
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Summary. In the paper we investigate the dependence between the struc-
ture of circuits and sets of terms. Circuits in our terminology (see [19]) are tre-
ated as locally-finite many sorted algebras over special signatures. Such approach
enables to formalize every real circuit. The goal of this investigation is to specify
circuits by terms and, enentualy, to have methods of formal verification of real
circuits. The following notation is introduced in this paper:

• structural equivalence of circuits, i.e. equivalence of many sorted signatures,

• embedding of a circuit into another one,

• similarity of circuits (a concept narrower than isomorphism of many sorted
algebras over equivalent signatures),

• calculation of terms by a circuit according to an algebra,

• specification of circuits by terms and an algebra.

MML Identifier: CIRCTRM1.

The articles [27], [3], [18], [19], [20], [11], [10], [17], [12], [13], [14], [22], [21], [9],
[25], [1], [15], [24], [7], [28], [26], [23], [2], [5], [6], [8], [16], and [4] provide the
terminology and notation for this paper.

1. Circuit Structure Generated by Terms

One can prove the following proposition

(1) Let S be a non empty non void many sorted signature, A be a non-empty
algebra over S, V be a variables family of A, t be a term of S over V , and
T be a term of A over V . If T = t, then the sort of T = the sort of t.
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Let D be a non empty set and let X be a subset of D. Then idX is a function
from X into D.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a non empty subset of
S -Terms(V ). The functor X-CircuitStr yields a non empty strict many sorted
signature and is defined by the condition (Def. 1).

(Def. 1) X-CircuitStr = 〈Subtrees(X), [: the operation symbols of S, {the car-
rier of S} :] -Subtrees(X), [: the operation symbols of S, {the carrier of
S} :] -ImmediateSubtrees(X),
id[: the operation symbols of S, {the carrier of S} :] -Subtrees(X)〉.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a non empty subset
of S -Terms(V ). Observe that X-CircuitStr is unsplit.

In the sequel S denotes a non empty non void many sorted signature, V

denotes a non-empty many sorted set indexed by the carrier of S, A denotes a
non-empty algebra over S, and X denotes a non empty subset of S -Terms(V ).

The following propositions are true:

(2) X-CircuitStr is void if and only if for every element t of X holds t is
root and t(∅) /∈ [: the operation symbols of S, {the carrier of S} :].

(3) X is a set with a compound term of S over V iff X-CircuitStr is non
void.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a set with a compound
term of S over V . One can check that X-CircuitStr is non void.

The following three propositions are true:

(4)(i) Every vertex of X-CircuitStr is a term of S over V , and
(ii) for every set s such that s ∈ the operation symbols of X-CircuitStr

holds s is a compound term of S over V .

(5) Let t be a vertex of X-CircuitStr. Then t ∈ the operation symbols of
X-CircuitStr if and only if t is a compound term of S over V .

(6) Let X be a set with a compound term of S over V and g be a gate of
X-CircuitStr. Then (the result sort of X-CircuitStr)(g) = g and the result
sort of g = g.

Let us consider S, V , let X be a set with a compound term of S over V , and
let g be a gate of X-CircuitStr. Note that Arity(g) is decorated tree yielding.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a non empty subset
of S -Terms(V ). Note that every vertex of X-CircuitStr is finite, function-like,
and relation-like.

Let S be a non empty non void many sorted signature, let V be a non-empty
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many sorted set indexed by the carrier of S, and let X be a non empty subset
of S -Terms(V ). One can verify that every vertex of X-CircuitStr is decorated
tree-like.

Let S be a non empty non void many sorted signature, let V be a non-
empty many sorted set indexed by the carrier of S, and let X be a set with a
compound term of S over V . One can check that every gate of X-CircuitStr is
finite, function-like, and relation-like.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a set with a compound
term of S over V . Note that every gate of X-CircuitStr is decorated tree-like.

Next we state the proposition

(7) Let X1, X2 be non empty subsets of S -Terms(V ). Then the arity
of X1-CircuitStr ≈ the arity of X2-CircuitStr and the result sort of
X1-CircuitStr ≈ the result sort of X2-CircuitStr.

Let X, Y be constituted of decorated trees sets. Note that X ∪ Y is consti-
tuted of decorated trees.

One can prove the following propositions:

(8) For all constituted of decorated trees non empty sets X1, X2 holds
Subtrees(X1 ∪X2) = Subtrees(X1) ∪ Subtrees(X2).

(9) For all constituted of decorated trees non empty sets X1, X2 and for every
set C holds C -Subtrees(X1∪X2) = (C -Subtrees(X1))∪(C -Subtrees(X2)).

(10) Let X1, X2 be constituted of decorated trees non empty sets.
If every element of X1 is finite and every element of X2 is fi-
nite, then for every set C holds C -ImmediateSubtrees(X1 ∪ X2) =
(C -ImmediateSubtrees(X1))+·(C -ImmediateSubtrees(X2)).

(11) For all non empty subsets X1, X2 of S -Terms(V ) holds (X1 ∪
X2)-CircuitStr = (X1-CircuitStr)+·(X2-CircuitStr).

(12) Let x be a set. Then x ∈ InputVertices(X-CircuitStr) if and only if the
following conditions are satisfied:

(i) x ∈ Subtrees(X), and
(ii) there exists a sort symbol s of S and there exists an element v of V (s)

such that x = the root tree of 〈〈v, s〉〉.
(13) For every set X with a compound term of S over V and for every gate

g of X-CircuitStr holds g = g(∅)-tree(Arity(g)).

2. Circuit Generated by Terms

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let X be a non empty subset of
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S -Terms(V ), let v be a vertex of X-CircuitStr, and let A be an algebra over S.
The sort of v w.r.t. A is defined as follows:

(Def. 2) For every term u of S over V such that u = v holds the sort of v w.r.t.
A = (the sorts of A)(the sort of u).

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let X be a non empty subset of
S -Terms(V ), let v be a vertex of X-CircuitStr, and let A be a non-empty algebra
over S. Note that the sort of v w.r.t. A is non empty.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, and let X be a non empty subset
of S -Terms(V ). Let us assume that X is a set with a compound term of S over
V . Let o be a gate of X-CircuitStr and let A be an algebra over S. The action
of o w.r.t A is a function and is defined by the condition (Def. 3).

(Def. 3) Let X ′ be a set with a compound term of S over V . Suppose X ′ = X.

Let o′ be a gate of X ′-CircuitStr. Suppose o′ = o. Then the action of o

w.r.t A = (the characteristics of A)(o′(∅)1).
The scheme MSFuncEx deals with a non empty set A, non-empty many

sorted sets B, C indexed by A, and a ternary predicate P, and states that:
There exists a many sorted function f from B into C such that
for every element i of A and for every element a of B(i) holds
P[i, a, f(i)(a)]

provided the following requirement is met:
• For every element i of A and for every element a of B(i) there

exists an element b of C(i) such that P[i, a, b].
Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a non empty subset of
S -Terms(V ), and let A be an algebra over S. The functor X-CircuitSorts(A)
yielding a many sorted set indexed by the carrier of X-CircuitStr is defined by:

(Def. 4) For every vertex v of X-CircuitStr holds (X-CircuitSorts(A))(v) = the
sort of v w.r.t. A.

Let S be a non empty non void many sorted signature, let V be a non-
empty many sorted set indexed by the carrier of S, let X be a non empty
subset of S -Terms(V ), and let A be a non-empty algebra over S. Note that
X-CircuitSorts(A) is non-empty.

We now state the proposition

(14) Let X be a set with a compound term of S over V , g be a gate of
X-CircuitStr, and o be an operation symbol of S. If g(∅) = 〈〈o, the carrier
of S〉〉, then (X-CircuitSorts(A)) ·Arity(g) = (the sorts of A) ·Arity(o).

Let S be a non empty non void many sorted signature, let V be a
non-empty many sorted set indexed by the carrier of S, let X be a non
empty subset of S -Terms(V ), and let A be a non-empty algebra over
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S. The functor X-CircuitCharact(A) yields a many sorted function from
(X-CircuitSorts(A))# · the arity of X-CircuitStr into (X-CircuitSorts(A)) · the
result sort of X-CircuitStr and is defined by:

(Def. 5) For every gate g of X-CircuitStr such that g ∈ the operation symbols of
X-CircuitStr holds (X-CircuitCharact(A))(g) = the action of g w.r.t A.

Let S be a non empty non void many sorted signature, let V be a non-
empty many sorted set indexed by the carrier of S, let X be a non empty
subset of S -Terms(V ), and let A be a non-empty algebra over S. The functor
X-Circuit(A) yielding a non-empty strict algebra over X-CircuitStr is defined
by:

(Def. 6) X-Circuit(A) = 〈X-CircuitSorts(A), X-CircuitCharact(A)〉.
Next we state four propositions:

(15) For every vertex v of X-CircuitStr holds (the sorts of X-Circuit(A))(v) =
the sort of v w.r.t. A.

(16) Let A be a locally-finite non-empty algebra over S, X be a set with a
compound term of S over V , and g be an operation symbol of X-CircuitStr.
Then Den(g,X-Circuit(A)) = the action of g w.r.t A.

(17) Let A be a locally-finite non-empty algebra over S, X be a set with a
compound term of S over V , g be an operation symbol of X-CircuitStr,
and o be an operation symbol of S. If g(∅) = 〈〈o, the carrier of S〉〉, then
Den(g, X-Circuit(A)) = Den(o,A).

(18) Let A be a locally-finite non-empty algebra over S and X be a non empty
subset of S -Terms(V ). Then X-Circuit(A) is locally-finite.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let X be a set with a compound
term of S over V , and let A be a locally-finite non-empty algebra over S. Note
that X-Circuit(A) is locally-finite.

The following two propositions are true:

(19) Let S be a non empty non void many sorted signature, V be a non-
empty many sorted set indexed by the carrier of S, X1, X2 be sets with
compound terms of S over V , and A be a non-empty algebra over S. Then
X1-Circuit(A) ≈ X2-Circuit(A).

(20) Let S be a non empty non void many sorted signature, V be a non-
empty many sorted set indexed by the carrier of S, X1, X2 be sets with
compound terms of S over V , and A be a non-empty algebra over S. Then
(X1 ∪X2)-Circuit(A) = (X1-Circuit(A))+·(X2-Circuit(A)).
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3. Correctness of a Term Circuit

In the sequel S is a non empty non void many sorted signature, A is a non-
empty locally-finite algebra over S, V is a variables family of A, and X is a set
with a compound term of S over V .

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, let V be a variables family of A, and let t be a decorated tree.
Let us assume that t is a term of S over V . Let f be a many sorted function
from V into the sorts of A. The functor [[t]]A(f) is defined by:

(Def. 7) There exists a term t′ of A over V such that t′ = t and [[t]]A(f) = t′ @ f.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let X be a set with a compound
term of S over V , let A be a non-empty locally-finite algebra over S, and let s

be a state of X-Circuit(A). A many sorted function from V into the sorts of A

is said to be a valuation compatible with s if it satisfies the condition (Def. 8).

(Def. 8) Let x be a vertex of S and v be an element of V (x). If the root tree of
〈〈v, x〉〉 ∈ Subtrees(X), then it(x)(v) = s(the root tree of 〈〈v, x〉〉).

Next we state the proposition

(21) Let s be a state of X-Circuit(A), f be a valuation compatible with
s, and n be a natural number. Then f is a valuation compatible with
Following(s, n).

Let x be a set, let S be a non empty non void many sorted signature, let V

be a non-empty many sorted set indexed by the carrier of S, and let p be a finite
sequence of elements of S -Terms(V ). One can verify that x-tree(p) is finite.

The following propositions are true:

(22) Let s be a state of X-Circuit(A), f be a valuation compatible with s,
and t be a term of S over V . If t ∈ Subtrees(X), then Following(s, 1 +
height dom t) is stable at t and (Following(s, 1 + height dom t))(t) =
[[t]]A(f).

(23) Suppose that it is not true that there exists a term t of S over V

and there exists an operation symbol o of S such that t ∈ Subtrees(X)
and t(∅) = 〈〈o, the carrier of S〉〉 and Arity(o) = ∅. Let s be a state of
X-Circuit(A), f be a valuation compatible with s, and t be a term of S

over V . If t ∈ Subtrees(X), then Following(s, height dom t) is stable at t

and (Following(s, height dom t))(t) = [[t]]A(f).
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4. Circuit Similarity

Let X be a set. One can verify that idX is one-to-one.
Let f be an one-to-one function. One can verify that f−1 is one-to-one. Let

g be an one-to-one function. Note that g · f is one-to-one.
Let S1, S2 be non empty many sorted signatures and let f , g be functions.

We say that S1 and S2 are equivalent w.r.t. f and g if and only if the conditions
(Def. 9) are satisfied.

(Def. 9)(i) f is one-to-one,
(ii) g is one-to-one,
(iii) f and g form morphism between S1 and S2, and
(iv) f−1 and g−1 form morphism between S2 and S1.

One can prove the following propositions:

(24) Let S1, S2 be non empty many sorted signatures and f , g be functions.
Suppose S1 and S2 are equivalent w.r.t. f and g. Then the carrier of
S2 = f◦(the carrier of S1) and the operation symbols of S2 = g◦(the
operation symbols of S1).

(25) Let S1, S2 be non empty many sorted signatures and f , g be functions.
Suppose S1 and S2 are equivalent w.r.t. f and g. Then rng f = the carrier
of S2 and rng g = the operation symbols of S2.

(26) Let S be a non empty many sorted signature. Then S and S are equiva-
lent w.r.t. idthe carrier of S and idthe operation symbols of S .

(27) Let S1, S2 be non empty many sorted signatures and f , g be functions.
Suppose S1 and S2 are equivalent w.r.t. f and g. Then S2 and S1 are
equivalent w.r.t. f−1 and g−1.

(28) Let S1, S2, S3 be non empty many sorted signatures and f1, g1, f2, g2 be
functions. Suppose S1 and S2 are equivalent w.r.t. f1 and g1 and S2 and
S3 are equivalent w.r.t. f2 and g2. Then S1 and S3 are equivalent w.r.t.
f2 · f1 and g2 · g1.

(29) Let S1, S2 be non empty many sorted signatures and f , g be
functions. Suppose S1 and S2 are equivalent w.r.t. f and g. Then
f◦ InputVertices(S1) = InputVertices(S2) and f◦ InnerVertices(S1) =
InnerVertices(S2).

Let S1, S2 be non empty many sorted signatures. We say that S1 and S2 are
equivalent if and only if:

(Def. 10) There exist one-to-one functions f , g such that S1 and S2 are equivalent
w.r.t. f and g.

Let us notice that the predicate S1 and S2 are equivalent is reflexive and sym-
metric.
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One can prove the following proposition

(30) Let S1, S2, S3 be non empty many sorted signatures. Suppose S1 and S2

are equivalent and S2 and S3 are equivalent. Then S1 and S3 are equivalent.

Let S1, S2 be non empty many sorted signatures and let f be a function.
We say that f preserves inputs of S1 in S2 if and only if:

(Def. 11) f◦ InputVertices(S1) ⊆ InputVertices(S2).
Next we state four propositions:

(31) Let S1, S2 be non empty many sorted signatures and f , g be functions.
Suppose f and g form morphism between S1 and S2. Let v be a vertex of
S1. Then f(v) is a vertex of S2.

(32) Let S1, S2 be non empty non void many sorted signatures and f , g be
functions. Suppose f and g form morphism between S1 and S2. Let v be
a gate of S1. Then g(v) is a gate of S2.

(33) Let S1, S2 be non empty many sorted signatures and f , g be functions.
If f and g form morphism between S1 and S2, then f◦ InnerVertices(S1) ⊆
InnerVertices(S2).

(34) Let S1, S2 be circuit-like non void non empty many sorted signatures
and f , g be functions. Suppose f and g form morphism between S1 and
S2. Let v1 be a vertex of S1. Suppose v1 ∈ InnerVertices(S1). Let v2 be a
vertex of S2. If v2 = f(v1), then the action at v2 = g(the action at v1).

Let S1, S2 be non empty many sorted signatures, let f , g be functions, let
C1 be a non-empty algebra over S1, and let C2 be a non-empty algebra over S2.
We say that f and g form embedding of C1 into C2 if and only if the conditions
(Def. 12) are satisfied.

(Def. 12)(i) f is one-to-one,
(ii) g is one-to-one,
(iii) f and g form morphism between S1 and S2,
(iv) the sorts of C1 = (the sorts of C2) · f, and
(v) the characteristics of C1 = (the characteristics of C2) · g.

The following propositions are true:

(35) Let S be a non empty many sorted signature and C be a non-empty al-
gebra over S. Then idthe carrier of S and idthe operation symbols of S form em-
bedding of C into C.

(36) Let S1, S2, S3 be non empty many sorted signatures, f1, g1, f2, g2 be
functions, C1 be a non-empty algebra over S1, C2 be a non-empty algebra
over S2, and C3 be a non-empty algebra over S3. Suppose f1 and g1 form
embedding of C1 into C2 and f2 and g2 form embedding of C2 into C3.
Then f2 · f1 and g2 · g1 form embedding of C1 into C3.

Let S1, S2 be non empty many sorted signatures, let f , g be functions, let
C1 be a non-empty algebra over S1, and let C2 be a non-empty algebra over S2.
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We say that C1 and C2 are similar w.r.t. f and g if and only if:

(Def. 13) f and g form embedding of C1 into C2 and f−1 and g−1 form embedding
of C2 into C1.

The following propositions are true:

(37) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over
S2. Suppose C1 and C2 are similar w.r.t. f and g. Then S1 and S2 are
equivalent w.r.t. f and g.

(38) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over S2.
Then C1 and C2 are similar w.r.t. f and g if and only if the following
conditions are satisfied:

(i) S1 and S2 are equivalent w.r.t. f and g,
(ii) the sorts of C1 = (the sorts of C2) · f, and
(iii) the characteristics of C1 = (the characteristics of C2) · g.

(39) Let S be a non empty many sorted signature and C be a non-empty
algebra over S. Then C and C are similar w.r.t. idthe carrier of S and
idthe operation symbols of S .

(40) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over S2.
Suppose C1 and C2 are similar w.r.t. f and g. Then C2 and C1 are similar
w.r.t. f−1 and g−1.

(41) Let S1, S2, S3 be non empty many sorted signatures, f1, g1, f2, g2 be
functions, C1 be a non-empty algebra over S1, C2 be a non-empty algebra
over S2, and C3 be a non-empty algebra over S3. Suppose C1 and C2 are
similar w.r.t. f1 and g1 and C2 and C3 are similar w.r.t. f2 and g2. Then
C1 and C3 are similar w.r.t. f2 · f1 and g2 · g1.

Let S1, S2 be non empty many sorted signatures, let C1 be a non-empty
algebra over S1, and let C2 be a non-empty algebra over S2. We say that C1

and C2 are similar if and only if:

(Def. 14) There exist functions f , g such that C1 and C2 are similar w.r.t. f and
g.

For simplicity, we use the following convention: G1, G2 denote circuit-like
non void non empty many sorted signatures, f , g denote functions, C1 denotes
a non-empty circuit of G1, and C2 denotes a non-empty circuit of G2.

Next we state a number of propositions:

(42) Suppose f and g form embedding of C1 into C2. Then
(i) dom f = the carrier of G1,
(ii) rng f ⊆ the carrier of G2,
(iii) dom g = the operation symbols of G1, and
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(iv) rng g ⊆ the operation symbols of G2.

(43) Suppose f and g form embedding of C1 into C2. Let o1 be a gate of G1

and o2 be a gate of G2. If o2 = g(o1), then Den(o2, C2) = Den(o1, C1).

(44) Suppose f and g form embedding of C1 into C2. Let o1 be a gate of
G1 and o2 be a gate of G2. Suppose o2 = g(o1). Let s1 be a state of
C1 and s2 be a state of C2. If s1 = s2 · f, then o2 depends-on-in s2 =
o1 depends-on-in s1.

(45) If f and g form embedding of C1 into C2, then for every state s of C2

holds s · f is a state of C1.

(46) Suppose f and g form embedding of C1 into C2. Let s2 be a state of
C2 and s1 be a state of C1. Suppose s1 = s2 · f and for every vertex v

of G1 such that v ∈ InputVertices(G1) holds s2 is stable at f(v). Then
Following(s1) = Following(s2) · f.

(47) Suppose f and g form embedding of C1 into C2 and f preserves inputs
of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 · f,

then Following(s1) = Following(s2) · f.

(48) Suppose f and g form embedding of C1 into C2 and f preserves inputs of
G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 ·f, then
for every natural number n holds Following(s1, n) = Following(s2, n) · f.

(49) Suppose f and g form embedding of C1 into C2 and f preserves inputs
of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 · f,

then if s2 is stable, then s1 is stable.

(50) Suppose f and g form embedding of C1 into C2 and f preserves inputs
of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. Suppose
s1 = s2 · f. Let v1 be a vertex of G1. Then s1 is stable at v1 if and only if
s2 is stable at f(v1).

(51) If C1 and C2 are similar w.r.t. f and g, then for every state s of C2 holds
s · f is a state of C1.

(52) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. Then s1 = s2 · f if and only if s2 = s1 · f−1.

(53) If C1 and C2 are similar w.r.t. f and g, then f◦ InputVertices(G1) =
InputVertices(G2) and f◦ InnerVertices(G1) = InnerVertices(G2).

(54) If C1 and C2 are similar w.r.t. f and g, then f preserves inputs of G1 in
G2.

(55) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1 and
s2 be a state of C2. If s1 = s2 · f, then Following(s1) = Following(s2) · f.

(56) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. If s1 = s2 · f, then for every natural number n

holds Following(s1, n) = Following(s2, n) · f.
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(57) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. If s1 = s2 · f, then s1 is stable iff s2 is stable.

(58) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. Suppose s1 = s2 · f. Let v1 be a vertex of G1.
Then s1 is stable at v1 if and only if s2 is stable at f(v1).

5. Term Specification

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, let V be a non-empty many sorted set indexed by the carrier of
S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void
non empty many sorted signature, and let C be a non-empty circuit of G. We
say that C calculates X in A if and only if:

(Def. 15) There exist f , g such that f and g form embedding of X-Circuit(A) into
C and f preserves inputs of X-CircuitStr in G.

We say that X and A specify C if and only if:

(Def. 16) C and X-Circuit(A) are similar.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let A be a non-empty algebra over
S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void
non empty many sorted signature, and let C be a non-empty circuit of G. Let
us assume that C calculates X in A. An one-to-one function is said to be a sort
map from X and A into C if:

(Def. 17) It preserves inputs of X-CircuitStr in G and there exists g such that it
and g form embedding of X-Circuit(A) into C.

Let S be a non empty non void many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let A be a non-empty algebra over
S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void
non empty many sorted signature, and let C be a non-empty circuit of G. Let
us assume that C calculates X in A. Let f be a sort map from X and A into
C. An one-to-one function is said to be an operation map from X and A into
C obeying f if:

(Def. 18) f and it form embedding of X-Circuit(A) into C.

The following propositions are true:

(59) Let G be a circuit-like non void non empty many sorted signature and
C be a non-empty circuit of G. If X and A specify C, then C calculates
X in A.

(60) Let G be a circuit-like non void non empty many sorted signature and
C be a non-empty circuit of G. Suppose C calculates X in A. Let f be
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a sort map from X and A into C and t be a term of S over V . Suppose
t ∈ Subtrees(X). Let s be a state of C. Then

(i) Following(s, 1 + height dom t) is stable at f(t), and
(ii) for every state s′ of X-Circuit(A) such that s′ = s · f and for every va-

luation h compatible with s′ holds (Following(s, 1+height dom t))(f(t)) =
[[t]]A(h).

(61) Let G be a circuit-like non void non empty many sorted signature and
C be a non-empty circuit of G. Suppose C calculates X in A. Let t be a
term of S over V . Suppose t ∈ Subtrees(X). Then there exists a vertex v

of G such that for every state s of C holds
(i) Following(s, 1 + height dom t) is stable at v, and
(ii) there exists a sort map f from X and A into C such that for every

state s′ of X-Circuit(A) such that s′ = s · f and for every valuation h

compatible with s′ holds (Following(s, 1 + height dom t))(v) = [[t]]A(h).
(62) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. Suppose X and A specify C. Let f be a
sort map from X and A into C, s be a state of C, and t be a term of S

over V . Suppose t ∈ Subtrees(X). Then
(i) Following(s, 1 + height dom t) is stable at f(t), and
(ii) for every state s′ of X-Circuit(A) such that s′ = s · f and for every va-

luation h compatible with s′ holds (Following(s, 1+height dom t))(f(t)) =
[[t]]A(h).

(63) Let G be a circuit-like non void non empty many sorted signature and
C be a non-empty circuit of G. Suppose X and A specify C. Let t be a
term of S over V . Suppose t ∈ Subtrees(X). Then there exists a vertex v

of G such that for every state s of C holds
(i) Following(s, 1 + height dom t) is stable at v, and
(ii) there exists a sort map f from X and A into C such that for every

state s′ of X-Circuit(A) such that s′ = s · f and for every valuation h

compatible with s′ holds (Following(s, 1 + height dom t))(v) = [[t]]A(h).
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