
FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Lim-Inf Convergence1

Bartłomiej Skorulski
University of Białystok

Summary. This work continues the formalization of [7]. Theorems from
Chapter III, Section 3, pp. 158–159 are proved.

MML Identifier: WAYBEL28.

The articles [5], [6], [10], [1], [15], [11], [17], [16], [12], [14], [8], [3], [4], [9], [2],
and [13] provide the notation and terminology for this paper.

One can prove the following propositions:

(1) For every complete lattice L and for every net N in L holds inf N ¬
lim inf N.

(2) Let L be a complete lattice, N be a net in L, and x be an element
of L. Suppose that for every subnet M of N holds x = lim inf M. Then
x = lim inf N and for every subnet M of N holds x inf M.

(3) Let L be a complete lattice, N be a net in L, and x be an element of
L. Suppose N ∈ NetUniv(L). Suppose that for every subnet M of N such
that M ∈ NetUniv(L) holds x = lim inf M. Then x = lim inf N and for
every subnet M of N such that M ∈ NetUniv(L) holds x inf M.

Let N be a non empty relational structure and let f be a map from N into
N . We say that f is greater or equal to id if and only if:

(Def. 1) For every element j of the carrier of N holds j ¬ f(j).
We now state three propositions:

(4) For every reflexive non empty relational structure N holds idN is greater
or equal to id.

(5) Let N be a directed non empty relational structure and x, y be elements
of N . Then there exists an element z of N such that x ¬ z and y ¬ z.

(6) For every directed non empty relational structure N holds there exists
a map from N into N which is greater or equal to id.

1This work has been supported by KBN Grant 8 T11C 018 12.

237
c© 2001 University of Białystok

ISSN 1426–2630

238 bartłomiej skorulski

Let N be a directed non empty relational structure. One can verify that
there exists a map from N into N which is greater or equal to id.

Let N be a reflexive non empty relational structure. Observe that there
exists a map from N into N which is greater or equal to id.

Let L be a non empty 1-sorted structure, let N be a non empty net structure
over L, and let f be a map from N into N . The functor N · f yielding a strict
non empty net structure over L is defined by the conditions (Def. 2).

(Def. 2)(i) The relational structure of N · f = the relational structure of N , and
(ii) the mapping of N · f = (the mapping of N) · f.

The following propositions are true:

(7) Let L be a non empty 1-sorted structure, N be a non empty net structure
over L, and f be a map from N into N . Then the carrier of N · f = the
carrier of N .

(8) Let L be a non empty 1-sorted structure, N be a non empty net structure
over L, and f be a map from N into N . Then N · f = 〈the carrier of N ,
the internal relation of N , (the mapping of N) · f〉.

(9) Let L be a non empty 1-sorted structure, N be a transitive directed non
empty relational structure, and f be a function from the carrier of N into
the carrier of L. Then 〈the carrier of N , the internal relation of N , f〉 is
a net in L.

Let L be a non empty 1-sorted structure, let N be a transitive directed non
empty relational structure, and let f be a function from the carrier of N into
the carrier of L. Note that 〈the carrier of N , the internal relation of N , f〉 is
transitive directed and non empty.

We now state the proposition

(10) Let L be a non empty 1-sorted structure, N be a net in L, and p be a
map from N into N . Then N · p is a net in L.

Let L be a non empty 1-sorted structure, let N be a net in L, and let p be
a map from N into N . Note that N · p is transitive and directed.

Next we state two propositions:

(11) Let L be a non empty 1-sorted structure, N be a net in L, and p be a
map from N into N . If N ∈ NetUniv(L), then N · p ∈ NetUniv(L).

(12) Let L be a non empty 1-sorted structure and N , M be nets in L. Suppose
the net structure of N = the net structure of M . Then M is a subnet of
N .

Let L be a non empty 1-sorted structure and let N be a net in L. Note that
there exists a subnet of N which is strict.

The following proposition is true

(13) Let L be a non empty 1-sorted structure, N be a net in L, and p be a
greater or equal to id map from N into N . Then N · p is a subnet of N .

lim-inf convergence 239

Let L be a non empty 1-sorted structure, let N be a net in L, and let p be
a greater or equal to id map from N into N . Then N · p is a strict subnet of N .

One can prove the following two propositions:

(14) Let L be a complete lattice, N be a net in L, and x be an element of L.
Suppose N ∈ NetUniv(L). Suppose x = lim inf N and for every subnet M

of N such that M ∈ NetUniv(L) holds x inf M. Then x = lim inf N and
for every greater or equal to id map p from N into N holds x inf(N ·p).

(15) Let L be a complete lattice, N be a net in L, and x be an element of L.
Suppose x = lim inf N and for every greater or equal to id map p from N

into N holds x inf(N · p). Let M be a subnet of N . Then x = lim inf M.

Let L be a non empty relational structure. The lim inf convergence of L is
a convergence class of L and is defined by the condition (Def. 3).

(Def. 3) Let N be a net in L. Suppose N ∈ NetUniv(L). Let x be an element of
the carrier of L. Then 〈〈N, x〉〉 ∈ the lim inf convergence of L if and only if
for every subnet M of N holds x = lim inf M.

We now state two propositions:

(16) Let L be a complete lattice, N be a net in L, and x be an element of
L. Suppose N ∈ NetUniv(L). Then 〈〈N, x〉〉 ∈ the lim inf convergence of L

if and only if for every subnet M of N such that M ∈ NetUniv(L) holds
x = lim inf M.

(17) Let L be a non empty relational structure, N be a constant net in L,
and M be a subnet of N . Then M is constant and the value of N = the
value of M .

Let L be a non empty relational structure. The functor ξ(L) yielding a family
of subsets of L is defined as follows:

(Def. 4) ξ(L) = the topology of ConvergenceSpace(the lim inf convergence of L).

The following propositions are true:

(18) For every complete lattice L holds the lim inf convergence of L has
(CONSTANTS) property.

(19) For every non empty relational structure L holds the lim inf convergence
of L has (SUBNETS) property.

(20) For every continuous complete lattice L holds the lim inf convergence of
L has (DIVERGENCE) property.

(21) Let L be a non empty relational structure and N , x be sets. If 〈〈N,

x〉〉 ∈ the lim inf convergence of L, then N ∈ NetUniv(L).

(22) Let L be a non empty 1-sorted structure and C1, C2 be convergence
classes of L. If C1 ⊆ C2, then the topology of ConvergenceSpace(C2) ⊆ the
topology of ConvergenceSpace(C1).

240 bartłomiej skorulski

(23) Let L be a non empty reflexive relational structure. Then the lim inf
convergence of L ⊆ the Scott convergence of L.

(24) For all sets X, Y such that X ⊆ Y holds X ∈ the universe of Y .

(25) Let L be a non empty transitive reflexive relational structure and D be
a directed non empty subset of L. Then NetStr(D) ∈ NetUniv(L).

(26) For every complete lattice L and for every directed non empty subset D

of L and for every subnet M of NetStr(D) holds lim inf M = sup D.

(27) Let L be a non empty complete lattice and D be a directed non empty
subset of L. Then 〈〈NetStr(D), sup D〉〉 ∈ the lim inf convergence of L.

(28) For every complete lattice L and for every subset U1 of L such that
U1 ∈ ξ(L) holds U1 is property(S).

(29) For every non empty reflexive relational structure L and for every subset
A of L such that A ∈ σ(L) holds A ∈ ξ(L).

(30) For every complete lattice L and for every subset A of L such that A is
upper holds if A ∈ ξ(L), then A ∈ σ(L).

(31) Let L be a complete lattice and A be a subset of L. Suppose A is lower.
Then −A ∈ ξ(L) if and only if A is closed under directed sups.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-

pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[8] Adam Grabowski. Scott-continuous functions. Formalized Mathematics, 7(1):13–18, 1998.
[9] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized

Mathematics, 6(2):269–277, 1997.
[10] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[13] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225,

1997.
[14] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[15] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received January 6, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Characterization of the Continuity of
Topologies1

Grzegorz Bancerek
University of Białystok

Adam Naumowicz
University of Białystok

Summary. Formalization of [14, pp. 128–130], chapter II, section 4 (4.10,
4.11).

MML Identifier: WAYBEL29.

The terminology and notation used here are introduced in the following articles:
[27], [23], [13], [10], [9], [21], [1], [30], [28], [24], [32], [22], [25], [31], [26], [12],
[34], [29], [17], [15], [20], [6], [8], [3], [4], [33], [19], [7], [2], [16], [18], [5], and [11].

1. Preliminaries

The following propositions are true:

(1) Let S, T be non empty relational structures and f be a map from S into
T . Suppose f is one-to-one and onto. Then f ·f−1 = idT and f−1 ·f = idS

and f−1 is one-to-one and onto.

(2) Let X, Y be non empty sets, Z be a non empty relational structure,
S be a non empty relational substructure of Z [: X, Y :], T be a non empty
relational substructure of (ZY)X , and f be a map from S into T . If f is
currying, one-to-one, and onto, then f−1 is uncurrying.

(3) Let X, Y be non empty sets, Z be a non empty relational structure,
S be a non empty relational substructure of Z [: X, Y :], T be a non empty
relational substructure of (ZY)X , and f be a map from T into S. If f is
uncurrying, one-to-one, and onto, then f−1 is currying.

1This work has been supported by KBN Grant 8 T11C 018 12.

241
c© 2001 University of Białystok

ISSN 1426–2630

242 grzegorz bancerek and adam naumowicz

(4) Let X, Y be non empty sets, Z be a non empty poset, S be a non empty
full relational substructure of Z [: X, Y :], T be a non empty full relational
substructure of (ZY)X , and f be a map from S into T . If f is currying,
one-to-one, and onto, then f is isomorphic.

(5) Let X, Y be non empty sets, Z be a non empty poset, T be a non empty
full relational substructure of Z [: X, Y :], S be a non empty full relational
substructure of (ZY)X , and f be a map from S into T . If f is uncurrying,
one-to-one, and onto, then f is isomorphic.

(6) Let S1, S2, T1, T2 be relational structures. Suppose that
(i) the relational structure of S1 = the relational structure of S2, and
(ii) the relational structure of T1 = the relational structure of T2.

Let f be a map from S1 into T1. Suppose f is isomorphic. Let g be a map
from S2 into T2. If g = f, then g is isomorphic.

(7) Let R, S, T be relational structures and f be a map from R into S.
Suppose f is isomorphic. Let g be a map from S into T . Suppose g is
isomorphic. Let h be a map from R into T . If h = g·f, then h is isomorphic.

(8) Let T be an up-complete Scott non empty top-poset and S be a subset
of T . Then S is closed if and only if S is directly closed and lower.

(9) Let S, T be up-complete Scott non empty top-posets and f be a map
from S into T . If f is directed-sups-preserving, then f is continuous.

(10) Let X, Y , X1, Y1 be topological spaces. Suppose that
(i) the topological structure of X = the topological structure of X1, and
(ii) the topological structure of Y = the topological structure of Y1.

Then [:X, Y :] = [:X1, Y1 :].
(11) Let X be a non empty topological space, L be a Scott up-complete non

empty top-poset, and F be a non empty directed subset of [X → L]. Then⊔
(Lthe carrier of X) F is a continuous map from X into L.

(12) Let X be a non empty topological space and L be a Scott up-complete
non empty top-poset. Then [X → L] is a directed-sups-inheriting relatio-
nal substructure of Lthe carrier of X .

(13) Let S1, S2 be topological structures. Suppose the topological structure
of S1 = the topological structure of S2. Let T1, T2 be non empty FR-
structures. If the FR-structure of T1 = the FR-structure of T2, then [S1 →
T1] = [S2 → T2].

One can check that every complete continuous top-lattice which is Scott is
also injective and T0.

One can check that there exists a top-lattice which is Scott, continuous, and
complete.

Let X be a non empty topological space and let L be a Scott up-complete
non empty top-poset. Note that [X → L] is up-complete.

the characterization of the continuity of . . . 243

One can prove the following propositions:

(14) Let I be a non empty set and J be a poset-yielding nonempty many
sorted set indexed by I. Suppose that for every element i of I holds J(i)
is up-complete. Then I -prodPOS J is up-complete.

(15) Let I be a non empty set and J be a poset-yielding nonempty reflexive-
yielding many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is up-complete and lower-bounded. Let x, y be elements of∏
J. Then x� y if and only if the following conditions are satisfied:

(i) for every element i of I holds x(i)� y(i), and
(ii) there exists a finite subset K of I such that for every element i of I

such that i /∈ K holds x(i) = ⊥J(i).

Let X be a set and let L be a lower-bounded non empty reflexive antisym-
metric relational structure. Observe that LX is lower-bounded.

Let X be a non empty topological space and let L be a lower-bounded non
empty top-poset. Note that [X → L] is lower-bounded.

Let L be an up-complete non empty poset. Note that every topological au-
gmentation of L is up-complete and every topological augmentation of L which
is Scott is also correct.

The following proposition is true

(16) Let S be an up-complete antisymmetric non empty reflexive relational
structure and T be a non empty reflexive relational structure. Suppose
the relational structure of S = the relational structure of T . Let A be a
subset of S and C be a subset of T . If A = C and A is inaccessible, then
C is inaccessible.

Let L be an up-complete non empty poset. Observe that there exists a
topological augmentation of L which is strict and Scott.

We now state two propositions:

(17) Let L be an up-complete non empty poset and S1, S2 be Scott topological
augmentations of L. Then the topology of S1 = the topology of S2.

(18) Let S1, S2 be up-complete antisymmetric non empty reflexive FR-
structures. Suppose the FR-structure of S1 = the FR-structure of S2 and
S1 is Scott. Then S2 is Scott.

Let L be an up-complete non empty poset.

(Def. 1) ΣL is a strict Scott topological augmentation of L.

We now state two propositions:

(19) For every Scott up-complete non empty top-poset S holds ΣS = the
FR-structure of S.

(20) Let L1, L2 be up-complete non empty posets. Suppose the relational
structure of L1 = the relational structure of L2. Then ΣL1 = ΣL2.

244 grzegorz bancerek and adam naumowicz

Let S, T be up-complete non empty posets and let f be a map from S into
T . The functor Σf yielding a map from ΣS into ΣT is defined as follows:

(Def. 2) Σf = f.

Let S, T be up-complete non empty posets and let f be a directed-sups-
preserving map from S into T . Observe that Σf is continuous.

One can prove the following propositions:

(21) Let S, T be up-complete non empty posets and f be a map from S into
T . Then f is isomorphic if and only if Σf is isomorphic.

(22) For every non empty topological space X and for every Scott complete
top-lattice S holds [X → S] = [X → S].

Let X, Y be non empty topological spaces. The functor Θ(X, Y) yielding a
map from 〈the topology of [:X, Y :], ⊆〉 into [X → Σ〈the topology of Y , ⊆〉] is
defined as follows:

(Def. 3) For every open subset W of [:X, Y :] holds (Θ(X, Y))(W) =
Θthe carrier of X(W).

2. Some Natural Isomorphisms

Let X be a non empty topological space. The functor α(X) yielding a map
from [X → the Sierpiński space] into 〈the topology of X, ⊆〉 is defined as follows:

(Def. 4) For every continuous map g from X into the Sierpiński space holds
(α(X))(g) = g−1({1}).

One can prove the following proposition

(23) For every non empty topological space X and for every open subset V

of X holds (α(X))−1(V) = χV,the carrier of X .

Let X be a non empty topological space. Note that α(X) is isomorphic.
Let X be a non empty topological space. One can verify that (α(X))−1 is

isomorphic.
Let S be an injective T0-space. One can verify that ΩS is Scott.
Let X be a non empty topological space. One can check that [X → the

Sierpiński space] is complete.
Next we state the proposition

(24) Ω(the Sierpiński space) = Σ21
⊆.

Let M be a non empty set and let S be an injective T0-space. One can verify
that M -prodTOP(M 7−→ S) is injective.

The following two propositions are true:

(25) For every non empty set M and for every complete continuous lattice L

holds Ω(M -prodTOP(M 7−→ ΣL)) = ΣM -prodPOS(M 7−→ L).

the characterization of the continuity of . . . 245

(26) For every non empty set M and for every injective T0-space T holds
Ω(M -prodTOP(M 7−→ T)) = ΣM -prodPOS(M 7−→ ΩT).

Let M be a non empty set and let X, Y be non empty topological spaces. The
functor commute(X,M, Y) yielding a map from [X →M -prodTOP(M 7−→ Y)]
into ([X → Y])M is defined by:

(Def. 5) For every continuous map f from X into M -prodTOP(M 7−→ Y) holds
(commute(X, M, Y))(f) = commute(f).

Let M be a non empty set and let X, Y be non empty topological spaces.
Note that commute(X, M, Y) is one-to-one and onto.

Let M be a non empty set and let X be a non empty topological space. Note
that commute(X,M, the Sierpiński space) is isomorphic.

Next we state the proposition

(27) Let X, Y be non empty topological spaces, S be a Scott topological
augmentation of 〈the topology of Y , ⊆〉, and f1, f2 be elements of [X → S].
If f1 ¬ f2, then Gf1 ⊆ Gf2 .

3. The Poset of Open Sets

The following propositions are true:

(28) Let Y be a T0-space. Then the following statements are equivalent
(i) for every non empty topological space X and for every Scott continuous

complete top-lattice L and for every Scott topological augmentation T of
[Y → L] there exists a map f from [X → T] into [[:X, Y :] → L] and
there exists a map g from [[:X, Y :] → L] into [X → T] such that f is
uncurrying, one-to-one, and onto and g is currying, one-to-one, and onto,

(ii) for every non empty topological space X and for every Scott continuous
complete top-lattice L and for every Scott topological augmentation T of
[Y → L] there exists a map f from [X → T] into [[:X, Y :]→ L] and there
exists a map g from [[:X, Y :]→ L] into [X → T] such that f is uncurrying
and isomorphic and g is currying and isomorphic.

(29) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and
only if for every non empty topological space X holds Θ(X,Y) is isomor-
phic.

(30) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and
only if for every non empty topological space X and for every continuous
map f from X into Σ〈the topology of Y , ⊆〉 holds Gf is an open subset
of [:X, Y :].

(31) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and
only if {〈〈W, y〉〉; W ranges over open subsets of Y , y ranges over elements
of Y : y ∈W} is an open subset of [: Σ〈the topology of Y , ⊆〉, Y :].

246 grzegorz bancerek and adam naumowicz

(32) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and
only if for every element y of Y and for every open neighbourhood V of y

there exists an open subset H of Σ〈the topology of Y , ⊆〉 such that V ∈ H

and
⋂

H is a neighbourhood of y.

4. The Poset of Scott Open Sets

One can prove the following propositions:

(33) Let R1, R2, R3 be non empty relational structures and f1 be a map from
R1 into R3. Suppose f1 is isomorphic. Let f2 be a map from R2 into R3.
Suppose f2 = f1 and f2 is isomorphic. Then the relational structure of
R1 = the relational structure of R2.

(34) Let L be a complete lattice. Then 〈σ(L),⊆〉 is continuous if and only if
for every complete lattice S holds σ([: S, L :]) = the topology of [: ΣS, ΣL :].

(35) Let L be a complete lattice. Then the following statements are equivalent
(i) for every complete lattice S holds σ([: S, L :]) = the topology of [: ΣS,

ΣL :],
(ii) for every complete lattice S holds the topological structure of Σ[:S,

L :] = [: ΣS, ΣL :].
(36) Let L be a complete lattice. Then for every complete lattice S holds

σ([:S, L :]) = the topology of [: ΣS, ΣL :] if and only if for every complete
lattice S holds Σ[:S, L :] = Ω[: ΣS, ΣL :].

(37) Let L be a complete lattice. Then 〈σ(L),⊆〉 is continuous if and only if
for every complete lattice S holds Σ[:S, L :] = Ω[: ΣS, ΣL :].

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,

7(1):35–43, 1998.
[6] Grzegorz Bancerek. Continuous lattices of maps between T0 spaces. Formalized Mathe-

matics, 9(1):111–117, 2001.
[7] Grzegorz Bancerek. Retracts and inheritance. Formalized Mathematics, 9(1):77–85, 2001.
[8] Grzegorz Bancerek and Adam Naumowicz. Function spaces in the category of directed

suprema preserving maps. Formalized Mathematics, 9(1):171–177, 2001.
[9] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.

the characterization of the continuity of . . . 247

[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257–261, 1990.

[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-

pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[15] Adam Grabowski. Scott-continuous functions. Part II. Formalized Mathematics, 9(1):5–

11, 2001.
[16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-

ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.
[17] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
[18] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized

Mathematics, 6(1):145–152, 1997.
[19] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized

Mathematics, 6(2):269–277, 1997.
[20] Artur Korniłowicz and Jarosław Gryko. Injective spaces. Part II. Formalized Mathematics,

9(1):41–47, 2001.
[21] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
[22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[23] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[25] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.
[26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[27] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[28] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[29] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[30] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[33] Mariusz Żynel. The equational characterization of continuous lattices. Formalized Ma-

thematics, 6(2):199–205, 1997.
[34] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received January 6, 2000

248 grzegorz bancerek and adam naumowicz

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Meet Continuous Lattices Revisited1

Artur Korniłowicz
University of Białystok

Summary. This work is a continuation of formalization of [10]. Theorems
from Chapter III, Section 2, pp. 153–156 are proved.

MML Identifier: WAYBEL30.

The articles [25], [20], [8], [9], [1], [23], [18], [24], [19], [26], [22], [6], [3], [7], [14],
[4], [17], [15], [16], [2], [11], [12], [13], [21], and [5] provide the terminology and
notation for this paper.

The following two propositions are true:

(1) For every set x and for every non empty set D holds x∩⋃
D =

⋃{x∩d : d

ranges over elements of D}.
(2) Let R be a non empty reflexive transitive relational structure and D be

a non empty directed subset of 〈Ids(R),⊆〉. Then
⋃

D is an ideal of R.

Let R be a non empty reflexive transitive relational structure. Observe that
〈Ids(R),⊆〉 is up-complete.

We now state two propositions:

(3) Let R be a non empty reflexive transitive relational structure and D be
a non empty directed subset of 〈Ids(R),⊆〉. Then sup D =

⋃
D.

(4) Let R be a semilattice, D be a non empty directed subset of 〈Ids(R),⊆〉,
and x be an element of 〈Ids(R),⊆〉. Then sup({x} u D) =

⋃{x ∩ d : d

ranges over elements of D}.
Let R be a semilattice. Observe that 〈Ids(R),⊆〉 satisfies MC.
Let R be a non empty trivial relational structure. Note that every topological

augmentation of R is trivial.
Next we state three propositions:

1This work has been supported by KBN Grant 8 T11C 018 12.

249
c© 2001 University of Białystok

ISSN 1426–2630

250 artur korniłowicz

(5) Let S be a Scott complete top-lattice, T be a complete lattice, and A be
a Scott topological augmentation of T . Suppose the relational structure
of S = the relational structure of T . Then the FR-structure of A = the
FR-structure of S.

(6) Let N be a Lawson complete top-lattice, T be a complete lattice, and A

be a Lawson correct topological augmentation of T . Suppose the relational
structure of N = the relational structure of T . Then the FR-structure of
A = the FR-structure of N .

(7) Let N be a Lawson complete top-lattice, S be a Scott topological au-
gmentation of N , A be a subset of N , and J be a subset of S. If A = J

and J is closed, then A is closed.

Let A be a complete lattice. Observe that λ(A) is non empty.
Let S be a Scott complete top-lattice. Observe that 〈σ(S),⊆〉 is complete

and non trivial.
Let N be a Lawson complete top-lattice. Observe that 〈σ(N),⊆〉 is complete

and non trivial and 〈λ(N),⊆〉 is complete and non trivial.
The following propositions are true:

(8) Let T be a non empty reflexive relational structure. Then σ(T) ⊆ {W \
↑F ; W ranges over subsets of T , F ranges over subsets of T : W ∈ σ(T) ∧
F is finite}.

(9) For every Lawson complete top-lattice N holds λ(N) = the topology of
N .

(10) For every Lawson complete top-lattice N holds σ(N) ⊆ λ(N).
(11) Let M , N be complete lattices. Suppose the relational structure of M =

the relational structure of N . Then λ(M) = λ(N).
(12) For every Lawson complete top-lattice N and for every subset X of N

holds X ∈ λ(N) iff X is open.

Let us note that every reflexive non empty FR-structure which is trivial and
topological space-like is also Scott.

Let us observe that every complete top-lattice which is trivial is also Lawson.
Let us note that there exists a complete top-lattice which is strict, continu-

ous, lower-bounded, meet-continuous, and Scott.
One can verify that there exists a complete top-lattice which is strict, con-

tinuous, compact, Hausdorff, and Lawson.
Next we state the proposition

(13) Let N be a meet-continuous lattice and A be a subset of N . If A has the
property (S), then ↑A has the property (S).

Let N be a meet-continuous lattice and let A be a property(S) subset of N .
Note that ↑A is property(S).

We now state several propositions:

meet continuous lattices revisited 251

(14) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , and A be a subset of N . If A ∈ λ(N), then
↑A ∈ σ(S).

(15) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , A be a subset of N , and J be a subset of
S. If A = J, then if A is open, then ↑J is open.

(16) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , x be a point of S, y be a point of N , and
J be a basis of y. If x = y, then {↑A; A ranges over subsets of N : A ∈ J}
is a basis of x.

(17) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , X be an upper subset of N , and Y be a
subset of S. If X = Y, then Int X = Int Y.

(18) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , X be a lower subset of N , and Y be a
subset of S. If X = Y, then X = Y .

(19) Let M , N be complete lattices, L1 be a Lawson correct topological au-
gmentation of M , and L2 be a Lawson correct topological augmentation of
N . Suppose 〈σ(N),⊆〉 is continuous. Then the topology of [:L1, (L2 qua
topological space) :] = λ([:M, N :]).

(20) Let M , N be complete lattices, P be a Lawson correct topological au-
gmentation of [:M, N :], Q be a Lawson correct topological augmentation
of M , and R be a Lawson correct topological augmentation of N . Sup-
pose 〈σ(N),⊆〉 is continuous. Then the topological structure of P = [:Q,

(R qua topological space) :].
(21) For every meet-continuous Lawson complete top-lattice N and for every

element x of N holds x u¤ is continuous.

Let N be a meet-continuous Lawson complete top-lattice and let x be an
element of N . Observe that x u¤ is continuous.

One can prove the following propositions:

(22) For every meet-continuous Lawson complete top-lattice N such that
〈σ(N),⊆〉 is continuous holds N satisfies conditions of topological semi-
lattice.

(23) Let N be a meet-continuous Lawson complete top-lattice. Suppose
〈σ(N),⊆〉 is continuous. Then N is Hausdorff if and only if for every
subset X of [:N, (N qua topological space) :] such that X = the internal
relation of N holds X is closed.

Let N be a non empty reflexive relational structure and let X be a subset
of the carrier of N . The functor X0 yields a subset of N and is defined by:

(Def. 1) X0 = {u; u ranges over elements of N :
∧

D : non empty directed subset of N (u ¬

252 artur korniłowicz

sup D ⇒ X ∩D 6= ∅)}.
Let N be a non empty reflexive antisymmetric relational structure and let

X be an empty subset of the carrier of N . One can check that X0 is empty.
One can prove the following propositions:

(24) For every non empty reflexive relational structure N and for all subsets
A, J of N such that A ⊆ J holds A0 ⊆ J0.

(25) For every non empty reflexive relational structure N and for every ele-
ment x of N holds ↑x0 = ↑↑x.

(26) For every Scott top-lattice N and for every upper subset X of N holds
Int X ⊆ X0.

(27) For every non empty reflexive relational structure N and for all subsets
X, Y of N holds X0 ∪ Y 0 ⊆ X ∪ Y 0.

(28) For every meet-continuous lattice N and for all upper subsets X, Y of
N holds X0 ∪ Y 0 = X ∪ Y 0.

(29) Let S be a meet-continuous Scott top-lattice and F be a finite subset of
S. Then Int↑F ⊆ ⋃{↑↑x; x ranges over elements of S: x ∈ F}.

(30) Let N be a Lawson complete top-lattice. Then N is continuous if and
only if N is meet-continuous and Hausdorff.

Let us note that every complete top-lattice which is continuous and Lawson is
also Hausdorff and every complete top-lattice which is meet-continuous, Lawson,
and Hausdorff is also continuous.

Let N be a non empty FR-structure. We say that N has small semilattices
if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x be a point of N . Then there exists a generalized basis J of x such
that for every subset A of N if A ∈ J, then sub(A) is meet-inheriting.

We say that N has compact semilattices if and only if the condition (Def. 3) is
satisfied.

(Def. 3) Let x be a point of N . Then there exists a generalized basis J of x such
that for every subset A of N if A ∈ J, then sub(A) is meet-inheriting and
A is compact.

We say that N has open semilattices if and only if the condition (Def. 4) is
satisfied.

(Def. 4) Let x be a point of N . Then there exists a basis J of x such that for
every subset A of N if A ∈ J, then sub(A) is meet-inheriting.

One can verify the following observations:

∗ every non empty topological space-like FR-structure which has open
semilattices has also small semilattices,

∗ every non empty topological space-like FR-structure which has compact
semilattices has also small semilattices,

meet continuous lattices revisited 253

∗ every non empty FR-structure which is anti-discrete has small semilat-
tices and open semilattices, and

∗ every non empty FR-structure which is reflexive, trivial, and topological
space-like has compact semilattices.

Let us mention that there exists a top-lattice which is strict, trivial, and
lower.

We now state several propositions:

(31) Let N be top-poset with g.l.b.’s satisfying conditions of topological semi-
lattice and C be a subset of N . If sub(C) is meet-inheriting, then sub(C)
is meet-inheriting.

(32) Let N be a meet-continuous Lawson complete top-lattice and S be a
Scott topological augmentation of N . Then for every point x of S there
exists a basis J of x such that for every subset W of S such that W ∈ J

holds W is a filter of S if and only if N has open semilattices.

(33) Let N be a Lawson complete top-lattice, S be a Scott topological au-
gmentation of N , and x be an element of N . Then {inf A; A ranges over
subsets of S: x ∈ A ∧ A ∈ σ(S)} ⊆ {inf J ; J ranges over subsets of N :
x ∈ J ∧ J ∈ λ(N)}.

(34) Let N be a meet-continuous Lawson complete top-lattice, S be a Scott
topological augmentation of N , and x be an element of N . Then {inf A; A
ranges over subsets of S: x ∈ A ∧ A ∈ σ(S)} = {inf J ; J ranges over
subsets of N : x ∈ J ∧ J ∈ λ(N)}.

(35) Let N be a meet-continuous Lawson complete top-lattice. Then N is
continuous if and only if N has open semilattices and 〈σ(N),⊆〉 is conti-
nuous.

One can check that every Lawson complete top-lattice which is continuous
has open semilattices.

Let N be a continuous Lawson complete top-lattice. One can check that
〈σ(N),⊆〉 is continuous.

We now state several propositions:

(36) Every continuous Lawson complete top-lattice is compact and Hausdorff
and has open semilattices and satisfies conditions of topological semilat-
tice.

(37) Every Hausdorff Lawson complete top-lattice with open semilattices sa-
tisfying conditions of topological semilattice has compact semilattices.

(38) Let N be a meet-continuous Hausdorff Lawson complete top-lattice and
x be an element of N . Then x =

⊔
N{inf V ; V ranges over subsets of N :

x ∈ V ∧ V ∈ λ(N)}.
(39) Let N be a meet-continuous Lawson complete top-lattice. Then N is

continuous if and only if for every element x of N holds x =
⊔

N{inf V ; V

254 artur korniłowicz

ranges over subsets of N : x ∈ V ∧ V ∈ λ(N)}.
(40) Let N be a meet-continuous Lawson complete top-lattice. Then N is

algebraic if and only if N has open semilattices and 〈σ(N),⊆〉 is algebraic.

Let N be a meet-continuous algebraic Lawson complete top-lattice. Note
that 〈σ(N),⊆〉 is algebraic.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,

7(1):35–43, 1998.
[6] Grzegorz Bancerek. The Lawson topology. Formalized Mathematics, 7(2):163–168, 1998.
[7] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-
pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-
ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[12] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized
Mathematics, 6(1):145–152, 1997.

[13] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Formalized
Mathematics, 6(1):153–158, 1997.

[14] Artur Korniłowicz. Meet–continuous lattices. Formalized Mathematics, 6(1):159–167,
1997.

[15] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized
Mathematics, 6(2):269–277, 1997.

[16] Artur Korniłowicz. Introduction to meet-continuous topological lattices. Formalized Ma-
thematics, 7(2):279–283, 1998.

[17] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249–254, 1997.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[21] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294,

1997.
[22] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[26] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received January 6, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Weights of Continuous Lattices1

Robert Milewski
University of Białystok

Summary. This work is a continuation of formalization of [13]. Theorems
from Chapter III, Section 4, pp. 170–171 are proved.

MML Identifier: WAYBEL31.

The papers [25], [20], [1], [9], [12], [10], [22], [3], [15], [2], [23], [19], [26], [24], [27],
[21], [8], [18], [5], [11], [6], [17], [16], [4], [14], and [7] provide the terminology
and notation for this paper.

In this article we present several logical schemes. The scheme UparrowUnion
deals with a relational structure A and a unary predicate P, and states that:

Let S be a family of subsets of the carrier of A. If S = {X; X
ranges over subsets of A : P[X]}, then ↑⋃S =

⋃{↑X;X ranges
over subsets of A : P[X]}

for all values of the parameters.
The scheme DownarrowUnion deals with a relational structure A and a

unary predicate P, and states that:
Let S be a family of subsets of the carrier of A. If S = {X; X
ranges over subsets of A : P[X]}, then ↓⋃S =

⋃{↓X;X ranges
over subsets of A : P[X]}

for all values of the parameters.
Let L1 be a lower-bounded continuous sup-semilattice and let B1 be a CLba-

sis of L1 with bottom. One can verify that 〈Ids(sub(B1)),⊆〉 is algebraic.
Let L1 be a continuous sup-semilattice. The functor CLweight L1 yields a

cardinal number and is defined as follows:

(Def. 1) CLweight L1 =
⋂{B1 : B1 ranges over CLbasis of L1 with bottom}.

We now state a number of propositions:

1This work has been supported by KBN Grant 8 T11C 018 12.

255
c© 2001 University of Białystok

ISSN 1426–2630

256 robert milewski

(1) For every topological structure T and for every basis b of T holds
weight T ⊆ b.

(2) For every topological structure T there exists a basis b of T such that
b = weight T.

(3) For every continuous sup-semilattice L1 and for every CLbasis B1 of L1

with bottom holds CLweight L1 ⊆ B1 .

(4) For every continuous sup-semilattice L1 there exists a CLbasis B1 of L1

with bottom such that B1 = CLweight L1.

(5) For every algebraic lower-bounded lattice L1 holds CLweight L1 =
the carrier of CompactSublatt(L1) .

(6) Let T be a non empty topological space and L1 be a continuous sup-
semilattice. If 〈the topology of T , ⊆〉 = L1, then every CLbasis of L1 with
bottom is a basis of T .

(7) Let T be a non empty topological space and L1 be a continuous lower-
bounded lattice. Suppose 〈the topology of T , ⊆〉 = L1. Let B1 be a basis
of T and B2 be a subset of L1. If B1 = B2, then finsups(B2) is a CLbasis
of L1 with bottom.

(8) Let T be a T0 non empty topological space and L1 be a continuous
lower-bounded sup-semilattice. If 〈the topology of T , ⊆〉 = L1, then if T

is infinite, then weight T = CLweight L1.

(9) Let T be a T0 non empty topological space and L1 be a continuous sup-
semilattice. Suppose 〈the topology of T , ⊆〉 = L1. Then the carrier of T ⊆
the carrier of L1 .

(10) For every T0 non empty topological space T such that T is finite holds
weight T = the carrier of T .

(11) Let T be a topological structure and L1 be a continuous lower-bounded
lattice. Suppose 〈the topology of T , ⊆〉 = L1 and T is finite. Then
CLweight L1 = the carrier of L1 .

(12) Let L1 be a continuous lower-bounded sup-semilattice, T1 be a Scott
topological augmentation of L1, T2 be a Lawson correct topological au-
gmentation of L1, and B2 be a basis of T2. Then {↑V ; V ranges over subsets
of T2: V ∈ B2} is a basis of T1.

(13) For all finite sets X, Y such that X ⊆ Y and X = Y holds X = Y.

(14) For every up-complete non empty poset L1 such that L1 is finite and for
every element x of L1 holds x ∈ compactbelow(x).

(15) Every finite lattice is arithmetic.

One can check that every lattice which is finite is also arithmetic.
One can verify that there exists a relational structure which is trivial, re-

weights of continuous lattices 257

flexive, transitive, antisymmetric, lower-bounded, non empty, finite, and strict
and has l.u.b.’s and g.l.b.’s.

One can prove the following proposition

(16) Let L1 be a finite lattice and B1 be a CLbasis of L1 with bottom. Then
B1 = CLweight L1 if and only if B1 = the carrier of CompactSublatt(L1).

Let L1 be a non empty reflexive relational structure, let A be a subset of the
carrier of L1, and let a be an element of L1. The functor Way Up(a,A) yields a
subset of L1 and is defined as follows:

(Def. 2) Way Up(a,A) = ↑↑a \ ↑A.

Next we state a number of propositions:

(17) For every non empty reflexive relational structure L1 and for every ele-
ment a of L1 holds Way Up(a, ∅(L1)) = ↑↑a.

(18) For every non empty poset L1 and for every subset A of L1 and for every
element a of L1 such that a ∈ ↑A holds Way Up(a,A) = ∅.

(19) For every non empty finite reflexive transitive relational structure L1

holds Ids(L1) is finite.

(20) For every continuous lower-bounded sup-semilattice L1 such that L1 is
infinite holds every CLbasis of L1 with bottom is infinite.

(21) For every set d and for every finite sequence p and for every natural
number i such that i ∈ dom p holds (〈d〉 a p)(i + 1) = p(i).

(22) For every finite sequence p and for every set x holds (〈x〉 a p)¹1 = p.

(23) For every complete non empty poset L1 and for every element x of L1

such that x is compact holds x = inf ↑↑x.

(24) Let L1 be a continuous lower-bounded sup-semilattice. Suppose
L1 is infinite. Let B1 be a CLbasis of L1 with bottom. Then
{Way Up(a,A); a ranges over elements of L1, A ranges over finite subsets

of L1: a ∈ B1 ∧ A ⊆ B1} ⊆ B1 .

(25) For every Lawson complete top-lattice T and for every finite subset X

of T holds −↑X is open and −↓X is open.

(26) Let L1 be a continuous lower-bounded sup-semilattice, T be a Lawson
correct topological augmentation of L1, and B1 be a CLbasis of L1 with
bottom. Then {Way Up(a,A); a ranges over elements of L1, A ranges over
finite subsets of L1: a ∈ B1 ∧ A ⊆ B1} is a basis of T .

(27) Let L1 be a continuous lower-bounded sup-semilattice, T be a Scott
topological augmentation of L1, and b be a basis of T . Then {↑↑ inf u; u
ranges over subsets of T : u ∈ b} is a basis of T .

(28) Let L1 be a continuous lower-bounded sup-semilattice, T be a Scott
topological augmentation of L1, and B1 be a basis of T . If B1 is infinite,
then {inf u; u ranges over subsets of T : u ∈ B1} is infinite.

258 robert milewski

(29) Let L1 be a continuous lower-bounded sup-semilattice and T be a Scott
topological augmentation of L1. Then CLweight L1 = weight T.

(30) Let L1 be a continuous lower-bounded sup-semilattice and T be a Lawson
correct topological augmentation of L1. Then CLweight L1 = weight T.

(31) Let L1, L2 be non empty relational structures. Suppose L1 and L2 are
isomorphic. Then the carrier of L1 = the carrier of L2 .

(32) Let L1 be a continuous lower-bounded sup-semilattice and B1 be a
CLbasis of L1 with bottom. If B1 = CLweight L1, then CLweight L1 =
CLweight〈Ids(sub(B1)),⊆〉.

Let L1 be a continuous lower-bounded sup-semilattice. Note that 〈σ(L1),⊆〉
is continuous and has l.u.b.’s.

Next we state two propositions:

(33) For every continuous lower-bounded sup-semilattice L1 holds CLweight L1

⊆ CLweight〈σ(L1),⊆〉.
(34) For every continuous lower-bounded sup-semilattice L1 such that L1 is

infinite holds CLweight L1 = CLweight〈σ(L1),⊆〉.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[6] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[7] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,

7(1):35–43, 1998.
[8] Grzegorz Bancerek. The Lawson topology. Formalized Mathematics, 7(2):163–168, 1998.
[9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[11] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-

pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-

ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Ma-

thematics, 2(5):711–717, 1991.
[16] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized

Mathematics, 6(2):269–277, 1997.
[17] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249–254, 1997.
[18] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294,

1998.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.

weights of continuous lattices 259

[20] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
5(2):233–236, 1996.

[21] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received January 6, 2000

260 robert milewski

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Representation Theorem for Finite
Distributive Lattices

Marek Dudzicz
University of Białystok

Summary. In the article the representation theorem for finite distributive
lattice as rings of sets is presented. Auxiliary concepts are introduced. Namely, the
concept of the height of an element, the maximal element in a chain, immediate
predecessor of an element and ring of sets. Besides the schemes of induction in
finite lattice is proved.

MML Identifier: LATTICE7.

The notation and terminology used here are introduced in the following papers:
[7], [1], [8], [6], [9], [3], [4], [2], and [5].

1. Induction in a Finite Lattice

Let L be a 1-sorted structure and let A, B be subsets of L. Let us observe
that A ⊆ B if and only if:

(Def. 1) For every element x of L such that x ∈ A holds x ∈ B.

Let L be a lattice. Note that there exists a chain of L which is non empty.
Let L be a lattice and let x, y be elements of L. Let us assume that x ¬ y.

A non empty chain of L is called a chain of x, y if:

(Def. 2) x ∈ it and y ∈ it and for every element z of L such that z ∈ it holds
x ¬ z and z ¬ y.

The following proposition is true

(1) For every lattice L and for all elements x, y of L such that x ¬ y holds
{x, y} is a chain of x, y.

261
c© 2001 University of Białystok

ISSN 1426–2630

262 marek dudzicz

Let L be a finite lattice and let x be an element of L. The functor height x

yields a natural number and is defined as follows:

(Def. 3) There exists a chain A of ⊥L, x such that height x = card A and for
every chain A of ⊥L, x holds card A ¬ height x.

Next we state several propositions:

(2) For every finite lattice L and for all elements a, b of L such that a < b

holds height a < height b.

(3) Let L be a finite lattice, C be a chain of L, and x, y be elements of L.
If x ∈ C and y ∈ C, then x < y iff height x < height y.

(4) Let L be a finite lattice, C be a chain of L, and x, y be elements of L.
If x ∈ C and y ∈ C, then x = y iff height x = height y.

(5) Let L be a finite lattice, C be a chain of L, and x, y be elements of L.
If x ∈ C and y ∈ C, then x ¬ y iff height x ¬ height y.

(6) For every finite lattice L and for every element x of L holds height x = 1
iff x = ⊥L.

(7) For every non empty finite lattice L and for every element x of L holds
height x 1.

The scheme LattInd deals with a finite lattice A and a unary predicate P,

and states that:
For every element x of A holds P[x]

provided the following requirement is met:
• For every element x of A such that for every element b of A such

that b < x holds P[b] holds P[x].

2. Join Irreducible Elements in a Finite Distributive Lattice

Let us mention that there exists a lattice which is distributive and finite.
Let L be a lattice and let x, y be elements of L. The predicate x <1 y is

defined as follows:

(Def. 4) x < y and it is not true that there exists an element z of L such that
x < z and z < y.

One can prove the following proposition

(8) Let L be a finite lattice and X be a non empty subset of L. Then there
exists an element x of L such that x ∈ X and for every element y of L

such that y ∈ X holds x 6< y.

Let L be a finite lattice and let A be a non empty chain of L. The functor
max A yielding an element of L is defined by:

(Def. 5) For every element x of L such that x ∈ A holds x ¬ max A and max A ∈
A.

representation theorem for finite . . . 263

The following proposition is true

(9) For every finite lattice L and for every element y of L such that y 6= ⊥L

there exists an element x of L such that x <1 y.

Let L be a lattice. The functor Join-IRR L yielding a subset of L is defined
by:

(Def. 6) Join-IRR L = {a; a ranges over elements of L: a 6= ⊥L ∧∧
b,c : element of L (a = b t c ⇒ a = b ∨ a = c)}.

One can prove the following three propositions:

(10) Let L be a lattice and x be an element of L. Then x ∈ Join-IRR L if and
only if the following conditions are satisfied:

(i) x 6= ⊥L, and
(ii) for all elements b, c of L such that x = b t c holds x = b or x = c.

(11) Let L be a finite distributive lattice and x be an element of L. Suppose
x ∈ Join-IRR L. Then there exists an element z of L such that z < x and
for every element y of L such that y < x holds y ¬ z.

(12) For every distributive finite lattice L and for every element x of L holds
sup(↓x ∩ Join-IRR L) = x.

3. Representation Theorem

Let P be a relational structure. The functor LOWER P yields a non empty
set and is defined as follows:

(Def. 7) LOWER P = {X; X ranges over subsets of P : X is lower}.
The following two propositions are true:

(13) Let L be a distributive finite lattice. Then there exists a map r from L

into 〈LOWER sub(Join-IRR L),⊆〉 such that r is isomorphic and for every
element a of L holds r(a) = ↓a ∩ Join-IRR L.

(14) For every distributive finite lattice L holds L and 〈LOWER sub(Join-IRR L),
⊆〉 are isomorphic.

Ring of sets is defined by:

(Def. 8) It includes lattice of it.

Let us note that there exists a ring of sets which is non empty.
Let X be a non empty ring of sets. One can verify that 〈X,⊆〉 is distributive

and has l.u.b.’s and g.l.b.’s.
One can prove the following propositions:

(15) For every finite lattice L holds LOWER sub(Join-IRR L) is a ring of sets.

(16) Let L be a finite lattice. Then L is distributive if and only if there exists
a non empty ring of sets X such that L and 〈X,⊆〉 are isomorphic.

264 marek dudzicz

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathema-

tics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[5] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-

ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.
[6] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[7] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[8] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received January 6, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Field of Complex Numbers

Anna Justyna Milewska
University of Białystok

Summary. This article contains the definition and many facts about the
field of complex numbers.

MML Identifier: COMPLFLD.

The articles [4], [1], [2], [5], [6], and [3] provide the terminology and notation for
this paper.

The following propositions are true:

(1) 1C 6= 0C.

(2) For all elements x1, y1, x2, y2 of R holds (x1 + y1i) + (x2 + y2i) =
(x1 + x2) + (y1 + y2)i.

The strict double loop structure CF is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of CF = C,

(ii) the addition of CF = +C,

(iii) the multiplication of CF = ·C,

(iv) the unity of CF = 1C, and
(v) the zero of CF = 0C.

Let us observe that CF is non empty.
Let us observe that CF is add-associative right zeroed right complementable

Abelian commutative associative left unital right unital distributive field-like
and non degenerated.

We now state several propositions:

(3) For all elements x1, y1 of the carrier of CF and for all elements x2, y2 of
C such that x1 = x2 and y1 = y2 holds x1 + y1 = x2 + y2.

(4) For every element x1 of the carrier of CF and for every element x2 of C
such that x1 = x2 holds −x1 = −x2.

265
c© 2001 University of Białystok

ISSN 1426–2630

266 anna justyna milewska

(5) For all elements x1, y1 of the carrier of CF and for all elements x2, y2 of
C such that x1 = x2 and y1 = y2 holds x1 − y1 = x2 − y2.

(6) For all elements x1, y1 of the carrier of CF and for all elements x2, y2 of
C such that x1 = x2 and y1 = y2 holds x1 · y1 = x2 · y2.

(7) For every element x1 of the carrier of CF and for every element x2 of C
such that x1 = x2 and x1 6= 0CF holds x1

−1 = x2
−1.

(8) Let x1, y1 be elements of the carrier of CF and x2, y2 be elements of C.
If x1 = x2 and y1 = y2 and y1 6= 0CF , then x1

y1
= x2

y2
.

(9) 0CF = 0C.

(10) 1CF = 1C.

(11) 1CF + 1CF 6= 0CF .

Let z be an element of the carrier of CF. The functor z∗ yielding an element
of CF is defined by:

(Def. 2) There exists an element z′ of C such that z = z′ and z∗ = z′∗.
Let z be an element of the carrier of CF. The functor |z| yielding an element

of R is defined by:

(Def. 3) There exists an element z′ of C such that z = z′ and |z| = |z′|.
We now state the proposition

(12) For every element x1 of the carrier of CF and for every element x2 of C
such that x1 = x2 holds x1

∗ = x2
∗.

In the sequel z, z1, z2, z3, z4 denote elements of the carrier of CF.
One can prove the following propositions:

(13) z1 + (z2 + z3) = (z1 + z2) + z3.

(14) (The zero of CF) + z = z and z + the zero of CF = z.

(15) z1 · (z2 · z3) = (z1 · z2) · z3.

(16) z · (z1 + z2) = z · z1 + z · z2 and (z1 + z2) · z = z1 · z + z2 · z.

(17) (The zero of CF) · z = the zero of CF and z · the zero of CF = the zero
of CF.

(18) (The unity of CF) · z = z and z · the unity of CF = z.

(19) −the zero of CF = the zero of CF.

(20) If −z = the zero of CF, then z = the zero of CF.

(21) z +−z = the zero of CF and −z + z = the zero of CF.

(22) If z1 + z2 = the zero of CF, then z2 = −z1 and z1 = −z2.

(23) −−z = z.

(24) If −z1 = −z2, then z1 = z2.

(25) If z1 + z = z2 + z or z1 + z = z + z2, then z1 = z2.

(26) −(z1 + z2) = −z1 +−z2.

(27) (−z1) · z2 = −z1 · z2 and z1 · −z2 = −z1 · z2.

the field of complex numbers 267

(28) (−z1) · −z2 = z1 · z2.

(29) −z = (−the unity of CF) · z.

(30) z1 − z2 = z1 +−z2.

(31) If z1 − z2 = the zero of CF, then z1 = z2.

(32) z − z = the zero of CF.

(33) z − the zero of CF = z.

(34) (The zero of CF)− z = −z.

(35) z1 −−z2 = z1 + z2.

(36) −(z1 − z2) = −z1 + z2.

(37) −(z1 − z2) = z2 − z1.

(38) z1 + (z2 − z3) = (z1 + z2)− z3.

(39) z1 − (z2 − z3) = (z1 − z2) + z3.

(40) z1 − z2 − z3 = z1 − (z2 + z3).
(41) z1 = (z1 + z)− z.

(42) z1 = (z1 − z) + z.

(43) z · (z1 − z2) = z · z1 − z · z2 and (z1 − z2) · z = z1 · z − z2 · z.

(44) If z 6= the zero of CF, then z · z−1 = the unity of CF and z−1 · z = the
unity of CF.

(45) If z1 · z2 = the zero of CF, then z1 = the zero of CF or z2 = the zero of
CF.

(46) If z 6= the zero of CF, then z−1 6= the zero of CF.

(47) If z1 6= the zero of CF and z2 6= the zero of CF and z1
−1 = z2

−1, then
z1 = z2.

(48) If z2 6= the zero of CF and if z1 · z2 = the unity of CF or z2 · z1 = the
unity of CF, then z1 = z2

−1.

(49) If z2 6= the zero of CF and if z1 ·z2 = z3 or z2 ·z1 = z3, then z1 = z3 ·z2
−1

and z1 = z2
−1 · z3.

(50) (The unity of CF)−1 = the unity of CF.

(51) If z1 6= the zero of CF and z2 6= the zero of CF, then (z1 · z2)−1 =
z1
−1 · z2

−1.

(52) If z 6= the zero of CF, then (z−1)−1 = z.

(53) If z 6= the zero of CF, then (−z)−1 = −z−1.

(54) If z 6= the zero of CF and if z1 · z = z2 · z or z1 · z = z · z2, then z1 = z2.

(55) If z1 6= the zero of CF and z2 6= the zero of CF, then z1
−1 + z2

−1 =
(z1 + z2) · (z1 · z2)−1.

(56) If z1 6= the zero of CF and z2 6= the zero of CF, then z1
−1 − z2

−1 =
(z2 − z1) · (z1 · z2)−1.

(57) If z2 6= the zero of CF, then z1
z2

= z1 · z2
−1.

268 anna justyna milewska

(58) If z 6= the zero of CF, then z−1 = the unity of CF
z .

(59) z
the unity of CF

= z.

(60) If z 6= the zero of CF, then z
z = the unity of CF.

(61) If z 6= the zero of CF, then the zero of CF
z = the zero of CF.

(62) If z2 6= the zero of CF and z1
z2

= the zero of CF, then z1 = the zero of
CF.

(63) If z2 6= the zero of CF and z4 6= the zero of CF, then z1
z2
· z3

z4
= z1·z3

z2·z4
.

(64) If z2 6= the zero of CF, then z · z1
z2

= z·z1
z2

.

(65) If z2 6= the zero of CF and z1
z2

= the unity of CF, then z1 = z2.

(66) If z 6= the zero of CF, then z1 = z1·z
z .

(67) If z1 6= the zero of CF and z2 6= the zero of CF, then (z1
z2

)−1 = z2
z1

.

(68) If z1 6= the zero of CF and z2 6= the zero of CF, then z1
−1

z2
−1 = z2

z1
.

(69) If z2 6= the zero of CF, then z1
z2
−1 = z1 · z2.

(70) If z1 6= the zero of CF and z2 6= the zero of CF, then z1
−1

z2
= (z1 · z2)−1.

(71) If z1 6= the zero of CF and z2 6= the zero of CF, then z1
−1 · z

z2
= z

z1·z2
.

(72) If z 6= the zero of CF and z2 6= the zero of CF, then z1
z2

= z1·z
z2·z and

z1
z2

= z·z1
z·z2

.

(73) If z2 6= the zero of CF and z3 6= the zero of CF, then z1
z2·z3

=
z1
z2
z3

.

(74) If z2 6= the zero of CF and z3 6= the zero of CF, then z1·z3
z2

= z1
z2
z3

.

(75) If z2 6= the zero of CF and z3 6= the zero of CF and z4 6= the zero of CF,

then
z1
z2
z3
z4

= z1·z4
z2·z3

.

(76) If z2 6= the zero of CF and z4 6= the zero of CF, then z1
z2

+ z3
z4

= z1·z4+z3·z2
z2·z4

.

(77) If z 6= the zero of CF, then z1
z + z2

z = z1+z2
z .

(78) If z2 6= the zero of CF, then − z1
z2

= −z1
z2

and − z1
z2

= z1
−z2

.

(79) If z2 6= the zero of CF, then z1
z2

= −z1
−z2

.

(80) If z2 6= the zero of CF and z4 6= the zero of CF, then z1
z2
− z3

z4
= z1·z4−z3·z2

z2·z4
.

(81) If z 6= the zero of CF, then z1
z − z2

z = z1−z2
z .

(82) If z2 6= the zero of CF and if z1 · z2 = z3 or z2 · z1 = z3, then z1 = z3
z2

.

(83) (the zero of CF)∗ = the zero of CF.

(84) If z∗ = the zero of CF, then z = the zero of CF.

(85) (the unity of CF)∗ = the unity of CF.

(86) (z∗)∗ = z.

(87) (z1 + z2)∗ = z1
∗ + z2

∗.
(88) (−z)∗ = −z∗.
(89) (z1 − z2)∗ = z1

∗ − z2
∗.

the field of complex numbers 269

(90) (z1 · z2)∗ = z1
∗ · z2

∗.
(91) If z 6= the zero of CF, then (z−1)∗ = (z∗)−1.

(92) If z2 6= the zero of CF, then (z1
z2

)∗ = z1
∗

z2
∗ .

(93) |the zero of CF| = 0.

(94) If |z| = 0, then z = the zero of CF.

(95) 0 ¬ |z|.
(96) z 6= the zero of CF iff 0 < |z|.
(97) |the unity of CF| = 1.

(98) |−z| = |z|.
(99) |z∗| = |z|.

(100) |z1 + z2| ¬ |z1|+ |z2|.
(101) |z1 − z2| ¬ |z1|+ |z2|.
(102) |z1| − |z2| ¬ |z1 + z2|.
(103) |z1| − |z2| ¬ |z1 − z2|.
(104) |z1 − z2| = |z2 − z1|.
(105) |z1 − z2| = 0 iff z1 = z2.

(106) z1 6= z2 iff 0 < |z1 − z2|.
(107) |z1 − z2| ¬ |z1 − z|+ |z − z2|.
(108) ||z1| − |z2|| ¬ |z1 − z2|.
(109) |z1 · z2| = |z1| · |z2|.
(110) If z 6= the zero of CF, then |z−1| = |z|−1.

(111) If z2 6= the zero of CF, then |z1|
|z2| = |

z1
z2
|.

(112) |z · z| = |z · z∗|.

References

[1] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and

vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[4] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received January 18, 2000

270 anna justyna milewska

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Integrability of Bounded Total Functions

Noboru Endou
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. All these results have been obtained by Darboux’s theorem in
our previous article [7]. In addition, we have proved the first mean value theorem
to Riemann integral.

MML Identifier: INTEGRA4.

The articles [15], [1], [2], [3], [6], [8], [4], [5], [9], [18], [12], [14], [13], [11], [10],
[17], and [16] provide the notation and terminology for this paper.

1. Basic Integrable Functions and First Mean Value Theorem

For simplicity, we use the following convention: i, n denote natural numbers,
a, r, x, y denote real numbers, A denotes a closed-interval subset of R, C denotes
a non empty set, and X denotes a set.

We now state several propositions:

(1) For every element D of divs A such that vol(A) = 0 holds len D = 1.

(2) χA,A is integrable on A and integral χA,A = vol(A).
(3) For every partial function f from A to R and for every r holds f is total

and rng f = {r} iff f = r χA,A.

(4) Let f be a partial function from A to R and given r. If f is total and
rng f = {r}, then f is integrable on A and integral f = r · vol(A).

(5) For every r there exists a partial function f from A to R such that f is
total and rng f = {r} and f is bounded on A.

(6) Let f be a partial function from A to R and D be an element of divs A.

If vol(A) = 0, then f is integrable on A and integral f = 0.

271
c© 2001 University of Białystok

ISSN 1426–2630

272 noboru endou et al.

(7) Let f be a partial function from A to R. Suppose f is total and bounded
on A and f is integrable on A. Then there exists a such that inf rng f ¬ a

and a ¬ sup rng f and integral f = a · vol(A).

2. Integrability of Bounded Total Functions

We now state three propositions:

(8) Let f be a partial function from A to R and T be a DivSequ-
ence of A. Suppose f is total and bounded on A and δT is co-
nvergent and lim(δT) = 0. Then lower sum(f, T) is convergent and
lim lower sum(f, T) = lower integral f.

(9) Let f be a partial function from A to R and T be a DivSequ-
ence of A. Suppose f is total and bounded on A and δT is co-
nvergent and lim(δT) = 0. Then upper sum(f, T) is convergent and
lim upper sum(f, T) = upper integral f.

(10) Let f be a partial function from A to R. Suppose f is total and bounded
on A. Then f is upper integrable on A and f is lower integrable on A.

Let A be a closed-interval subset of R, let I1 be an element of divs A, and
let us consider n. We say that I1 divides into equal n if and only if:

(Def. 1) len I1 = n and for every i such that i ∈ dom I1 holds I1(i) = inf A +
vol(A)
len I1

· i.
Next we state a number of propositions:

(11) There exists a DivSequence T of A such that δT is convergent and
lim(δT) = 0.

(12) Let f be a partial function from A to R. Suppose f is total and bounded
on A. Then f is integrable on A if and only if for every DivSequence T of
A such that δT is convergent and lim(δT) = 0 holds lim upper sum(f, T)−
lim lower sum(f, T) = 0.

(13) For every partial function f from C to R such that f is total holds
max+(f) is total and max−(f) is total.

(14) For every partial function f from C to R such that f is upper bounded
on X holds max+(f) is upper bounded on X.

(15) For every partial function f from C to R holds max+(f) is lower bounded
on X.

(16) For every partial function f from C to R such that f is lower bounded
on X holds max−(f) is upper bounded on X.

(17) For every partial function f from C to R holds max−(f) is lower bounded
on X.

integrability of bounded total functions 273

(18) For every partial function f from A to R such that f is upper bounded
on A holds rng(f¹X) is upper bounded.

(19) For every partial function f from A to R such that f is lower bounded
on A holds rng(f¹X) is lower bounded.

(20) Let f be a partial function from A to R. Suppose f is total and bounded
on A and f is integrable on A. Then max+(f) is integrable on A.

(21) For every partial function f from C to R holds max−(f) = max+(−f).
(22) Let f be a partial function from A to R. Suppose f is total and bounded

on A and f is integrable on A. Then max−(f) is integrable on A.

(23) Let f be a partial function from A to R. Suppose f is total and bo-
unded on A and f is integrable on A. Then |f | is integrable on A and
| integral f | ¬ integral |f |.

(24) Let f be a partial function from A to R. Suppose f is bounded on A and
total and for all x, y such that x ∈ A and y ∈ A holds |f(x)− f(y)| ¬ a.

Then sup rng f − inf rng f ¬ a.

(25) Let f , g be partial functions from A to R. Suppose that
(i) f is bounded on A,
(ii) g is bounded on A,
(iii) f is total,
(iv) g is total,
(v) a 0, and
(vi) for all x, y such that x ∈ A and y ∈ A holds |g(x)− g(y)| ¬ a · |f(x)−

f(y)|.
Then sup rng g − inf rng g ¬ a · (sup rng f − inf rng f).

(26) Let f , g, h be partial functions from A to R. Suppose that f is bounded
on A and g is bounded on A and h is bounded on A and f is total and
g is total and h is total and a 0 and for all x, y such that x ∈ A

and y ∈ A holds |h(x) − h(y)| ¬ a · (|f(x) − f(y)| + |g(x) − g(y)|). Then
sup rng h− inf rng h ¬ a · ((sup rng f − inf rng f) + (sup rng g− inf rng g)).

(27) Let f , g be partial functions from A to R. Suppose that
(i) f is total and bounded on A,
(ii) f is integrable on A,
(iii) g is total and bounded on A,
(iv) a > 0, and
(v) for all x, y such that x ∈ A and y ∈ A holds |g(x)− g(y)| ¬ a · |f(x)−

f(y)|.
Then g is integrable on A.

(28) Let f , g, h be partial functions from A to R. Suppose that f is total
and bounded on A and f is integrable on A and g is total and bounded
on A and g is integrable on A and h is total and bounded on A and

274 noboru endou et al.

a > 0 and for all x, y such that x ∈ A and y ∈ A holds |h(x) − h(y)| ¬
a · (|f(x)− f(y)|+ |g(x)− g(y)|). Then h is integrable on A.

(29) Let f , g be partial functions from A to R. Suppose that
(i) f is total and bounded on A,
(ii) f is integrable on A,
(iii) g is total and bounded on A, and
(iv) g is integrable on A.

Then f g is integrable on A.

(30) Let f be a partial function from A to R. Suppose f is total and bounded
on A and f is integrable on A and 0 /∈ rng f and 1

f is bounded on A. Then
1
f is integrable on A.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral

and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
[7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux’s theorem. Formalized

Mathematics, 9(1):197–200, 2001.
[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann

definite integral. Formalized Mathematics, 9(1):191–196, 2001.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.
[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-

matics, 1(2):273–275, 1990.
[12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized

Mathematics, 1(4):703–709, 1990.
[13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269–272, 1990.
[14] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the

set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received February 1, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

High-Speed Algorithms for RSA
Cryptograms

Yasushi Fuwa
Shinshu University

Nagano

Yoshinori Fujisawa
Shinshu University

Nagano

Summary. In this article, we propose a new high-speed processing method
for encoding and decoding the RSA cryptogram that is a kind of public-key
cryptogram. This cryptogram is not only used for encrypting data, but also for
such purposes as authentication. However, the encoding and decoding processes
take a long time because they require a great deal of calculations. As a result,
this cryptogram is not suited for practical use. Until now, we proposed a high-
speed algorithm of addition using radix-2k signed-digit numbers and clarified
correctness of it ([5]). In this article, we defined two new operations for a high-
speed coding and encoding processes on public-key cryptograms based on radix-
2k signed-digit (SD) numbers. One is calculation of (a∗b) mod c (a, b, c are natural
numbers). Another one is calculation of (ab) mod c (a, b, c are natural numbers).
Their calculations are realized repetition of addition. We propose a high-speed
algorithm of their calculations using proposed addition algorithm and clarify
the correctness of them. In the first section, we prepared some useful theorems
for natural numbers and integers and so on. In the second section, we proved
some properties of addition operation using a radix-2k SD numbers. In the third
section, we defined some functions on the relation between a finite sequence of
k-SD and a finite sequence of N and proved some properties about them. In the
fourth section, algorithm of calculation of (a ∗ b) mod c based on radix-2k SD
numbers is proposed and its correctness is clarified. In the last section, algorithm
of calculation of (ab) mod c based on radix-2k SD numbers is proposed and we
clarified its correctness.

MML Identifier: RADIX 2.

The notation and terminology used in this paper are introduced in the following
articles: [8], [6], [2], [3], [4], [9], [1], [5], [10], and [7].

275
c© 2001 University of Białystok

ISSN 1426–2630

276 yasushi fuwa and yoshinori fujisawa

1. Some Useful Theorems

In this paper k is a natural number.
The following propositions are true:

(1) For every natural number a holds a mod 1 = 0.

(2) Let a, b be integers and n be a natural number. If n > 0, then ((amodn)+
(bmodn))modn = (a+(bmodn))modn and ((amodn)+(bmodn))modn =
((a mod n) + b) mod n.

(3) For all integers a, b and for every natural number n such that n > 0
holds a · bmodn = a · (bmodn)modn and a · bmodn = (amodn) · bmodn.

(4) For all natural numbers a, b, i such that 1 ¬ i and 0 < b holds (a mod
bi
N)÷ bi−′1

N = (a÷ bi−′1
N) mod b.

(5) For all natural numbers i, n such that i ∈ Seg n holds i+1 ∈ Seg(n+1).

2. Properties of Addition Operation Using Radix-2k Signed-Digit
Numbers

One can prove the following propositions:

(6) For every natural number k holds Radix k > 0.

(7) For every tuple x of 1 and k−SD holds SDDec x = DigA(x, 1).

(8) For every integer x holds SD Add Data(x, k) + SD Add Carry x ·
Radix k = x.

(9) Let n be a natural number, x be a tuple of n + 1 and k−SD, and x1

be a tuple of n and k−SD. Suppose that for every natural number i such
that i ∈ Seg n holds x(i) = x1(i). Then

∑
DigitSD x =

∑
((DigitSD x1) a

〈SubDigit(x, n + 1, k)〉).
(10) Let n be a natural number, x be a tuple of n+1 and k−SD, and x1 be a

tuple of n and k−SD. Suppose that for every natural number i such that
i ∈ Seg n holds x(i) = x1(i). Then SDDec x1 + ((Radix k)n

N) ·DigA(x, n +
1) = SDDec x.

(11) Let n be a natural number. Suppose n 1. Let x, y be tuples of n

and k−SD. If k 2, then SDDec x′ +′ y + SD Add Carry DigA(x, n) +
DigA(y, n) · (Radix k)n

N = SDDec x + SDDec y.

high-speed algorithms for rsa cryptograms 277

3. Definitions on the Relation Between a Finite Sequence of k-SD
and a Finite Sequence of N and Some Properties about them

Let i, k, n be natural numbers and let x be a tuple of n and N. The functor
SubDigit2(x, i, k) yielding an element of N is defined by:

(Def. 1) SubDigit2(x, i, k) = ((Radix k)i−′1
N) · x(i).

Let n, k be natural numbers and let x be a tuple of n and N. The functor
DigitSD2(x, k) yields a tuple of n and N and is defined as follows:

(Def. 2) For every natural number i such that i ∈ Seg n holds πi DigitSD2(x, k) =
SubDigit2(x, i, k).

Let n, k be natural numbers and let x be a tuple of n and N. The functor
SDDec2(x, k) yielding a natural number is defined as follows:

(Def. 3) SDDec2(x, k) =
∑

DigitSD2(x, k).
Let i, k, x be natural numbers. The functor DigitDC2(x, i, k) yields a natural

number and is defined as follows:

(Def. 4) DigitDC2(x, i, k) = (x mod (Radix k)i
N)÷ (Radix k)i−′1

N .

Let k, n, x be natural numbers. The functor DecSD2(x, n, k) yielding a tuple
of n and N is defined by:

(Def. 5) For every natural number i such that i ∈ Seg n holds
(DecSD2(x, n, k))(i) = DigitDC2(x, i, k).

The following propositions are true:

(12) Let n, k be natural numbers, x be a tuple of n and N, and y be a tuple
of n and k−SD. If x = y, then DigitSD2(x, k) = DigitSD y.

(13) Let n, k be natural numbers, x be a tuple of n and N, and y be a tuple
of n and k−SD. If x = y, then SDDec2(x, k) = SDDec y.

(14) For all natural numbers x, n, k holds DecSD2(x, n, k) = DecSD(x, n, k).
(15) Let n be a natural number. Suppose n 1. Let m, k be natural numbers.

If m is represented by n, k, then m = SDDec2(DecSD2(m,n, k), k).

4. A High-Speed Algorithm of Calculation of (a ∗ b) mod b Based
on Radix-2k Signed-Digit Numbers and its Correctness

Let q be an integer, let f , j, k, n be natural numbers, and let c be a tuple
of n and k−SD. The functor Table1(q, c, f, j) yielding an integer is defined as
follows:

(Def. 6) Table1(q, c, f, j) = q ·DigA(c, j) mod f.

278 yasushi fuwa and yoshinori fujisawa

Let q be an integer, let k, f , n be natural numbers, and let c be a tuple of n

and k−SD. Let us assume that n 1. The functor Mul mod(q, c, f, k) yielding
a tuple of n and Z is defined by the conditions (Def. 7).

(Def. 7)(i) (Mul mod(q, c, f, k))(1) = Table1(q, c, f, n), and
(ii) for every natural number i such that 1 ¬ i and i ¬ n − 1 there

exist integers I1, I2 such that I1 = (Mul mod(q, c, f, k))(i) and I2 =
(Mul mod(q, c, f, k))(i + 1) and I2 = (Radix k · I1 + Table1(q, c, f, n −′
i)) mod f.

One can prove the following proposition

(16) Let n be a natural number. Suppose n 1. Let q be an integer and
i1, f , k be natural numbers. Suppose i1 is represented by n, k and
f > 0. Let c be a tuple of n and k−SD. If c = DecSD(i1, n, k), then
(Mul mod(q, c, f, k))(n) = q · i1 mod f.

5. A High-Speed Algorithm of Calculation of (ab) mod b Based on
a Radix-2k Signed-Digit Numbers and its Correctness

Let n, f , j, m be natural numbers and let e be a tuple of n and N. The
functor Table2(m, e, f, j) yielding a natural number is defined as follows:

(Def. 8) Table2(m, e, f, j) = (mπje
N) mod f.

Let k, f , m, n be natural numbers and let e be a tuple of n and N. Let us
assume that n 1. The functor Pow mod(m, e, f, k) yields a tuple of n and N
and is defined by the conditions (Def. 9).

(Def. 9)(i) (Pow mod(m, e, f, k))(1) = Table2(m, e, f, n), and
(ii) for every natural number i such that 1 ¬ i and i ¬ n − 1 there exist

natural numbers i2, i3 such that i2 = (Pow mod(m, e, f, k))(i) and i3 =
(Pow mod(m, e, f, k))(i+1) and i3 = ((i2Radix k

N)modf)·Table2(m, e, f, n−′
i) mod f.

One can prove the following proposition

(17) Let n be a natural number. Suppose n 1. Let m, k, f , i4 be natural
numbers. Suppose i4 is represented by n, k and f > 0. Let e be a tuple of n

and N. If e = DecSD2(i4, n, k), then (Pow mod(m, e, f, k))(n) = (mi4
N)mod

f.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

high-speed algorithms for rsa cryptograms 279

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2k signed-digit number and
its adder algorithm. Formalized Mathematics, 9(1):71–75, 2001.

[6] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Euler’s Theorem and small
Fermat’s Theorem. Formalized Mathematics, 7(1):123–126, 1998.

[7] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,
6(4):573–577, 1997.

[8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[9] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received February 1, 2000

280 yasushi fuwa and yoshinori fujisawa

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Definition of Integrability for Partial
Functions from R to R and Integrability for

Continuous Functions

Noboru Endou
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. In this article, we defined the Riemann definite integral of
partial function from R to R. Then we have proved the integrability for the
continuous function and differentiable function. Moreover, we have proved an
elementary theorem of calculus.

MML Identifier: INTEGRA5.

The articles [12], [13], [1], [2], [6], [3], [5], [14], [7], [16], [9], [10], [4], [11], [8], and
[15] provide the notation and terminology for this paper.

1. Some Useful Properties of Finite Sequence

For simplicity, we adopt the following convention: i denotes a natural number, a,
b, r1, r2 denote real numbers, A denotes a closed-interval subset of R, C denotes
a non empty set, and X denotes a set.

One can prove the following propositions:

(1) Let F , F1, F2 be finite sequences of elements of R and given r1, r2. If
F1 = 〈r1〉a F or F1 = F a 〈r1〉 and if F2 = 〈r2〉a F or F2 = F a 〈r2〉, then∑

(F1 − F2) = r1 − r2.

(2) Let F1, F2 be finite sequences of elements of R. If len F1 = len F2, then
len(F1 + F2) = len F1 and len(F1 − F2) = len F1 and

∑
(F1 + F2) =∑

F1 +
∑

F2 and
∑

(F1 − F2) =
∑

F1 −
∑

F2.

(3) Let F1, F2 be finite sequences of elements of R. If len F1 = len F2 and
for every i such that i ∈ dom F1 holds F1(i) ¬ F2(i), then

∑
F1 ¬

∑
F2.

281
c© 2001 University of Białystok

ISSN 1426–2630

282 noboru endou et al.

2. Integrability for Partial Function of R, R

Let C be a non empty subset of R and let f be a partial function from R to R.
The functor f ¹ C yielding a partial function from C to R is defined as follows:

(Def. 1) f ¹ C = f¹C.

Next we state two propositions:

(4) For all partial functions f , g from R to R and for every non empty subset
C of R holds (f ¹ C) (g ¹ C) = (f g) ¹ C.

(5) For all partial functions f , g from R to R and for every non empty subset
C of R holds (f + g) ¹ C = f ¹ C + g ¹ C.

Let A be a closed-interval subset of R and let f be a partial function from
R to R. We say that f is integrable on A if and only if:

(Def. 2) f ¹ A is integrable on A.

Let A be a closed-interval subset of R and let f be a partial function from

R to R. The functor
∫

A

f(x)dx yields a real number and is defined by:

(Def. 3)
∫

A

f(x)dx = integral f ¹ A.

The following propositions are true:

(6) For every partial function f from R to R such that A ⊆ dom f holds
f ¹ A is total.

(7) For every partial function f from R to R such that f is upper bounded
on A holds f ¹ A is upper bounded on A.

(8) For every partial function f from R to R such that f is lower bounded
on A holds f ¹ A is lower bounded on A.

(9) For every partial function f from R to R such that f is bounded on A

holds f ¹ A is bounded on A.

3. Integrability for Continuous Function

The following propositions are true:

(10) For every partial function f from R to R such that f is continuous on A

holds f is bounded on A.

(11) For every partial function f from R to R such that f is continuous on A

holds f is integrable on A.

(12) Let f be a partial function from R to R and D be an element of divs A.

Suppose A ⊆ X and f is differentiable on X and f ′¹X is bounded on
A. Then lower sum(f ′¹X ¹ A,D) ¬ f(sup A) − f(inf A) and f(sup A) −
f(inf A) ¬ upper sum(f ′¹X ¹ A,D).

definition of integrability for partial . . . 283

(13) Let f be a partial function from R to R. Suppose A ⊆ X and f is
differentiable on X and f ′¹X is integrable on A and f ′¹X is bounded on A.

Then
∫

A

f ′¹X(x)dx = f(sup A)− f(inf A).

(14) For every partial function f from R to R such that f is non-decreasing
on A and A ⊆ dom f holds rng(f¹A) is bounded.

(15) Let f be a partial function from R to R. If f is non-decreasing on A and
A ⊆ dom f, then inf rng(f¹A) = f(inf A) and sup rng(f¹A) = f(sup A).

(16) For every partial function f from R to R such that f is monotone on A

and A ⊆ dom f holds f is integrable on A.

(17) Let f be a partial function from R to R and A, B be closed-interval
subsets of R. If f is continuous on A and B ⊆ A, then f is integrable on
B.

(18) Let f be a partial function from R to R, A, B, C be closed-interval
subsets of R, and given X. Suppose A ⊆ X and f is differentiable on X

and f ′¹X is continuous on A and inf A = inf B and sup B = inf C and

sup C = sup A. Then B ⊆ A and C ⊆ A and
∫

A

f ′¹X(x)dx =
∫

B

f ′¹X(x)dx+

∫

C

f ′¹X(x)dx.

Let a, b be elements of R. Let us assume that a ¬ b. The functor [′a, b′]
yields a closed-interval subset of R and is defined as follows:

(Def. 4) [′a, b′] = [a, b].

Let a, b be elements of R and let f be a partial function from R to R. The

functor

b∫

a

f(x)dx yields a real number and is defined by:

(Def. 5)

b∫

a

f(x)dx =

∫

[′a,b′]

f(x)dx, if a ¬ b,

−
∫

[′b,a′]

f(x)dx, otherwise.

We now state three propositions:

(19) Let f be a partial function from R to R, A be a closed-interval subset of

R, and given a, b. If A = [a, b], then
∫

A

f(x)dx =

b∫

a

f(x)dx.

(20) Let f be a partial function from R to R, A be a closed-interval subset of

284 noboru endou et al.

R, and given a, b. If A = [b, a], then −
∫

A

f(x)dx =

b∫

a

f(x)dx.

(21) Let f , g be partial functions from R to R and X be an open subset
of R. Suppose that f is differentiable on X and g is differentiable on X

and A ⊆ X and f ′¹X is integrable on A and f ′¹X is bounded on A and

g′¹X is integrable on A and g′¹X is bounded on A. Then
∫

A

f ′¹X g(x)dx =

f(sup A) · g(sup A)− f(inf A) · g(inf A)−
∫

A

f g′¹X(x)dx.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral

and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[8] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized

Mathematics, 1(4):703–709, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786,

1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269–272, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathe-

matics, 1(4):787–791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized

Mathematics, 1(4):797–801, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received March 23, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Introduction to Several Concepts of
Convexity and Semicontinuity for Function

from R to R

Noboru Endou
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. This article is an introduction to convex analysis. In the be-
ginning, we have defined the concept of strictly convexity and proved some basic
properties between convexity and strictly convexity. Moreover, we have defined
concepts of other convexity and semicontinuity, and proved their basic properties.

MML Identifier: RFUNCT 4.

The papers [12], [3], [1], [4], [5], [9], [6], [13], [8], [16], [17], [11], [7], [10], [14],
[15], and [2] provide the notation and terminology for this paper.

1. Some Useful Properties of n-Tuples on R

We adopt the following convention: a, b, r, s, x0, x are real numbers, f , g

are partial functions from R to R, and X, Y are sets.
The following propositions are true:

(1) max(a, b) min(a, b).
(2) Let n be a natural number, R1, R2 be elements of Rn, and r1, r2 be real

numbers. Then R1
a 〈r1〉 •R2

a 〈r2〉 = (R1 •R2) a 〈r1 · r2〉.
(3) Let n be a natural number and R be an element of Rn. Suppose

∑
R = 0

and for every natural number i such that i ∈ dom R holds 0 ¬ R(i). Let i

be a natural number. If i ∈ dom R, then R(i) = 0.

285
c© 2001 University of Białystok

ISSN 1426–2630

286 noboru endou et al.

(4) Let n be a natural number and R be an element of Rn. Suppose that
for every natural number i such that i ∈ dom R holds 0 = R(i). Then
R = n 7→ (0 qua real number).

(5) For every natural number n and for every element R of Rn holds n 7→
(0 qua real number) •R = n 7→ (0 qua real number).

2. Convex and Strictly Convex Functions

Let us consider f , X. We say that f is strictly convex on X if and only if
the conditions (Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f, and
(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and
r 6= s holds f(p · r + (1− p) · s) < p · f(r) + (1− p) · f(s).

We now state a number of propositions:

(6) If f is strictly convex on X, then f is convex on X.

(7) Let a, b be real numbers and f be a partial function from R to R. Then
f is strictly convex on [a, b] if and only if the following conditions are
satisfied:

(i) [a, b] ⊆ dom f, and
(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ [a, b] and s ∈ [a, b] and r 6= s holds f(p · r +
(1− p) · s) < p · f(r) + (1− p) · f(s).

(8) Let X be a set and f be a partial function from R to R. Then f is convex
on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for all real numbers a, b, c such that a ∈ X and b ∈ X and c ∈ X and

a < b and b < c holds f(b) ¬ c−b
c−a · f(a) + b−a

c−a · f(c).
(9) Let X be a set and f be a partial function from R to R. Then f is strictly

convex on X if and only if the following conditions are satisfied:
(i) X ⊆ dom f, and
(ii) for all real numbers a, b, c such that a ∈ X and b ∈ X and c ∈ X and

a < b and b < c holds f(b) < c−b
c−a · f(a) + b−a

c−a · f(c).
(10) If f is strictly convex on X and Y ⊆ X, then f is strictly convex on Y .

(11) f is strictly convex on X iff f − r is strictly convex on X.

(12) If 0 < r, then f is strictly convex on X iff r f is strictly convex on X.

(13) If f is strictly convex on X and g is strictly convex on X, then f + g is
strictly convex on X.

introduction to several concepts of . . . 287

(14) If f is strictly convex on X and g is convex on X, then f + g is strictly
convex on X.

(15) Suppose f is strictly convex on X but g is strictly convex on X but a > 0
and b 0 or a 0 and b > 0. Then a f + b g is strictly convex on X.

(16) f is convex on X if and only if the following conditions are satisfied:
(i) X ⊆ dom f, and
(ii) for all a, b, r such that a ∈ X and b ∈ X and r ∈ X and a < r and

r < b holds f(r)−f(a)
r−a ¬ f(b)−f(a)

b−a and f(b)−f(a)
b−a ¬ f(b)−f(r)

b−r .

(17) f is strictly convex on X if and only if the following conditions are
satisfied:

(i) X ⊆ dom f, and
(ii) for all a, b, r such that a ∈ X and b ∈ X and r ∈ X and a < r and

r < b holds f(r)−f(a)
r−a < f(b)−f(a)

b−a and f(b)−f(a)
b−a < f(b)−f(r)

b−r .

(18) Let f be a partial function from R to R. Suppose f is total. Then for
every natural number n and for all elements P , E, F of Rn such that∑

P = 1 and for every natural number i such that i ∈ dom P holds
P (i) 0 and F (i) = f(E(i)) holds f(

∑
(P • E)) ¬∑

(P • F) if and only
if f is convex on R.

(19) Let f be a partial function from R to R, I be an interval, and a be a real
number. Suppose there exist real numbers x1, x2 such that x1 ∈ I and
x2 ∈ I and x1 < a and a < x2 and f is convex on I. Then f is continuous
in a.

3. Definitions of Several Convexity and Semicontinuity Concepts

Let us consider f , X. We say that f is quasiconvex on X if and only if the
conditions (Def. 2) are satisfied.

(Def. 2)(i) X ⊆ dom f, and
(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1− p) · s ∈ X holds
f(p · r + (1− p) · s) ¬ max(f(r), f(s)).

Let us consider f , X. We say that f is strictly quasiconvex on X if and only
if the conditions (Def. 3) are satisfied.

(Def. 3)(i) X ⊆ dom f, and
(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and
f(r) 6= f(s) holds f(p · r + (1− p) · s) < max(f(r), f(s)).

Let us consider f , X. We say that f is strongly quasiconvex on X if and
only if the conditions (Def. 4) are satisfied.

288 noboru endou et al.

(Def. 4)(i) X ⊆ dom f, and
(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and
r 6= s holds f(p · r + (1− p) · s) < max(f(r), f(s)).

Let us consider f , x0. We say that f is upper semicontinuous in x0 if and
only if:

(Def. 5) x0 ∈ dom f and for every r such that 0 < r there exists s such that 0 < s

and for every x such that x ∈ dom f and |x−x0| < s holds f(x0)−f(x) < r.

Let us consider f , X. We say that f is upper semicontinuous on X if and
only if:

(Def. 6) X ⊆ dom f and for every x0 such that x0 ∈ X holds f¹X is upper
semicontinuous in x0.

Let us consider f , x0. We say that f is lower semicontinuous in x0 if and
only if:

(Def. 7) x0 ∈ dom f and for every r such that 0 < r there exists s such that 0 < s

and for every x such that x ∈ dom f and |x−x0| < s holds f(x)−f(x0) < r.

Let us consider f , X. We say that f is lower semicontinuous on X if and
only if:

(Def. 8) X ⊆ dom f and for every x0 such that x0 ∈ X holds f¹X is lower
semicontinuous in x0.

The following propositions are true:

(20) Let given x0, f . Then f is upper semicontinuous in x0 and f is lower
semicontinuous in x0 if and only if f is continuous in x0.

(21) Let given X, f . Then f is upper semicontinuous on X and f is lower
semicontinuous on X if and only if f is continuous on X.

(22) For all X, f such that f is strictly convex on X holds f is strongly
quasiconvex on X.

(23) For all X, f such that f is strongly quasiconvex on X holds f is quasi-
convex on X.

(24) For all X, f such that f is convex on X holds f is strictly quasiconvex
on X.

(25) For all X, f such that f is strongly quasiconvex on X holds f is strictly
quasiconvex on X.

(26) Let given X, f . Suppose f is strictly quasiconvex on X and f is one-to-
one. Then f is strongly quasiconvex on X.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

introduction to several concepts of . . . 289

[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. For-
malized Mathematics, 2(1):163–171, 1991.

[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics,
1(4):643–649, 1990.

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[9] Białas Józef. Properties of the intervals of real numbers. Formalized Mathematics,

3(2):263–269, 1992.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269–272, 1990.
[11] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the

set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathe-

matics, 1(4):787–791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received March 23, 2000

290 noboru endou et al.

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Standard Ordering of Instruction Locations

Andrzej Trybulec
University of Białystok

Piotr Rudnicki
University of Alberta

Artur Korniłowicz
University of Białystok

MML Identifier: AMISTD 1.

The notation and terminology used in this paper have been introduced in the
following articles: [11], [15], [12], [18], [1], [3], [14], [4], [16], [6], [7], [8], [9], [2],
[10], [5], [19], [20], [13], and [17].

1. Preliminaries

We use the following convention: x, X are sets, D is a non empty set, and
k, m, n are natural numbers.

The following two propositions are true:

(1) For every real number r holds max{r} = r.

(2) max{n} = n.

One can verify that there exists a finite sequence which is non trivial.
The following proposition is true

(3) For every trivial finite sequence f of elements of D holds f is empty or
there exists an element x of D such that f = 〈x〉.

Let x, y be sets. Note that 〈〈x, y〉〉 is non empty.
Let us observe that every binary relation has non empty elements.
One can prove the following proposition

(4) idX is bijective.

Let A be a finite set and let B be a set. Observe that A 7−→ B is finite.
Let x, y be sets. One can check that x7−→. y is trivial.

291
c© 2001 University of Białystok

ISSN 1426–2630

292 andrzej trybulec et al.

2. Restricted Concatenation

Let f1 be a non empty finite sequence and let f2 be a finite sequence. Observe
that f1 aa f2 is non empty.

The following propositions are true:

(5) Let f1 be a non empty finite sequence of elements of D and f2 be a finite
sequence of elements of D. Then (f1 aa f2)1 = (f1)1.

(6) Let f1 be a finite sequence of elements of D and f2 be a non trivial finite
sequence of elements of D. Then (f1 aa f2)len(f1aaf2) = (f2)len f2 .

(7) For every finite sequence f holds f aa ε = f.

(8) For every finite sequence f holds f aa 〈x〉 = f.

(9) For all finite sequences f1, f2 of elements of D such that 1 ¬ n and
n ¬ len f1 holds (f1 aa f2)n = (f1)n.

(10) For all finite sequences f1, f2 of elements of D such that 1 ¬ n and
n < len f2 holds (f1 aa f2)len f1+n = (f2)n+1.

3. Ami-Struct

For simplicity, we adopt the following convention: N is a set with non empty
elements, S is a von Neumann definite AMI over N , i is an instruction of S, l,
l1, l2, l3 are instruction-locations of S, and s is a state of S.

We now state the proposition

(11) Let S be a definite AMI over N , I be an instruction of S, and s be a
state of S. Then s+·((the instruction locations of S) 7−→ I) is a state of
S.

Let N be a set and let S be an AMI over N . Observe that every finite partial
state of S which is empty is also programmed.

Let N be a set and let S be an AMI over N . One can check that there exists
a finite partial state of S which is empty.

Let N be a set with non empty elements and let S be a von Neumann
definite AMI over N . Note that there exists a finite partial state of S which is
non empty, trivial, and programmed.

Let N be a set with non empty elements, let S be an AMI over N , let i be
an instruction of S, and let s be a state of S. One can verify that (the execution
of S)(i)(s) is function-like and relation-like.

Let N be a set and let S be an AMI over N .

(Def. 1) An element of the instruction codes of S is said to be an instruction type
of S.

standard ordering of instruction locations 293

Let N be a set, let S be an AMI over N , and let I be an element of the
instructions of S. The functor InsCode(I) yields an instruction type of S and is
defined by:

(Def. 2) InsCode(I) = I1.

Let N be a set with non empty elements and let S be a steady-programmed
von Neumann definite AMI over N . Observe that there exists a finite partial
state of S which is non empty, trivial, autonomic, and programmed.

One can prove the following propositions:

(12) Let S be a steady-programmed von Neumann definite AMI over N , i1
be an instruction-location of S, and I be an instruction of S. Then i1 7−→. I

is autonomic.

(13) Every steady-programmed von Neumann definite AMI over N is pro-
grammable.

Let N be a set with non empty elements. One can check that every von Neu-
mann definite AMI over N which is steady-programmed is also programmable.

Let N be a set with non empty elements, let S be an AMI over N , and let
T be an instruction type of S. We say that T is jump-only if and only if the
condition (Def. 3) is satisfied.

(Def. 3) Let s be a state of S, o be an object of S, and I be an instruction of S.
If InsCode(I) = T and o 6= ICS , then (Exec(I, s))(o) = s(o).

Let N be a set with non empty elements, let S be an AMI over N , and let
I be an instruction of S. We say that I is jump-only if and only if:

(Def. 4) InsCode(I) is jump-only.

Let us consider N , S, i, l. The functor NIC(i, l) yielding a subset of the
instruction locations of S is defined by:

(Def. 5) NIC(i, l) = {ICFollowing(s) : ICs = l ∧ s(l) = i}.
Let N be a set with non empty elements, let S be a realistic von Neumann

definite AMI over N , let i be an instruction of S, and let l be an instruction-
location of S. Note that NIC(i, l) is non empty.

Let us consider N , S, i. The functor JUMP(i) yields a subset of the instruc-
tion locations of S and is defined by:

(Def. 6) JUMP(i) =
⋂{NIC(i, l)}.

Let us consider N , S, l. The functor SUCC(l) yielding a subset of the in-
struction locations of S is defined by:

(Def. 7) SUCC(l) =
⋃{NIC(i, l) \ JUMP(i)}.

One can prove the following propositions:

(14) Let S be a von Neumann definite AMI over N and i be an instruction
of S. Suppose the instruction locations of S are non trivial and for every
instruction-location l of S holds NIC(i, l) = {l}. Then JUMP(i) is empty.

294 andrzej trybulec et al.

(15) Let S be a realistic von Neumann definite AMI over N , i1 be an
instruction-location of S, and i be an instruction of S. If i is halting,
then NIC(i, i1) = {i1}.

4. Ordering of Instruction Locations

Let us consider N , S, l1, l2. The predicate l1 ¬ l2 is defined by the condition
(Def. 8).

(Def. 8) There exists a non empty finite sequence f of elements of the instruction
locations of S such that f1 = l1 and flen f = l2 and for every n such that
1 ¬ n and n < len f holds fn+1 ∈ SUCC(fn).

Let us note that the predicate l1 ¬ l2 is reflexive.
Next we state the proposition

(16) If l1 ¬ l2 and l2 ¬ l3, then l1 ¬ l3.

Let us consider N , S. We say that S is InsLoc-antisymmetric if and only if:

(Def. 9) For all l1, l2 such that l1 ¬ l2 and l2 ¬ l1 holds l1 = l2.

Let us consider N , S. We say that S is standard if and only if the condition
(Def. 10) is satisfied.

(Def. 10) There exists a function f from N into the instruction locations of S

such that f is bijective and for all natural numbers m, n holds m ¬ n iff
f(m) ¬ f(n).

One can prove the following three propositions:

(17) Let S be a von Neumann definite AMI over N and f1, f2 be functions
from N into the instruction locations of S. Suppose that

(i) f1 is bijective,
(ii) for all natural numbers m, n holds m ¬ n iff f1(m) ¬ f1(n),
(iii) f2 is bijective, and
(iv) for all natural numbers m, n holds m ¬ n iff f2(m) ¬ f2(n).

Then f1 = f2.

(18) Let S be a von Neumann definite AMI over N and f be a function from
N into the instruction locations of S. Suppose f is bijective. Then the
following statements are equivalent

(i) for all natural numbers m, n holds m ¬ n iff f(m) ¬ f(n),
(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

(19) Let S be a von Neumann definite AMI over N . Then S is standard if and
only if there exists a function f from N into the instruction locations of S

such that f is bijective and for every natural number k holds f(k + 1) ∈

standard ordering of instruction locations 295

SUCC(f(k)) and for every natural number j such that f(j) ∈ SUCC(f(k))
holds k ¬ j.

5. Standard Trivial Computer

Let N be a set with non empty elements. The functor STC(N) yielding a
strict AMI over N is defined by the conditions (Def. 11).

(Def. 11) The objects of STC(N) = N ∪ {N} and the instruction counter of
STC(N) = N and the instruction locations of STC(N) = N and the in-
struction codes of STC(N) = {0, 1} and the instructions of STC(N) =
{〈〈0, 0〉〉, 〈〈1, 0〉〉} and the object kind of STC(N) = (N 7−→ {〈〈1, 0〉〉, 〈〈0,

0〉〉})+·({N} 7−→ N) and there exists a function f from
∏

(the object kind
of STC(N)) into

∏
(the object kind of STC(N)) such that for every ele-

ment s of
∏

(the object kind of STC(N)) holds f(s) = s+·({N} 7−→
succ s(N)) and the execution of STC(N) = ({〈〈1, 0〉〉} 7−→ f)+·({〈〈0,

0〉〉} 7−→ idQ (the object kind of STC(N))).

Let N be a set with non empty elements. Note that the instruction locations
of STC(N) is infinite.

Let N be a set with non empty elements. Observe that STC(N) is von
Neumann definite realistic steady-programmed and data-oriented.

Next we state several propositions:

(20) For every instruction i of STC(N) such that InsCode(i) = 0 holds i is
halting.

(21) For every instruction i of STC(N) such that InsCode(i) = 1 holds i is
non halting.

(22) For every instruction i of STC(N) holds InsCode(i) = 1 or InsCode(i) =
0.

(23) Every instruction of STC(N) is jump-only.

(24) For every instruction-location l of STC(N) such that l = k holds
SUCC(l) = {k, k + 1}.

Let N be a set with non empty elements. Observe that STC(N) is standard.
Let N be a set with non empty elements. Observe that STC(N) is halting.
Let N be a set with non empty elements. One can check that there exists a

von Neumann definite AMI over N which is standard, halting, realistic, steady-
programmed, and programmable.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let k be a natural number. The functor ilS(k) yields
an instruction-location of S and is defined by the condition (Def. 12).

296 andrzej trybulec et al.

(Def. 12) There exists a function f from N into the instruction locations of S

such that f is bijective and for all natural numbers m, n holds m ¬ n iff
f(m) ¬ f(n) and ilS(k) = f(k).

We now state two propositions:

(25) Let S be a standard von Neumann definite AMI over N and k1, k2 be
natural numbers. If ilS(k1) = ilS(k2), then k1 = k2.

(26) Let S be a standard von Neumann definite AMI over N and l be an
instruction-location of S. Then there exists a natural number k such that
l = ilS(k).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let l be an instruction-location of S. The functor
locnum(l) yields a natural number and is defined as follows:

(Def. 13) ilS(locnum(l)) = l.

One can prove the following propositions:

(27) Let S be a standard von Neumann definite AMI over N and l1, l2 be
instruction-locations of S. If locnum(l1) = locnum(l2), then l1 = l2.

(28) Let S be a standard von Neumann definite AMI over N and k1, k2 be
natural numbers. Then ilS(k1) ¬ ilS(k2) if and only if k1 ¬ k2.

(29) Let S be a standard von Neumann definite AMI over N and l1, l2 be
instruction-locations of S. Then locnum(l1) ¬ locnum(l2) if and only if
l1 ¬ l2.

(30) If S is standard, then S is InsLoc-antisymmetric.

Let us consider N . Observe that every von Neumann definite AMI over N

which is standard is also InsLoc-antisymmetric.
Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let f be an instruction-location of S, and let k be a natural
number. The functor f + k yielding an instruction-location of S is defined by:

(Def. 14) f + k = ilS(locnum(f) + k).
Next we state three propositions:

(31) For every standard von Neumann definite AMI S over N and for every
instruction-location f of S holds f + 0 = f.

(32) Let S be a standard von Neumann definite AMI over N and f , g be
instruction-locations of S. If f + k = g + k, then f = g.

(33) For every standard von Neumann definite AMI S over N and for every
instruction-location f of S holds locnum(f) + k = locnum(f + k).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let f be an instruction-location of S. The functor
NextLoc f yields an instruction-location of S and is defined as follows:

(Def. 15) NextLoc f = f + 1.

standard ordering of instruction locations 297

The following propositions are true:

(34) For every standard von Neumann definite AMI S over N and for every
instruction-location f of S holds NextLoc f = ilS(locnum(f) + 1).

(35) For every standard von Neumann definite AMI S over N and for every
instruction-location f of S holds f 6= NextLoc f.

(36) Let S be a standard von Neumann definite AMI over N and f , g be
instruction-locations of S. If NextLoc f = NextLoc g, then f = g.

(37) ilSTC(N)(k) = k.

(38) For every instruction i of STC(N) and for every state s of STC(N) such
that InsCode(i) = 1 holds (Exec(i, s))(ICSTC(N)) = NextLoc ICs.

(39) For every instruction-location l of STC(N) and for every instruction i

of STC(N) such that InsCode(i) = 1 holds NIC(i, l) = {NextLoc l}.
(40) For every instruction-location l of STC(N) holds SUCC(l) =
{l, NextLoc l}.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let i be an instruction of S. We say that i is sequential
if and only if:

(Def. 16) For every state s of S holds (Exec(i, s))(ICS) = NextLoc ICs.

The following propositions are true:

(41) Let S be a standard realistic von Neumann definite AMI over N , i1 be
an instruction-location of S, and i be an instruction of S. If i is sequential,
then NIC(i, i1) = {NextLoc i1}.

(42) Let S be a realistic standard von Neumann definite AMI over N and i

be an instruction of S. If i is sequential, then i is non halting.

Let us consider N and let S be a realistic standard von Neumann definite
AMI over N . Observe that every instruction of S which is sequential is also non
halting and every instruction of S which is halting is also non sequential.

One can prove the following proposition

(43) Let S be a standard von Neumann definite AMI over N and i be an
instruction of S. If JUMP(i) is non empty, then i is non sequential.

6. Closedness of Finite Partial States

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N , and let F be a finite partial state of S. We say that F is closed if
and only if:

(Def. 17) For every instruction-location l of S such that l ∈ dom F holds
NIC(πlF, l) ⊆ dom F.

298 andrzej trybulec et al.

We say that F is really-closed if and only if:

(Def. 18) For every state s of S such that F ⊆ s and ICs ∈ dom F and for every
natural number k holds IC(Computation(s))(k) ∈ dom F.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a finite partial state of S. We say that F is
para-closed if and only if:

(Def. 19) For every state s of S such that F ⊆ s and ICs = ilS(0) and for every
natural number k holds IC(Computation(s))(k) ∈ dom F.

The following propositions are true:

(44) Let S be a standard steady-programmed von Neumann definite AMI
over N and F be a finite partial state of S. If F is really-closed and
ilS(0) ∈ dom F, then F is para-closed.

(45) Let S be a von Neumann definite steady-programmed AMI over N and
F be a finite partial state of S. If F is closed, then F is really-closed.

Let N be a set with non empty elements and let S be a von Neumann definite
steady-programmed AMI over N . One can verify that every finite partial state
of S which is closed is also really-closed.

We now state the proposition

(46) For every standard realistic halting von Neumann definite AMI S over
N holds ilS(0)7−→. haltS is closed.

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N , and let F be a finite partial state of S. We say that F is lower if
and only if the condition (Def. 20) is satisfied.

(Def. 20) Let l be an instruction-location of S. Suppose l ∈ dom F. Let m be an
instruction-location of S. If m ¬ l, then m ∈ dom F.

The following proposition is true

(47) For every von Neumann definite AMI S over N holds every empty finite
partial state of S is lower.

Let N be a set with non empty elements and let S be a von Neumann definite
AMI over N . Observe that every finite partial state of S which is empty is also
lower.

The following proposition is true

(48) For every standard von Neumann definite AMI S over N and for every
instruction i of S holds ilS(0)7−→. i is lower.

Let N be a set with non empty elements and let S be a standard von
Neumann definite AMI over N . Note that there exists a finite partial state of S

which is lower, non empty, trivial, and programmed.
We now state two propositions:

standard ordering of instruction locations 299

(49) Let S be a standard von Neumann definite AMI over N and F be a lower
non empty programmed finite partial state of S. Then ilS(0) ∈ dom F.

(50) Let N be a set with non empty elements, S be a standard von Neumann
definite AMI over N , and P be a lower programmed finite partial state of
S. Then m < card P if and only if ilS(m) ∈ dom P.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a non empty programmed finite partial state
of S. The functor LastLoc F yields an instruction-location of S and is defined
by the condition (Def. 21).

(Def. 21) There exists a finite non empty subset M of N such that M =
{locnum(l); l ranges over elements of the instruction locations of S: l ∈
dom F} and LastLoc F = ilS(max M).

We now state several propositions:

(51) Let S be a standard von Neumann definite AMI over N and F be a non
empty programmed finite partial state of S. Then LastLoc F ∈ dom F.

(52) Let S be a standard von Neumann definite AMI over N and F , G be non
empty programmed finite partial states of S. If F ⊆ G, then LastLoc F ¬
LastLoc G.

(53) Let S be a standard von Neumann definite AMI over N , F be a non
empty programmed finite partial state of S, and l be an instruction-
location of S. If l ∈ dom F, then l ¬ LastLoc F.

(54) Let S be a standard von Neumann definite AMI over N , F be a lower non
empty programmed finite partial state of S, and G be a non empty pro-
grammed finite partial state of S. If F ⊆ G and LastLoc F = LastLoc G,

then F = G.

(55) Let N be a set with non empty elements, S be a standard von Neumann
definite AMI over N , and F be a lower non empty programmed finite
partial state of S. Then LastLoc F = ilS(card F −′ 1).

Let N be a set with non empty elements and let S be a standard steady-
programmed von Neumann definite AMI over N . Note that every finite partial
state of S which is really-closed, lower, non empty, and programmed is also
para-closed.

Let N be a set with non empty elements, let S be a standard halting von
Neumann definite AMI over N , and let F be a non empty programmed finite
partial state of S. We say that F is halt-ending if and only if:

(Def. 22) F (LastLoc F) = haltS .

We say that F is unique-halt if and only if:

(Def. 23) For every instruction-location f of S such that F (f) = haltS and f ∈
dom F holds f = LastLoc F.

300 andrzej trybulec et al.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N . One can check that there exists a lower non
empty programmed finite partial state of S which is halt-ending, unique-halt,
and trivial.

Let N be a set with non empty elements and let S be a standard halting
realistic von Neumann definite AMI over N . One can check that there exists a
finite partial state of S which is trivial, closed, lower, non empty, and program-
med.

Let N be a set with non empty elements and let S be a standard halting
realistic von Neumann definite AMI over N . Observe that there exists a lower
non empty programmed finite partial state of S which is halt-ending, unique-
halt, trivial, and closed.

Let N be a set with non empty elements and let S be a standard halting
realistic steady-programmed von Neumann definite AMI over N . Observe that
there exists a lower non empty programmed finite partial state of S which is
halt-ending, unique-halt, autonomic, trivial, and closed.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N .

(Def. 24) A halt-ending unique-halt lower non empty programmed finite partial
state of S is said to be a pre-Macro of S.

Let N be a set with non empty elements and let S be a standard realistic
halting von Neumann definite AMI over N . One can verify that there exists a
pre-Macro of S which is closed.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized

Mathematics, 5(3):297–304, 1996.
[10] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-

minaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[13] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.

standard ordering of instruction locations 301

[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[15] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[16] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received April 14, 2000

302 andrzej trybulec et al.

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

On the Composition of Macro Instructions
of Standard Computers

Artur Korniłowicz
University of Białystok

MML Identifier: AMISTD 2.

The terminology and notation used in this paper are introduced in the following
papers: [18], [11], [17], [12], [20], [1], [3], [14], [4], [8], [15], [5], [6], [2], [10], [9],
[21], [13], [19], [16], and [7].

1. Preliminaries

We follow the rules: k, m are natural numbers, x, X are sets, and N is a set
with non empty elements.

Let f be a function and let g be a non empty function. One can verify that
f+·g is non empty and g+·f is non empty.

Let f , g be finite functions. Note that f+·g is finite.
Next we state two propositions:

(1) For all functions f , g holds dom f ≈ dom g iff f ≈ g.

(2) For all finite functions f , g such that dom f ∩ dom g = ∅ holds
card(f+·g) = card f + card g.

Let f be a function and let A be a set. Note that f \A is function-like and
relation-like.

One can prove the following two propositions:

(3) For all functions f , g such that x ∈ dom f \dom g holds (f \g)(x) = f(x).

(4) For every non empty finite set F holds card F − 1 = card F −′ 1.

303
c© 2001 University of Białystok

ISSN 1426–2630

304 artur korniłowicz

2. Product Like Sets

Let S be a functional set. The functor
∏

S yields a function and is defined
as follows:

(Def. 1)(i) For every set x holds x ∈ dom
∏

S iff for every function f such that
f ∈ S holds x ∈ dom f and for every set i such that i ∈ dom

∏
S holds∏

S(i) = πiS if S is non empty,
(ii)

∏
S = ∅, otherwise.

The following two propositions are true:

(5) For every non empty functional set S holds dom
∏

S =
⋂{dom f : f

ranges over elements of S}.
(6) For every non empty functional set S and for every set i such that

i ∈ dom
∏

S holds
∏

S(i) = {f(i) : f ranges over elements of S}.
Let S be a set. We say that S is product-like if and only if:

(Def. 2) There exists a function f such that S =
∏

f.

Let f be a function. One can check that
∏

f is product-like.
Let us mention that every set which is product-like is also functional and

has common domain.
Let us observe that there exists a set which is product-like and non empty.
The following four propositions are true:

(7) For every functional set S with common domain holds dom
∏

S =
DOM(S).

(8) For every functional set S and for every set i such that i ∈ dom
∏

S holds∏
S(i) = πiS.

(9) For every functional set S with common domain holds S ⊆∏∏
S .

(10) For every non empty product-like set S holds S =
∏∏

S .

Let D be a set. Observe that every set of finite sequences of D is functional.
Let i be a natural number and let D be a set. One can check that Di has

common domain.
Let i be a natural number and let D be a set. Note that Di is product-like.

3. Properties of AMI-Struct

One can prove the following propositions:

(11) Let N be a set, S be an AMI over N , and F be a finite partial state of
S. Then F \X is a finite partial state of S.

on the composition of macro instructions of . . . 305

(12) Let S be a von Neumann definite AMI over N and F be a programmed
finite partial state of S. Then F \X is a programmed finite partial state
of S.

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N , let i1, i2 be instruction-locations of S, and let I1, I2 be elements
of the instructions of S. Then [i1 7−→ I1, i2 7−→ I2] is a finite partial state of S.

Let N be a set with non empty elements and let S be a halting AMI over
N . Observe that there exists an instruction of S which is halting.

We now state three propositions:

(13) Let S be a standard von Neumann definite AMI over N , F be a lower
programmed finite partial state of S, and G be a programmed finite partial
state of S. If dom F = dom G, then G is lower.

(14) Let S be a standard von Neumann definite AMI over N , F be a lower
programmed finite partial state of S, and f be an instruction-location of
S. If f ∈ dom F, then locnum(f) < card F.

(15) Let S be a standard von Neumann definite AMI over N and F be a lower
programmed finite partial state of S. Then dom F = {ilS(k); k ranges over
natural numbers: k < card F}.

Let N be a set, let S be an AMI over N , and let I be an element of the
instructions of S. The functor AddressPart(I) is defined by:

(Def. 3) AddressPart(I) = I2.

Let N be a set, let S be an AMI over N , and let I be an element of the
instructions of S. Then AddressPart(I) is a finite sequence of elements of

⋃
N ∪

the objects of S.
We now state the proposition

(16) Let N be a set, S be an AMI over N , and I, J be elements of the
instructions of S. If InsCode(I) = InsCode(J) and AddressPart(I) =
AddressPart(J), then I = J.

Let N be a set and let S be an AMI over N . We say that S is homogeneous
if and only if:

(Def. 4) For all instructions I, J of S such that InsCode(I) = InsCode(J) holds
dom AddressPart(I) = dom AddressPart(J).

The following proposition is true

(17) For every instruction I of STC(N) holds AddressPart(I) = 0.

Let N be a set, let S be an AMI over N , and let T be an instruction type
of S. The functor AddressParts T is defined by:

(Def. 5) AddressParts T = {AddressPart(I); I ranges over instructions of S:
InsCode(I) = T}.

Let N be a set, let S be an AMI over N , and let T be an instruction type
of S. One can check that AddressParts T is functional.

306 artur korniłowicz

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N , and let I be an instruction of S. We say that I is explicit-jump-
instruction if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let f be a set. Suppose f ∈ JUMP(I). Then there exists a set k

such that k ∈ dom AddressPart(I) and f = (AddressPart(I))(k) and∏
AddressParts InsCode(I)(k) = the instruction locations of S.

We say that I has ins-loc-in-jump if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let f be a set. Given a set k such that k ∈ dom AddressPart(I) and
f = (AddressPart(I))(k) and

∏
AddressParts InsCode(I)(k) = the instruction

locations of S. Then f ∈ JUMP(I).

Let N be a set with non empty elements and let S be a von Neumann definite
AMI over N . We say that S is explicit-jump-instruction if and only if:

(Def. 8) Every instruction of S is explicit-jump-instruction.

We say that S has ins-loc-in-jump if and only if:

(Def. 9) Every instruction of S has ins-loc-in-jump.

Let N be a set and let S be an AMI over N . We say that S has non trivial
instruction locations if and only if:

(Def. 10) The instruction locations of S are non trivial.

Let N be a set with non empty elements. Note that every von Neumann
definite AMI over N which is standard has non trivial instruction locations.

Let N be a set with non empty elements. One can verify that there exists a
von Neumann definite AMI over N which is standard.

Let N be a set with non empty elements and let S be an AMI over N with
non trivial instruction locations. Observe that the instruction locations of S is
non trivial.

The following proposition is true

(18) Let S be a standard von Neumann definite AMI over N and I be an
instruction of S. If for every instruction-location f of S holds NIC(I, f) =
{NextLoc f}, then JUMP(I) is empty.

Let N be a set with non empty elements and let I be an instruction of
STC(N). Observe that JUMP(I) is empty.

Let N be a set and let S be an AMI over N . We say that S is regular if and
only if:

(Def. 11) For every instruction type T of S holds AddressParts T is product-like.

Next we state the proposition

(19) For every instruction type T of STC(N) holds AddressParts T = {0}.
Let N be a set with non empty elements. Observe that STC(N) is homoge-

neous explicit-jump-instruction and regular and has ins-loc-in-jump.

on the composition of macro instructions of . . . 307

Let N be a set with non empty elements. Note that there exists a von
Neumann definite AMI over N which is standard, halting, realistic, steady-
programmed, programmable, explicit-jump-instruction, homogeneous, and re-
gular and has non trivial instruction locations and ins-loc-in-jump.

Let N be a set with non empty elements, let S be a regular AMI over N , and
let T be an instruction type of S. Observe that AddressParts T is product-like.

Let N be a set with non empty elements, let S be a homogeneous AMI over
N , and let T be an instruction type of S. Observe that AddressParts T has
common domain.

Next we state the proposition

(20) Let S be a homogeneous AMI over N , I be an instruction of
S, and x be a set. Suppose x ∈ dom AddressPart(I). Suppose∏

AddressParts InsCode(I)(x) = the instruction locations of S. Then
(AddressPart(I))(x) is an instruction-location of S.

Let N be a set with non empty elements and let S be an explicit-jump-
instruction von Neumann definite AMI over N . Note that every instruction of
S is explicit-jump-instruction.

Let N be a set with non empty elements and let S be a von Neumann
definite AMI over N with ins-loc-in-jump. Observe that every instruction of S

has ins-loc-in-jump.
The following proposition is true

(21) Let S be a realistic von Neumann definite AMI over N with non trivial
instruction locations and I be an instruction of S. If I is halting, then
JUMP(I) is empty.

Let N be a set with non empty elements, let S be a halting realistic von
Neumann definite AMI over N with non trivial instruction locations, and let I

be a halting instruction of S. One can verify that JUMP(I) is empty.
Let N be a set with non empty elements and let S be a von Neumann definite

AMI over N with non trivial instruction locations. Observe that there exists a
finite partial state of S which is non trivial and programmed.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N . One can verify that every non empty pro-
grammed finite partial state of S which is trivial is also unique-halt.

Let N be a set, let S be an AMI over N , and let I be an instruction of S.
We say that I is instruction location free if and only if:

(Def. 12) For every set x such that x ∈ dom AddressPart(I) holds∏
AddressParts InsCode(I)(x) 6= the instruction locations of S.

The following propositions are true:

(22) Let S be a halting explicit-jump-instruction realistic von Neumann de-
finite AMI over N with non trivial instruction locations and I be an in-
struction of S. If I is instruction location free, then JUMP(I) is empty.

308 artur korniłowicz

(23) Let S be a realistic von Neumann definite AMI over N with ins-loc-in-
jump and non trivial instruction locations and I be an instruction of S. If
I is halting, then I is instruction location free.

Let N be a set with non empty elements and let S be a realistic von Neumann
definite AMI over N with ins-loc-in-jump and non trivial instruction locations.
Observe that every instruction of S which is halting is also instruction location
free.

We now state the proposition

(24) Let S be a standard von Neumann definite AMI over N with ins-loc-in-
jump and I be an instruction of S. If I is sequential, then I is instruction
location free.

Let N be a set with non empty elements and let S be a standard von
Neumann definite AMI over N with ins-loc-in-jump. One can check that every
instruction of S which is sequential is also instruction location free.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N . The functor Stop S yielding a finite partial
state of S is defined by:

(Def. 13) Stop S = ilS(0)7−→. haltS .

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N . Note that Stop S is lower non empty pro-
grammed and trivial.

Let N be a set with non empty elements and let S be a standard realistic
halting von Neumann definite AMI over N . One can check that Stop S is closed.

Let N be a set with non empty elements and let S be a standard halting
steady-programmed von Neumann definite AMI over N . Note that Stop S is
autonomic.

We now state three propositions:

(25) For every standard halting von Neumann definite AMI S over N holds
card Stop S = 1.

(26) Let S be a standard halting von Neumann definite AMI over N and F

be a pre-Macro of S. If card F = 1, then F = Stop S.

(27) For every standard halting von Neumann definite AMI S over N holds
LastLoc Stop S = ilS(0).

Let N be a set with non empty elements and let S be a standard halting von
Neumann definite AMI over N . Note that Stop S is halt-ending and unique-halt.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N . Then Stop S is a pre-Macro of S.

on the composition of macro instructions of . . . 309

4. On the Composition of Macro Instructions

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let I be an element of the instruc-
tions of S, and let k be a natural number. The functor IncAddr(I, k) yielding
an instruction of S is defined by the conditions (Def. 14).

(Def. 14)(i) InsCode(IncAddr(I, k)) = InsCode(I),
(ii) dom AddressPart(IncAddr(I, k)) = dom AddressPart(I), and
(iii) for every set n such that n ∈ dom AddressPart(I) holds if∏

AddressParts InsCode(I)(n) = the instruction locations of S, then there exi-
sts an instruction-location f of S such that f = (AddressPart(I))(n)
and (AddressPart(IncAddr(I, k)))(n) = ilS(k + locnum(f)) and if∏

AddressParts InsCode(I)(n) 6= the instruction locations of S, then
(AddressPart(IncAddr(I, k)))(n) = (AddressPart(I))(n).

Next we state three propositions:

(28) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an element of the instructions of S. Then IncAddr(I, 0) =
I.

(29) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. If I is instruction location free, then
IncAddr(I, k) = I.

(30) Let S be a halting standard realistic homogeneous regular von Neumann
definite AMI over N with ins-loc-in-jump. Then IncAddr(haltS , k) =
haltS .

Let N be a set with non empty elements, let S be a halting standard realistic
homogeneous regular von Neumann definite AMI over N with ins-loc-in-jump,
let I be a halting instruction of S, and let k be a natural number. Observe that
IncAddr(I, k) is halting.

We now state several propositions:

(31) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. Then AddressParts InsCode(I) =
AddressParts InsCode(IncAddr(I, k)).

(32) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I, J be instructions of S. Given a natural number k such that
IncAddr(I, k) = IncAddr(J, k). Suppose

∏
AddressParts InsCode(I)(x) = the

instruction locations of S. Then
∏

AddressParts InsCode(J)(x) = the instruc-
tion locations of S.

(33) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I, J be instructions of S. Given a natural number k such that
IncAddr(I, k) = IncAddr(J, k). Suppose

∏
AddressParts InsCode(I)(x) 6= the

310 artur korniłowicz

instruction locations of S. Then
∏

AddressParts InsCode(J)(x) 6= the instruc-
tion locations of S.

(34) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I, J be instructions of S. If there exists a natural number k

such that IncAddr(I, k) = IncAddr(J, k), then I = J.

(35) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and I be an instruction of S. If
IncAddr(I, k) = haltS , then I = haltS .

(36) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and I be an instruction of S. If
I is sequential, then IncAddr(I, k) is sequential.

(37) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. Then IncAddr(IncAddr(I, k),m) =
IncAddr(I, k + m).

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let p be a programmed finite
partial state of S, and let k be a natural number. The functor IncAddr(p, k)
yields a finite partial state of S and is defined as follows:

(Def. 15) dom IncAddr(p, k) = dom p and for every natural number m such that
ilS(m) ∈ dom p holds (IncAddr(p, k))(ilS(m)) = IncAddr(πilS(m)p, k).

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let F be a programmed finite par-
tial state of S, and let k be a natural number. One can check that IncAddr(F, k)
is programmed.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let F be an empty programmed
finite partial state of S, and let k be a natural number. One can verify that
IncAddr(F, k) is empty.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let F be a non empty programmed
finite partial state of S, and let k be a natural number. One can verify that
IncAddr(F, k) is non empty.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , let F be a lower programmed
finite partial state of S, and let k be a natural number. One can verify that
IncAddr(F, k) is lower.

The following propositions are true:

(38) Let S be a homogeneous regular standard von Neumann definite
AMI over N and F be a programmed finite partial state of S. Then
IncAddr(F, 0) = F.

on the composition of macro instructions of . . . 311

(39) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F be a lower programmed finite partial state of S. Then
IncAddr(IncAddr(F, k),m) = IncAddr(F, k + m).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , let p be a finite partial state of S, and let k be a natural
number. The functor Shift(p, k) yielding a finite partial state of S is defined by
the conditions (Def. 16).

(Def. 16)(i) dom Shift(p, k) = {ilS(m + k);m ranges over natural numbers:
ilS(m) ∈ dom p}, and

(ii) for every natural number m such that ilS(m) ∈ dom p holds
(Shift(p, k))(ilS(m + k)) = p(ilS(m)).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , let F be a finite partial state of S, and let k be a natural
number. Note that Shift(F, k) is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , let F be an empty finite partial state of S, and let k be a
natural number. One can check that Shift(F, k) is empty.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , let F be a non empty programmed finite partial state of
S, and let k be a natural number. One can check that Shift(F, k) is non empty.

We now state four propositions:

(40) Let S be a standard von Neumann definite AMI over N and F be a
programmed finite partial state of S. Then Shift(F, 0) = F.

(41) Let S be a standard von Neumann definite AMI over N , F be a finite
partial state of S, and k be a natural number. If k > 0, then ilS(0) /∈
dom Shift(F, k).

(42) Let S be a standard von Neumann definite AMI over N and F be a
finite partial state of S. Then Shift(Shift(F,m), k) = Shift(F, m + k).

(43) Let S be a standard von Neumann definite AMI over N and F be a
programmed finite partial state of S. Then dom F ≈ dom Shift(F, k).

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , and let I be an instruction of S.
We say that I is IC-good if and only if:

(Def. 17) For every natural number k and for all states s1, s2 of S such that s2 =
s1+·(ICS 7−→. (IC(s1) + k)) holds ICExec(I,s1) + k = ICExec(IncAddr(I,k),s2).

Let N be a set with non empty elements and let S be a homogeneous regular
standard von Neumann definite AMI over N . We say that S is IC-good if and
only if:

(Def. 18) Every instruction of S is IC-good.

312 artur korniłowicz

Let N be a set with non empty elements, let S be an AMI over N , and let
I be an instruction of S. We say that I is Exec-preserving if and only if the
condition (Def. 19) is satisfied.

(Def. 19) Let s1, s2 be states of S. Suppose s1 and s2 are equal outside the instruc-
tion locations of S. Then Exec(I, s1) and Exec(I, s2) are equal outside the
instruction locations of S.

Let N be a set with non empty elements and let S be an AMI over N . We
say that S is Exec-preserving if and only if:

(Def. 20) Every instruction of S is Exec-preserving.

One can prove the following proposition

(44) Let S be a homogeneous regular standard von Neumann definite AMI
over N with ins-loc-in-jump and I be an instruction of S. If I is sequential,
then I is IC-good.

Let N be a set with non empty elements and let S be a homogeneous regular
standard von Neumann definite AMI over N with ins-loc-in-jump. Observe that
every instruction of S which is sequential is also IC-good.

The following proposition is true

(45) Let S be a homogeneous regular standard realistic von Neumann definite
AMI over N with ins-loc-in-jump and I be an instruction of S. If I is
halting, then I is IC-good.

Let N be a set with non empty elements and let S be a homogeneous regular
standard realistic von Neumann definite AMI over N with ins-loc-in-jump. Note
that every instruction of S which is halting is also IC-good.

The following proposition is true

(46) For every AMI S over N and for every instruction I of S such that I is
halting holds I is Exec-preserving.

Let N be a set with non empty elements and let S be an AMI over N .
Observe that every instruction of S which is halting is also Exec-preserving.

Let N be a set with non empty elements. One can verify that STC(N) is
IC-good and Exec-preserving.

Let N be a set with non empty elements. One can check that there exists
a homogeneous regular standard von Neumann definite AMI over N which is
halting, realistic, steady-programmed, programmable, explicit-jump-instruction,
IC-good, and Exec-preserving and has ins-loc-in-jump and non trivial instruc-
tion locations.

Let N be a set with non empty elements and let S be an IC-good homo-
geneous regular standard von Neumann definite AMI over N . Note that every
instruction of S is IC-good.

Let N be a set with non empty elements and let S be an Exec-preserving
AMI over N . Note that every instruction of S is Exec-preserving.

on the composition of macro instructions of . . . 313

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a non empty programmed finite partial state
of S. The functor CutLastLoc F yielding a finite partial state of S is defined by:

(Def. 21) CutLastLoc F = F \ (LastLoc F 7−→. F (LastLoc F)).

The following propositions are true:

(47) Let S be a standard von Neumann definite AMI over N and F be a non
empty programmed finite partial state of S. Then dom CutLastLoc F =
dom F \ {LastLoc F}.

(48) Let S be a standard von Neumann definite AMI over N and F be
a non empty programmed finite partial state of S. Then dom F =
dom CutLastLoc F ∪ {LastLoc F}.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a non empty trivial programmed finite partial
state of S. Note that CutLastLoc F is empty.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a non empty programmed finite partial state
of S. Observe that CutLastLoc F is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N , and let F be a lower non empty programmed finite partial
state of S. Note that CutLastLoc F is lower.

We now state three propositions:

(49) Let S be a standard von Neumann definite AMI over N and F be a non
empty programmed finite partial state of S. Then card CutLastLoc F =
card F − 1.

(50) Let S be a homogeneous regular standard von Neumann definite AMI
over N , F be a lower non empty programmed finite partial state of
S, and G be a non empty programmed finite partial state of S. Then
dom CutLastLoc F ∩ dom Shift(IncAddr(G, card F −′ 1), card F −′ 1) = ∅.

(51) Let S be a standard halting von Neumann definite AMI over N , F

be a unique-halt lower non empty programmed finite partial state of S,
and I be an instruction-location of S. If I ∈ dom CutLastLoc F, then
(CutLastLoc F)(I) 6= haltS .

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , and let F , G be non empty pro-
grammed finite partial states of S. The functor F ; G yields a finite partial state
of S and is defined by:

(Def. 22) F ; G = CutLastLoc F+· Shift(IncAddr(G, card F −′ 1), card F −′ 1).

Let N be a set with non empty elements, let S be a homogeneous regu-
lar standard von Neumann definite AMI over N , and let F , G be non empty

314 artur korniłowicz

programmed finite partial states of S. Note that F ; G is non empty and pro-
grammed.

We now state the proposition

(52) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F , G be lower non empty programmed finite partial states of
S. Then card(F ; G) = (card F + card G)− 1 and card(F ; G) = (card F +
card G)−′ 1.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N , and let F , G be lower non empty
programmed finite partial states of S. Observe that F ; G is lower.

We now state four propositions:

(53) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F , G be lower non empty programmed finite partial states of
S. Then dom F ⊆ dom(F ; G).

(54) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F , G be lower non empty programmed finite partial states of
S. Then CutLastLoc F ⊆ CutLastLoc F ; G.

(55) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F , G be lower non empty programmed finite partial states of
S. Then (F ; G)(LastLoc F) = (IncAddr(G, card F −′ 1))(ilS(0)).

(56) Let S be a homogeneous regular standard von Neumann definite AMI
over N , F , G be lower non empty programmed finite partial states of S,
and f be an instruction-location of S. If locnum(f) < card F − 1, then
(IncAddr(F, card F −′ 1))(f) = (IncAddr(F ; G, card F −′ 1))(f).

Let N be a set with non empty elements, let S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F , G be halt-ending lower non empty program-
med finite partial states of S. Observe that F ; G is halt-ending.

Let N be a set with non empty elements, let S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F , G be halt-ending unique-halt lower non
empty programmed finite partial states of S. Observe that F ; G is unique-halt.

Let N be a set with non empty elements, let S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F , G be pre-Macros of S. Then F ; G is a pre-
Macro of S.

Let N be a set with non empty elements, let S be a realistic halting steady-
programmed IC-good Exec-preserving homogeneous regular standard von Neu-
mann definite AMI over N , and let F , G be closed lower non empty programmed
finite partial states of S. Observe that F ; G is closed.

We now state several propositions:

on the composition of macro instructions of . . . 315

(57) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump. Then IncAddr(Stop S, k) =
Stop S.

(58) For every standard halting von Neumann definite AMI S over N holds
Shift(Stop S, k) = ilS(k)7−→. haltS .

(59) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and F be a pre-Macro of S. Then
F ; Stop S = F.

(60) Let S be a homogeneous regular standard halting von Neumann definite
AMI over N and F be a pre-Macro of S. Then Stop S; F = F.

(61) Let S be a homogeneous regular standard realistic halting steady-
programmed von Neumann definite AMI over N with ins-loc-in-jump and
F , G, H be pre-Macros of S. Then (F ; G); H = F ; (G; H).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[10] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,

1996.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[18] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-

tion locations. Formalized Mathematics, 9(2):291–301, 2001.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.

316 artur korniłowicz

[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received April 14, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Properties of Instructions of SCM over
Ring

Artur Korniłowicz
University of Białystok

MML Identifier: SCMRING3.

The papers [16], [9], [11], [12], [15], [19], [2], [3], [5], [6], [4], [1], [20], [21], [17],
[8], [7], [13], [18], [14], and [10] provide the terminology and notation for this
paper.

For simplicity, we adopt the following convention: R denotes a good ring, r

denotes an element of the carrier of R, a, b denote Data-Locations of R, i1, i2, i3
denote instruction-locations of SCM(R), I denotes an instruction of SCM(R),
s1, s2 denote states of SCM(R), T denotes an instruction type of SCM(R),
and k denotes a natural number.

Let us note that Z is infinite.
One can verify that INT.Ring is infinite and good.
Let us mention that there exists a 1-sorted structure which is strict and

infinite.
Let us mention that there exists a ring which is strict, infinite, and good.
We now state the proposition

(1) ObjectKind(a) = the carrier of R.

Let R be a good ring, let l1, l2 be Data-Locations of R, and let a, b be
elements of R. Then [l1 7−→ a, l2 7−→ b] is a finite partial state of SCM(R).

We now state a number of propositions:

(2) a /∈ the instruction locations of SCM(R).
(3) a 6= ICSCM(R).

(4) Data-LocSCM 6= the instruction locations of SCM(R).
(5) For every object o of SCM(R) holds o = ICSCM(R) or o ∈ the instruc-

tion locations of SCM(R) or o is a Data-Location of R.

(6) If i2 6= i3, then Next(i2) 6= Next(i3).

317
c© 2001 University of Białystok

ISSN 1426–2630

318 artur korniłowicz

(7) If s1 and s2 are equal outside the instruction locations of SCM(R), then
s1(a) = s2(a).

(8) InsCode(haltSCM(R)) = 0.
(9) InsCode(a:=b) = 1.

(10) InsCode(AddTo(a, b)) = 2.
(11) InsCode(SubFrom(a, b)) = 3.

(12) InsCode(MultBy(a, b)) = 4.

(13) InsCode(a:=r) = 5.
(14) InsCode(goto i2) = 6.
(15) InsCode(if a = 0 goto i2) = 7.

(16) If InsCode(I) = 0, then I = haltSCM(R).

(17) If InsCode(I) = 1, then there exist a, b such that I = a:=b.

(18) If InsCode(I) = 2, then there exist a, b such that I = AddTo(a, b).
(19) If InsCode(I) = 3, then there exist a, b such that I = SubFrom(a, b).
(20) If InsCode(I) = 4, then there exist a, b such that I = MultBy(a, b).
(21) If InsCode(I) = 5, then there exist a, r such that I = a:=r.

(22) If InsCode(I) = 6, then there exists i3 such that I = goto i3.

(23) If InsCode(I) = 7, then there exist a, i2 such that I = if a = 0 goto i2.

(24) AddressPart(haltSCM(R)) = ε.

(25) AddressPart(a:=b) = 〈a, b〉.
(26) AddressPart(AddTo(a, b)) = 〈a, b〉.
(27) AddressPart(SubFrom(a, b)) = 〈a, b〉.
(28) AddressPart(MultBy(a, b)) = 〈a, b〉.
(29) AddressPart(a:=r) = 〈a, r〉.
(30) AddressPart(goto i2) = 〈i2〉.
(31) AddressPart(if a = 0 goto i2) = 〈i2, a〉.
(32) If T = 0, then AddressParts T = {0}.

Let us consider R, T . Observe that AddressParts T is non empty.
We now state a number of propositions:

(33) If T = 1, then dom
∏

AddressParts T = {1, 2}.
(34) If T = 2, then dom

∏
AddressParts T = {1, 2}.

(35) If T = 3, then dom
∏

AddressParts T = {1, 2}.
(36) If T = 4, then dom

∏
AddressParts T = {1, 2}.

(37) If T = 5, then dom
∏

AddressParts T = {1, 2}.
(38) If T = 6, then dom

∏
AddressParts T = {1}.

(39) If T = 7, then dom
∏

AddressParts T = {1, 2}.
(40)

∏
AddressParts InsCode(a:=b)(1) = Data-LocSCM.

the properties of instructions of scm over . . . 319

(41)
∏

AddressParts InsCode(a:=b)(2) = Data-LocSCM.

(42)
∏

AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCM.

(43)
∏

AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCM.

(44)
∏

AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCM.

(45)
∏

AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCM.

(46)
∏

AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCM.

(47)
∏

AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCM.

(48)
∏

AddressParts InsCode(a:=r)(1) = Data-LocSCM.

(49)
∏

AddressParts InsCode(a:=r)(2) = the carrier of R.

(50)
∏

AddressParts InsCode(goto i2)(1) = the instruction locations of SCM(R).
(51)

∏
AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of

SCM(R).
(52)

∏
AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCM.

(53) NIC(haltSCM(R), i1) = {i1}.
Let us consider R. One can check that JUMP(haltSCM(R)) is empty.
Next we state the proposition

(54) NIC(a:=b, i1) = {Next(i1)}.
Let us consider R, a, b. Observe that JUMP(a:=b) is empty.
We now state the proposition

(55) NIC(AddTo(a, b), i1) = {Next(i1)}.
Let us consider R, a, b. One can check that JUMP(AddTo(a, b)) is empty.
One can prove the following proposition

(56) NIC(SubFrom(a, b), i1) = {Next(i1)}.
Let us consider R, a, b. Note that JUMP(SubFrom(a, b)) is empty.
Next we state the proposition

(57) NIC(MultBy(a, b), i1) = {Next(i1)}.
Let us consider R, a, b. One can verify that JUMP(MultBy(a, b)) is empty.
One can prove the following proposition

(58) NIC(a:=r, i1) = {Next(i1)}.
Let us consider R, a, r. Note that JUMP(a:=r) is empty.
The following propositions are true:

(59) NIC(goto i2, i1) = {i2}.
(60) JUMP(goto i2) = {i2}.

Let us consider R, i2. Note that JUMP(goto i2) is non empty and trivial.
We now state two propositions:

(61) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆
{i2, Next(i1)}.

(62) JUMP(if a = 0 goto i2) = {i2}.

320 artur korniłowicz

Let us consider R, a, i2. Observe that JUMP(if a = 0 goto i2) is non empty
and trivial.

One can prove the following two propositions:

(63) SUCC(i1) = {i1, Next(i1)}.
(64) Let f be a function from N into the instruction locations of SCM(R).

Suppose that for every natural number k holds f(k) = ik. Then
(i) f is bijective, and
(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us consider R. Note that SCM(R) is standard.
Next we state three propositions:

(65) ilSCM(R)(k) = ik.

(66) Next(ilSCM(R)(k)) = ilSCM(R)(k + 1).
(67) Next(i1) = NextLoc i1.

Let R be a good ring and let k be a natural number. The functor dlR(k)
yields a Data-Location of R and is defined as follows:

(Def. 1) dlR(k) = dk.

Let us consider R. Observe that InsCode(haltSCM(R)) is jump-only.
Let us consider R. Note that haltSCM(R) is jump-only.
Let us consider R, i2. Note that InsCode(goto i2) is jump-only.
Let us consider R, i2. One can check that goto i2 is jump-only.
Let us consider R, a, i2. Observe that InsCode(if a = 0 goto i2) is jump-

only.
Let us consider R, a, i2. Note that if a = 0 goto i2 is jump-only.
In the sequel S denotes a non trivial good ring, p, q denote Data-Locations

of S, and w denotes an element of the carrier of S.
Let us consider S, p, q. One can check that InsCode(p:=q) is non jump-only.
Let us consider S, p, q. One can check that p:=q is non jump-only.
Let us consider S, p, q. Observe that InsCode(AddTo(p, q)) is non jump-only.
Let us consider S, p, q. Note that AddTo(p, q) is non jump-only.
Let us consider S, p, q. Note that InsCode(SubFrom(p, q)) is non jump-only.
Let us consider S, p, q. Note that SubFrom(p, q) is non jump-only.
Let us consider S, p, q. Observe that InsCode(MultBy(p, q)) is non jump-

only.
Let us consider S, p, q. One can verify that MultBy(p, q) is non jump-only.
Let us consider S, p, w. Note that InsCode(p:=w) is non jump-only.
Let us consider S, p, w. Note that p:=w is non jump-only.
Let us consider R, a, b. Observe that a:=b is sequential.
Let us consider R, a, b. Observe that AddTo(a, b) is sequential.
Let us consider R, a, b. Note that SubFrom(a, b) is sequential.

the properties of instructions of scm over . . . 321

Let us consider R, a, b. One can verify that MultBy(a, b) is sequential.
Let us consider R, a, r. Note that a:=r is sequential.
Let us consider R, i2. One can check that goto i2 is non sequential.
Let us consider R, a, i2. Observe that if a = 0 goto i2 is non sequential.
Let us consider R, i2. Note that goto i2 is non instruction location free.
Let us consider R, a, i2. Note that if a = 0 goto i2 is non instruction loca-

tion free.
Let us consider R. One can check that SCM(R) is homogeneous and explicit-

jump-instruction and has ins-loc-in-jump.
Let us consider R. Observe that SCM(R) is regular.
Next we state two propositions:

(68) IncAddr(goto i2, k) = goto ilSCM(R)(locnum(i2) + k).
(69) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCM(R)(locnum(i2)+k).

Let us consider R. One can check that SCM(R) is IC-good and Exec-
preserving.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized

Mathematics, 5(4):485–492, 1996.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Artur Korniłowicz. The basic properties of SCM over ring. Formalized Mathematics,

7(2):301–305, 1998.
[8] Artur Korniłowicz. The construction of SCM over ring. Formalized Mathematics,

7(2):295–300, 1998.
[9] Artur Korniłowicz. On the composition of macro instructions of standard computers.

Formalized Mathematics, 9(2):303–316, 2001.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[13] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,

1996.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[15] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[16] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-

tion locations. Formalized Mathematics, 9(2):291–301, 2001.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

322 artur korniłowicz

[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received April 14, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Basic Facts about Inaccessible and
Measurable Cardinals

Josef Urban
Charles University

Praha

Summary. Inaccessible, strongly inaccessible and measurable cardinals
are defined, and it is proved that a measurable cardinal is strongly inaccessible.
Filters on sets are defined, some facts related to the section about cardinals are
proved. Existence of the Ulam matrix on non-limit cardinals is proved.

MML Identifier: CARD FIL.

The notation and terminology used here are introduced in the following papers:
[13], [2], [1], [5], [9], [6], [7], [3], [4], [14], [10], [12], [11], and [8].

1. Some Facts about Filters and Ideals on Sets

One can verify that there exists an ordinal number which is limit.
Let X, Y be sets. Then X \ Y is a subset of X.
We now state the proposition

(1) For every set x and for every infinite set X holds {x} < X .

Let X be an infinite set. Observe that X is infinite.
The scheme ElemProp deals with a non empty set A, a set B, and a unary

predicate P, and states that:
P[B]

provided the following condition is met:
• B ∈ {y; y ranges over elements of A : P[y]}.

For simplicity, we follow the rules: N is a cardinal number, M is an aleph,
X is a non empty set, Y , Z, Z1, Z2, Y1, Y2 are subsets of X, and S is a subset
of 2X .

323
c© 2001 University of Białystok

ISSN 1426–2630

324 josef urban

One can prove the following proposition

(2)(i) {X} is a non empty subset of 2X ,
(ii) ∅ /∈ {X}, and
(iii) for all Y1, Y2 holds if Y1 ∈ {X} and Y2 ∈ {X}, then Y1 ∩Y2 ∈ {X} and

if Y1 ∈ {X} and Y1 ⊆ Y2, then Y2 ∈ {X}.
Let us consider X. A non empty subset of 2X is said to be a filter of X if:

(Def. 1) ∅ /∈ it and for all Y1, Y2 holds if Y1 ∈ it and Y2 ∈ it, then Y1 ∩ Y2 ∈ it
and if Y1 ∈ it and Y1 ⊆ Y2, then Y2 ∈ it.

The following propositions are true:

(3) Let F be a set. Then F is a filter of X if and only if the following
conditions are satisfied:

(i) F is a non empty subset of 2X ,
(ii) ∅ /∈ F, and
(iii) for all Y1, Y2 holds if Y1 ∈ F and Y2 ∈ F, then Y1 ∩ Y2 ∈ F and if

Y1 ∈ F and Y1 ⊆ Y2, then Y2 ∈ F.

(4) {X} is a filter of X.

In the sequel F , F1, F2, U1 denote filters of X.
The following propositions are true:

(5) X ∈ F.

(6) If Y ∈ F, then X \ Y /∈ F.

(7) Let I be a non empty subset of 2X . Suppose that for every Y holds Y ∈ I

iff Y c ∈ F. Then X /∈ I and for all Y1, Y2 holds if Y1 ∈ I and Y2 ∈ I, then
Y1 ∪ Y2 ∈ I and if Y1 ∈ I and Y2 ⊆ Y1, then Y2 ∈ I.

Let us consider X, S. We introduce dual S as a synonym of Sc.
In the sequel S is a non empty subset of 2X .
Let us consider X, S. One can verify that Sc is non empty.
One can prove the following two propositions:

(8) dual S = {Y : Y c ∈ S}.
(9) dual S = {Y c : Y ∈ S}.
Let us consider X. A non empty subset of 2X is said to be an ideal of X if:

(Def. 2) X /∈ it and for all Y1, Y2 holds if Y1 ∈ it and Y2 ∈ it, then Y1 ∪ Y2 ∈ it
and if Y1 ∈ it and Y2 ⊆ Y1, then Y2 ∈ it.

Let us consider X, F . Then dual F is an ideal of X.
In the sequel I is an ideal of X.
Next we state two propositions:

(10) For every Y holds Y /∈ F or Y /∈ dual F and for every Y holds Y /∈ I or
Y /∈ dual I.

(11) ∅ ∈ I.

basic facts about inaccessible and . . . 325

Let us consider X, N , S. We say that S is multiplicative with N if and only
if:

(Def. 3) For every non empty set S1 such that S1 ⊆ S and S1 < N holds
⋂

S1 ∈
S.

Let us consider X, N , S. We say that S is additive with N if and only if:

(Def. 4) For every non empty set S1 such that S1 ⊆ S and S1 < N holds
⋃

S1 ∈
S.

Let us consider X, N , F . We introduce F is complete with N as a synonym
of F is multiplicative with N .

Let us consider X, N , I. We introduce I is complete with N as a synonym
of I is additive with N .

One can prove the following proposition

(12) If S is multiplicative with N , then dual S is additive with N .

Let us consider X, F . We say that F is uniform if and only if:

(Def. 5) For every Y such that Y ∈ F holds Y = X .

We say that F is principal if and only if:

(Def. 6) There exists Y such that Y ∈ F and for every Z such that Z ∈ F holds
Y ⊆ Z.

We say that F is an ultrafilter if and only if:

(Def. 7) For every Y holds Y ∈ F or X \ Y ∈ F.

Let us consider X, F , Z. The functor Extend Filter(F, Z) yields a non empty
subset of 2X and is defined as follows:

(Def. 8) Extend Filter(F,Z) = {Y :
∨

Y2
(Y2 ∈ {Y1 ∩ Z : Y1 ∈ F} ∧ Y2 ⊆ Y)}.

We now state two propositions:

(13) For every Z1 holds Z1 ∈ Extend Filter(F, Z) iff there exists Z2 such that
Z2 ∈ F and Z2 ∩ Z ⊆ Z1.

(14) If for every Y1 such that Y1 ∈ F holds Y1 ∩ Z 6= ∅, then Z ∈
Extend Filter(F, Z) and Extend Filter(F,Z) is a filter of X and F ⊆
Extend Filter(F, Z).

In the sequel S denotes a subset of 2X .
Let us consider X. The functor Filters X yielding a non empty subset of 22X

is defined by:

(Def. 9) Filters X = {S : S is a filter of X}.
We now state the proposition

(15) For every set S holds S ∈ Filters X iff S is a filter of X.

In the sequel F3 is a non empty subset of Filters X.

One can prove the following propositions:

(16) If for all F1, F2 such that F1 ∈ F3 and F2 ∈ F3 holds F1 ⊆ F2 or F2 ⊆ F1,

then
⋃

F3 is a filter of X.

326 josef urban

(17) For every F there exists U1 such that F ⊆ U1 and U1 is an ultrafilter.

In the sequel X denotes an infinite set, Y denotes a subset of X, and F , U1

denote filters of X.
Let us consider X. The functor Frechet Filter X yielding a filter of X is

defined by:

(Def. 10) Frechet Filter X = {Y : X \ Y < X }.
Let us consider X. The functor Frechet Ideal X yields an ideal of X and is

defined as follows:

(Def. 11) Frechet Ideal X = dual Frechet Filter X.

One can prove the following propositions:

(18) Y ∈ Frechet Filter X iff X \ Y < X .

(19) Y ∈ Frechet Ideal X iff Y < X .

(20) If Frechet Filter X ⊆ F, then F is uniform.

(21) If U1 is uniform and an ultrafilter, then Frechet Filter X ⊆ U1.

Let us consider X. One can check that there exists a filter of X which is non
principal and an ultrafilter.

Let us consider X. One can check that every filter of X which is uniform
and an ultrafilter is also non principal.

Next we state two propositions:

(22) For every an ultrafilter filter F of X and for every Y holds Y ∈ F iff
Y /∈ dual F.

(23) If F is non principal and an ultrafilter and F is complete with X , then
F is uniform.

2. Inaccessible and Measurable Cardinals, Ulam Matrix

We now state the proposition

(24) N+ ¬ 2N
.

We say that Generalized Continuum Hypothesis holds if and only if:

(Def. 12) For every N holds N+ = 2N
.

Let I1 be an aleph. We say that I1 is inaccessible if and only if:

(Def. 13) I1 is regular and limit.

We introduce I1 is inaccessible cardinal as a synonym of I1 is inaccessible.
Let us note that every aleph which is inaccessible is also regular and limit.
We now state the proposition

(25) ℵ0 is inaccessible.

Let I1 be an aleph. We say that I1 is strong limit if and only if:

basic facts about inaccessible and . . . 327

(Def. 14) For every N such that N < I1 holds 2N
< I1.

We introduce I1 is strong limit cardinal as a synonym of I1 is strong limit.
Next we state two propositions:

(26) ℵ0 is strong limit.

(27) If M is strong limit, then M is limit.

One can check that every aleph which is strong limit is also limit.
Next we state the proposition

(28) If Generalized Continuum Hypothesis holds, then if M is limit, then M

is strong limit.

Let I1 be an aleph. We say that I1 is strongly inaccessible if and only if:

(Def. 15) I1 is regular and strong limit.

We introduce I1 is strongly inaccessible cardinal as a synonym of I1 is strongly
inaccessible.

Let us observe that every aleph which is strongly inaccessible is also regular
and strong limit.

The following propositions are true:

(29) ℵ0 is strongly inaccessible.

(30) If M is strongly inaccessible, then M is inaccessible.

Let us note that every aleph which is strongly inaccessible is also inaccessible.
Next we state the proposition

(31) If Generalized Continuum Hypothesis holds, then if M is inaccessible,
then M is strongly inaccessible.

Let us consider M . We say that M is measurable if and only if:

(Def. 16) There exists a filter U1 of M such that U1 is complete with M and U1

is non principal and an ultrafilter.

We introduce M is measurable cardinal as a synonym of M is measurable.
We now state two propositions:

(32) For every limit ordinal number A and for every set X such that X ⊆ A

holds if sup X = A, then
⋃

X = A.

(33) If M is measurable, then M is regular.

Let us consider M . Note that M+ is non limit.
Let us note that there exists a cardinal number which is non limit and

infinite.
Let us observe that every aleph which is non limit is also regular.
Let M be a non limit cardinal number. The functor predecessor M yields a

cardinal number and is defined as follows:

(Def. 17) M = (predecessor M)+.

Let M be a non limit aleph. One can check that predecessor M is infinite.

328 josef urban

Let X be a set and let N , N1 be cardinal numbers. An Inf Matrix of N , N1,
X is a function from [:N, N1 :] into X.

For simplicity, we follow the rules: X denotes a set, M denotes a non limit
aleph, F denotes a filter of M , N1, N2 denote elements of predecessor M, K1,
K2 denote elements of M , and T denotes an Inf Matrix of predecessor M, M ,
2M .

Let us consider M , T . We say that T is Ulam Matrix of M if and only if the
conditions (Def. 18) are satisfied.

(Def. 18)(i) For all N1, K1, K2 such that K1 6= K2 holds T (N1, K1)∩ T (N1, K2)
is empty,

(ii) for all K1, N1, N2 such that N1 6= N2 holds T (N1, K1) ∩ T (N2, K1) is
empty,

(iii) for every N1 holds M \⋃{T (N1, K1) : K1 ∈M} ¬ predecessor M, and

(iv) for every K1 holds M \⋃{T (N1, K1) : N1 ∈ predecessor M} ¬
predecessor M.

The following four propositions are true:

(34) There exists T such that T is Ulam Matrix of M .

(35) Let given M and I be an ideal of M . Suppose I is complete with M and
Frechet Ideal M ⊆ I. Then there exists a subset S of 2M such that S = M

and for every set X1 such that X1 ∈ S holds X1 /∈ I and for all sets X1,
X2 such that X1 ∈ S and X2 ∈ S and X1 6= X2 holds X1 ∩X2 = ∅.

(36) For every X and for every cardinal number N such that N ¬ X there
exists a set Y such that Y ⊆ X and Y = N.

(37) For every M it is not true that there exists F such that F is uniform
and an ultrafilter and F is complete with M .

In the sequel M is an aleph.
The following four propositions are true:

(38) If M is measurable, then M is limit.

(39) If M is measurable, then M is inaccessible.

(40) If M is measurable, then M is strong limit.

(41) If M is measurable, then M is strongly inaccessible.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek. On powers of cardinals. Formalized Mathematics, 3(1):89–93, 1992.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.

basic facts about inaccessible and . . . 329

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received April 14, 2000

330 josef urban

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Evaluation of Multivariate Polynomials

Christoph Schwarzweller
University of Tübingen

Andrzej Trybulec
University of Białystok

MML Identifier: POLYNOM2.

The notation and terminology used in this paper are introduced in the following
papers: [14], [5], [25], [3], [20], [7], [8], [6], [18], [22], [1], [19], [23], [2], [17], [15],
[4], [9], [26], [21], [10], [24], [16], [12], [11], and [13].

1. Preliminaries

In this article we present several logical schemes. The scheme FinRecExD2
deals with a non empty set A, an element B of A, a natural number C, and a
ternary predicate P, and states that:

There exists a finite sequence p of elements of A such that len p =
C but p1 = B or C = 0 but for every natural number n such that
1 ¬ n and n < C holds P[n, pn, pn+1]

provided the parameters meet the following conditions:
• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x be

an element of A. Then there exists an element y of A such that
P[n, x, y], and

• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x, y1,
y2 be elements of A. If P[n, x, y1] and P[n, x, y2], then y1 = y2.

The scheme FinRecUnD2 deals with a non empty set A, an element B of
A, a natural number C, finite sequences D, E of elements of A, and a ternary
predicate P, and states that:

D = E
provided the parameters meet the following requirements:
• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x, y1,

y2 be elements of A. If P[n, x, y1] and P[n, x, y2], then y1 = y2,

331
c© 2001 University of Białystok

ISSN 1426–2630

332 christoph schwarzweller and andrzej trybulec

• lenD = C but D1 = B or C = 0 but for every natural number n

such that 1 ¬ n and n < C holds P[n,Dn,Dn+1], and
• len E = C but E1 = B or C = 0 but for every natural number n

such that 1 ¬ n and n < C holds P[n, En, En+1].
The scheme FinInd deals with natural numbers A, B and a unary predicate

P, and states that:
For every natural number i such that A ¬ i and i ¬ B holds P[i]

provided the following conditions are satisfied:
• P[A], and
• For every natural number j such that A ¬ j and j < B holds if
P[j], then P[j + 1].

The scheme FinInd2 deals with natural numbers A, B and a unary predicate
P, and states that:

For every natural number i such that A ¬ i and i ¬ B holds P[i]
provided the parameters satisfy the following conditions:
• P[A], and
• Let j be a natural number. Suppose A ¬ j and j < B. Suppose

that for every natural number j′ such that A ¬ j′ and j′ ¬ j

holds P[j′]. Then P[j + 1].
The scheme IndFinSeq deals with a set A, a finite sequence B of elements of

A, and a unary predicate P, and states that:
For every natural number i such that 1 ¬ i and i ¬ lenB holds
P[B(i)]

provided the following conditions are satisfied:
• P[B(1)], and
• For every natural number i such that 1 ¬ i and i < lenB holds if
P[B(i)], then P[B(i + 1)].

Let us mention that every non empty double loop structure which is com-
mutative and right distributive is also distributive.

The following two propositions are true:

(1) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure and x, y be elements of the carrier
of L. Then (−x) · y = −x · y.

(2) Let L be a unital associative non trivial non empty double loop structure,
a be an element of the carrier of L, and n, m be natural numbers. Then
powerL(a, n + m) = powerL(a, n) · powerL(a, m).

Let us note that every non empty multiplicative loop structure which is well
unital is also unital.

One can prove the following proposition

(3) For every well unital non empty double loop structure L holds 1L = 1L.

the evaluation of multivariate polynomials 333

Let us note that there exists a non empty double loop structure which is
Abelian, right zeroed, add-associative, right complementable, unital, well unital,
distributive, commutative, associative, and non trivial.

2. About Finite Sequences and the Functor SgmX

Next we state a number of propositions:

(4) Let D be a set, p be a finite sequence of elements of D, and k be a
natural number. Suppose k ∈ dom p. Let i be a natural number. If 1 ¬ i

and i ¬ k, then i ∈ dom p.

(5) Let L be a left zeroed right zeroed non empty loop structure, p be a
finite sequence of elements of the carrier of L, and i be a natural number.
Suppose i ∈ dom p and for every natural number i′ such that i′ ∈ dom p

and i′ 6= i holds pi′ = 0L. Then
∑

p = pi.

(6) Let L be an add-associative right zeroed right complementable distribu-
tive unital non empty double loop structure and p be a finite sequence of
elements of the carrier of L. If there exists a natural number i such that
i ∈ dom p and pi = 0L, then

∏
p = 0L.

(7) Let L be an Abelian add-associative non empty loop structure, a be an
element of the carrier of L, and p, q be finite sequences of elements of the
carrier of L. Suppose that

(i) len p = len q, and
(ii) there exists a natural number i such that i ∈ dom p and qi = a+pi and

for every natural number i′ such that i′ ∈ dom p and i′ 6= i holds qi′ = pi′ .

Then
∑

q = a +
∑

p.

(8) Let L be a commutative associative non empty double loop structure, a

be an element of the carrier of L, and p, q be finite sequences of elements
of the carrier of L. Suppose that

(i) len p = len q, and
(ii) there exists a natural number i such that i ∈ dom p and qi = a · pi and

for every natural number i′ such that i′ ∈ dom p and i′ 6= i holds qi′ = pi′ .

Then
∏

q = a ·∏ p.

(9) Let X be a set, A be an empty subset of X, and R be an order in X. If
R linearly orders A, then SgmX(R,A) = ε.

(10) Let X be a set, A be a finite subset of X, and R be an order in X. Suppose
R linearly orders A. Let i, j be natural numbers. If i ∈ dom SgmX(R, A)
and j ∈ dom SgmX(R, A), then if (SgmX(R,A))i = (SgmX(R, A))j , then
i = j.

(11) Let X be a set, A be a finite subset of X, and a be an element of X.
Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a}∪A. Let R

334 christoph schwarzweller and andrzej trybulec

be an order in X. Suppose R linearly orders B. Let k be a natural number.
Suppose k ∈ dom SgmX(R, B) and (SgmX(R, B))k = a. Let i be a natural
number. If 1 ¬ i and i ¬ k − 1, then (SgmX(R,B))i = (SgmX(R,A))i.

(12) Let X be a set, A be a finite subset of X, and a be an element of
X. Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a} ∪
A. Let R be an order in X. Suppose R linearly orders B. Let k be a
natural number. Suppose k ∈ dom SgmX(R, B) and (SgmX(R, B))k =
a. Let i be a natural number. If k ¬ i and i ¬ len SgmX(R,A), then
(SgmX(R, B))i+1 = (SgmX(R, A))i.

(13) Let X be a non empty set, A be a finite subset of X, and a be an element
of X. Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a}∪A.

Let R be an order in X. Suppose R linearly orders B. Let k be a natural
number. If k + 1 ∈ dom SgmX(R, B) and (SgmX(R, B))k+1 = a, then
SgmX(R, B) = Ins(SgmX(R,A), k, a).

Let n be an ordinal number. Then ⊆n is an order in n.

3. Evaluation of Bags

Next we state the proposition

(14) For every set X and for every bag b of X such that support b = ∅ holds
b = EmptyBag X.

Let X be a set and let b be a bag of X. We say that b is empty if and only
if:

(Def. 1) b = EmptyBag X.

Let X be a non empty set. Observe that there exists a bag of X which is
non empty.

Let X be a set and let b be a bag of X. Then support b is a finite subset of
X.

Next we state the proposition

(15) For every ordinal number n and for every bag b of n holds ⊆n linearly
orders support b.

Let X be a set, let x be a finite sequence of elements of X, and let b be a
bag of X. Then b · x is a partial function from N to N.

Let n be an ordinal number, let b be a bag of n, let L be a non trivial unital
non empty double loop structure, and let x be a function from n into L. The
functor eval(b, x) yields an element of L and is defined by the condition (Def. 2).

(Def. 2) There exists a finite sequence y of elements of the carrier of L such that
(i) len y = len SgmX(⊆n, support b) + 1,
(ii) y1 = 1L,

the evaluation of multivariate polynomials 335

(iii) eval(b, x) =
∏

y, and
(iv) for every natural number i such that 1 < i and i ¬ len y holds yi =

powerL((x · SgmX(⊆n, support b))i−1, (b · SgmX(⊆n, support b))i−1).
Next we state three propositions:

(16) Let n be an ordinal number, L be a non trivial unital non empty
double loop structure, and x be a function from n into L. Then
eval(EmptyBag n, x) = 1L.

(17) Let n be an ordinal number, L be a unital non trivial non empty double
loop structure, u be a set, and b be a bag of n. If support b = {u}, then
for every function x from n into L holds eval(b, x) = powerL(x(u), b(u)).

(18) Let n be an ordinal number, L be a right zeroed add-associative right
complementable unital distributive Abelian non trivial commutative asso-
ciative non empty double loop structure, b1, b2 be bags of n, and x be a
function from n into L. Then eval(b1 + b2, x) = eval(b1, x) · eval(b2, x).

4. Evaluation of Polynomials

Let n be an ordinal number, let L be an add-associative right zeroed right
complementable non empty loop structure, and let p, q be Polynomials of n, L.
Note that p− q is finite-Support.

The following proposition is true

(19) Let L be a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure, n be an ordinal
number, and p be a Polynomial of n, L. If Support p = ∅, then p = 0 (n,L).

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure,
and let p be a Polynomial of n, L. Note that Support p is finite.

Next we state the proposition

(20) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double loop
structure, and p be a Polynomial of n, L. Then BagOrder n linearly orders
Support p.

Let n be an ordinal number and let b be an element of Bags n. The functor
bT yields a bag of n and is defined as follows:

(Def. 3) bT = b.

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure,
let p be a Polynomial of n, L, and let x be a function from n into L. The functor
eval(p, x) yields an element of L and is defined by the condition (Def. 4).

336 christoph schwarzweller and andrzej trybulec

(Def. 4) There exists a finite sequence y of elements of the carrier of L such that
(i) len y = len SgmX(BagOrder n, Support p) + 1,
(ii) y1 = 0L,

(iii) eval(p, x) =
∑

y, and
(iv) for every natural number i such that 1 < i and i ¬ len y holds yi =

(p · SgmX(BagOrder n, Support p))i−1 · eval(((SgmX(BagOrder n,

Support p))i−1)T, x).
One can prove the following propositions:

(21) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double
loop structure, p be a Polynomial of n, L, and b be a bag of n. If
Support p = {b}, then for every function x from n into L holds eval(p, x) =
p(b) · eval(b, x).

(22) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double loop
structure, and x be a function from n into L. Then eval(0 (n,L), x) = 0L.

(23) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double loop
structure, and x be a function from n into L. Then eval(1 (n,L), x) = 1L.

(24) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double loop
structure, p be a Polynomial of n, L, and x be a function from n into L.
Then eval(−p, x) = −eval(p, x).

(25) Let n be an ordinal number, L be a right zeroed add-associative right
complementable Abelian unital distributive non trivial non empty double
loop structure, p, q be Polynomials of n, L, and x be a function from n

into L. Then eval(p + q, x) = eval(p, x) + eval(q, x).
(26) Let n be an ordinal number, L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial non empty double
loop structure, p, q be Polynomials of n, L, and x be a function from n

into L. Then eval(p− q, x) = eval(p, x)− eval(q, x).
(27) Let n be an ordinal number, L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial commutative asso-
ciative non empty double loop structure, p, q be Polynomials of n, L, and
x be a function from n into L. Then eval(p ∗ q, x) = eval(p, x) · eval(q, x).

the evaluation of multivariate polynomials 337

5. Evaluation Homomorphism

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure,
and let x be a function from n into L. The functor Polynom-Evaluation(n,L, x)
yielding a map from Polynom-Ring(n,L) into L is defined by:

(Def. 5) For every Polynomial p of n, L holds (Polynom-Evaluation(n,L, x))(p) =
eval(p, x).

Let n be an ordinal number and let L be a right zeroed Abelian add-
associative right complementable well unital distributive associative non trivial
non empty double loop structure. One can check that Polynom-Ring(n,L) is
well unital.

Let n be an ordinal number, let L be an Abelian right zeroed add-associative
right complementable well unital distributive associative non trivial non empty
double loop structure, and let x be a function from n into L.

Note that Polynom-Evaluation(n, L, x) is unity-preserving.
Let n be an ordinal number, let L be a right zeroed add-associative ri-

ght complementable Abelian unital distributive non trivial non empty double
loop structure, and let x be a function from n into L. One can verify that
Polynom-Evaluation(n,L, x) is additive.

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable Abelian unital distributive non trivial commutative associative
non empty double loop structure, and let x be a function from n into L. Note
that Polynom-Evaluation(n,L, x) is multiplicative.

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable Abelian well unital distributive non trivial commutative asso-
ciative non empty double loop structure, and let x be a function from n into L.
One can verify that Polynom-Evaluation(n,L, x) is ring homomorphism.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-

matics, 5(2):241–245, 1996.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.

338 christoph schwarzweller and andrzej trybulec

[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471–475, 1990.

[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[12] Beata Madras. On the concept of the triangulation. Formalized Mathematics, 5(3):457–
462, 1996.

[13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
Formalized Mathematics, 2(1):3–11, 1991.

[14] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups
with zero. Formalized Mathematics, 1(5):833–840, 1990.

[15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[22] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized

Mathematics, 2(1):41–47, 1991.
[23] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized

Mathematics, 1(2):387–393, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received April 14, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Ring of Polynomials

Robert Milewski
University of Białystok

MML Identifier: POLYNOM3.

The papers [12], [16], [13], [21], [2], [3], [7], [17], [4], [5], [10], [18], [1], [14], [15],
[22], [23], [19], [6], [20], [8], [11], and [9] provide the notation and terminology
for this paper.

1. Preliminaries

The following four propositions are true:

(1) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a finite sequence of elements of the carrier
of L. If for every natural number i such that i ∈ dom p holds p(i) = 0L,

then
∑

p = 0L.

(2) Let V be an Abelian add-associative right zeroed non empty loop struc-
ture and p be a finite sequence of elements of the carrier of V . Then∑

p =
∑

Rev(p).
(3) For every finite sequence p of elements of R holds

∑
p =

∑
Rev(p).

(4) For every finite sequence p of elements of N and for every natural number
i such that i ∈ dom p holds

∑
p p(i).

Let D be a non empty set, let i be a natural number, and let p be a finite
sequence of elements of D. Then p¹i is a finite sequence of elements of D.

Let D be a non empty set and let a, b be elements of D. Then 〈a, b〉 is an
element of D2.

Let D be a non empty set, let k, n be natural numbers, let p be an element
of Dk, and let q be an element of Dn. Then p a q is an element of Dk+n.

Let D be a non empty set and let n be a natural number. One can check
that every finite sequence of elements of Dn is finite sequence yielding.

339
c© 2001 University of Białystok

ISSN 1426–2630

340 robert milewski

Let D be a non empty set, let k, n be natural numbers, let p be a finite
sequence of elements of Dk, and let q be a finite sequence of elements of Dn.
Then p _ q is an element of (Dk+n)∗.

In this article we present several logical schemes. The scheme NonUniqPiSe-
qExD deals with a non empty set A, a natural number B, and a binary predicate
P, and states that:

There exists a finite sequence p of elements ofA such that dom p =
SegB and for every natural number k such that k ∈ SegB holds
P[k, πkp]

provided the following condition is satisfied:
• For every natural number k such that k ∈ SegB there exists an

element d of A such that P[k, d].
The scheme SeqOfSeqLambdaD deals with a non empty set A, a natural

number B, a unary functor F yielding a natural number, and a binary functor
G yielding an element of A, and states that:

There exists a finite sequence p of elements of A∗ such that
(i) len p = B, and
(ii) for every natural number k such that k ∈ SegB holds
len πkp = F(k) and for every natural number n such that n ∈
dom πkp holds (πkp)(n) = G(k, n)

for all values of the parameters.

2. The Lexicographic Order of Finite Sequences

Let n be a natural number and let p, q be elements of Nn. The predicate
p < q is defined by the condition (Def. 1).

(Def. 1) There exists a natural number i such that i ∈ Seg n and p(i) < q(i) and
for every natural number k such that 1 ¬ k and k < i holds p(k) = q(k).

Let us note that the predicate p < q is antisymmetric. We introduce q > p as a
synonym of p < q.

Let n be a natural number and let p, q be elements of Nn. The predicate
p ¬ q is defined by:

(Def. 2) p < q or p = q.

Let us note that the predicate p ¬ q is reflexive. We introduce q p as a
synonym of p ¬ q.

We now state three propositions:

(5) Let n be a natural number and p, q, r be elements of Nn. Then
(i) if p < q and q < r, then p < r, and
(ii) if p < q and q ¬ r or p ¬ q and q < r or p ¬ q and q ¬ r, then p ¬ r.

the ring of polynomials 341

(6) Let n be a natural number and p, q be elements of Nn. Suppose p 6= q.

Then there exists a natural number i such that i ∈ Seg n and p(i) 6= q(i)
and for every natural number k such that 1 ¬ k and k < i holds p(k) =
q(k).

(7) For every natural number n and for all elements p, q of Nn holds p ¬ q

or p > q.

Let n be a natural number. The functor TuplesOrder n yielding an order in
Nn is defined by:

(Def. 3) For all elements p, q of Nn holds 〈〈p, q〉〉 ∈ TuplesOrder n iff p ¬ q.

Let n be a natural number. Note that TuplesOrder n is linear-order.

3. Decomposition of Natural Numbers

Let i be a non empty natural number and let n be a natural number. The
functor Decomp(n, i) yielding a finite sequence of elements of Ni is defined by:

(Def. 4) There exists a finite subset A of Ni such that Decomp(n, i) =
SgmX(TuplesOrder i, A) and for every element p of Ni holds p ∈ A iff∑

p = n.

Let i be a non empty natural number and let n be a natural number. Note
that Decomp(n, i) is non empty one-to-one and finite sequence yielding.

The following propositions are true:

(8) For every natural number n holds len Decomp(n, 1) = 1.
(9) For every natural number n holds len Decomp(n, 2) = n + 1.

(10) For every natural number n holds Decomp(n, 1) = 〈〈n〉〉.
(11) For all natural numbers i, j, n, k1, k2 such that (Decomp(n, 2))(i) = 〈k1,

n−′ k1〉 and (Decomp(n, 2))(j) = 〈k2, n−′ k2〉 holds i < j iff k1 < k2.

(12) For all natural numbers i, n, k1, k2 such that (Decomp(n, 2))(i) = 〈k1,

n−′ k1〉 and (Decomp(n, 2))(i + 1) = 〈k2, n−′ k2〉 holds k2 = k1 + 1.

(13) For every natural number n holds (Decomp(n, 2))(1) = 〈0, n〉.
(14) For all natural numbers n, i such that i ∈ Seg(n + 1) holds

(Decomp(n, 2))(i) = 〈i−′ 1, (n + 1)−′ i〉.
Let L be a non empty groupoid, let p, q, r be sequences of L, and let t be a

finite sequence of elements of N3. The functor prodTuples(p, q, r, t) yielding an
element of (the carrier of L)∗ is defined by:

(Def. 5) len prodTuples(p, q, r, t) = len t and for every natural number k such
that k ∈ Seg len t holds (prodTuples(p, q, r, t))(k) = p(π1πkt) · q(π2πkt) ·
r(π3πkt).

One can prove the following propositions:

342 robert milewski

(15) Let L be a non empty groupoid, p, q, r be sequences of L, t be a finite
sequence of elements of N3, P be a permutation of dom t, and t1 be a
finite sequence of elements of N3. If t1 = t ·P, then prodTuples(p, q, r, t1) =
prodTuples(p, q, r, t) · P.

(16) For every set D and for every finite sequence f of elements of D∗ and
for every natural number i holds f¹i = f ¹i.

(17) Let p be a finite sequence of elements of R and q be a finite sequence of
elements of N. If p = q, then for every natural number i holds p¹i = q¹i.

(18) For every finite sequence p of elements of N and for all natural numbers
i, j such that i ¬ j holds

∑
(p¹i) ¬∑

(p¹j).
(19) Let p be a finite sequence of elements of R and i be a natural number.

If i < len p, then p¹(i + 1) = (p¹i) a 〈p(i + 1)〉.
(20) Let p be a finite sequence of elements of R and i be a natural number.

If i < len p, then
∑

(p¹(i + 1)) =
∑

(p¹i) + p(i + 1).
(21) Let p be a finite sequence of elements of N and i, j, k1, k2 be natural

numbers. Suppose i < len p and j < len p and p(i + 1) 6= 0 and p(j + 1) 6=
0 and 1 ¬ k1 and 1 ¬ k2 and k1 ¬ p(i + 1) and k2 ¬ p(j + 1) and∑

(p¹i) + k1 =
∑

(p¹j) + k2. Then i = j and k1 = k2.

(22) Let D1, D2 be sets, f1 be a finite sequence of elements of D1
∗, f2 be a

finite sequence of elements of D2
∗, and i1, i2, j1, j2 be natural numbers.

Suppose i1 ∈ dom f1 and i2 ∈ dom f2 and j1 ∈ dom f1(i1) and j2 ∈
dom f2(i2) and f1 = f2 and

∑
(f1 ¹(i1 −′ 1)) + j1 =

∑
(f2 ¹(i2 −′ 1)) + j2.

Then i1 = i2 and j1 = j2.

4. Polynomials

Let L be a non empty zero structure. A Polynomial of L is an algebraic
sequence of L.

The following proposition is true

(23) Let L be a non empty zero structure, p be a Polynomial of L, and n be
a natural number. Then n len p if and only if the length of p is at most
n.

Now we present two schemes. The scheme PolynomialLambda deals with a
non empty loop structureA, a natural number B, and a unary functor F yielding
an element of the carrier of A, and states that:

There exists a Polynomial p of A such that len p ¬ B and for
every natural number n such that n < B holds p(n) = F(n)

for all values of the parameters.

the ring of polynomials 343

The scheme ExDLoopStrSeq deals with a non empty loop structure A and a
unary functor F yielding an element of the carrier of A, and states that:

There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)

for all values of the parameters.
Let L be a non empty loop structure and let p, q be sequences of L. The

functor p + q yielding a sequence of L is defined by:

(Def. 6) For every natural number n holds (p + q)(n) = p(n) + q(n).
Let L be a right zeroed non empty loop structure and let p, q be Polynomials

of L. Note that p + q is finite-Support.
One can prove the following two propositions:

(24) Let L be a right zeroed non empty loop structure, p, q be Polynomials
of L, and n be a natural number. Suppose the length of p is at most n and
the length of q is at most n. Then the length of p + q is at most n.

(25) For every right zeroed non empty loop structure L and for all Polyno-
mials p, q of L holds support(p + q) ⊆ support p ∪ support q.

Let L be an Abelian non empty loop structure and let p, q be sequences of
L. Let us note that the functor p + q is commutative.

One can prove the following proposition

(26) For every add-associative non empty loop structure L and for all sequ-
ences p, q, r of L holds (p + q) + r = p + (q + r).

Let L be a non empty loop structure and let p be a sequence of L. The
functor −p yielding a sequence of L is defined by:

(Def. 7) For every natural number n holds (−p)(n) = −p(n).
Let L be an add-associative right zeroed right complementable non empty

loop structure and let p be a Polynomial of L. Observe that −p is finite-Support.
Let L be a non empty loop structure and let p, q be sequences of L. The

functor p− q yields a sequence of L and is defined as follows:

(Def. 8) p− q = p +−q.

Let L be an add-associative right zeroed right complementable non empty
loop structure and let p, q be Polynomials of L. Note that p−q is finite-Support.

Next we state the proposition

(27) Let L be a non empty loop structure, p, q be sequences of L, and n be
a natural number. Then (p− q)(n) = p(n)− q(n).

Let L be a non empty zero structure. The functor 0. L yielding a sequence
of L is defined as follows:

(Def. 9) 0. L = N 7−→ 0L.

Let L be a non empty zero structure. One can check that 0. L is finite-
Support.

We now state three propositions:

344 robert milewski

(28) For every non empty zero structure L and for every natural number n

holds (0. L)(n) = 0L.

(29) For every right zeroed non empty loop structure L and for every sequence
p of L holds p + 0. L = p.

(30) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a sequence of L. Then p− p = 0. L.

Let L be a non empty multiplicative loop with zero structure. The functor
1. L yielding a sequence of L is defined by:

(Def. 10) 1. L = 0. L +· (0, 1L).
Let L be a non empty multiplicative loop with zero structure. Observe that

1. L is finite-Support.
Next we state the proposition

(31) Let L be a non empty multiplicative loop with zero structure. Then
(1. L)(0) = 1L and for every natural number n such that n 6= 0 holds
(1. L)(n) = 0L.

Let L be a non empty double loop structure and let p, q be sequences of L.
The functor p∗q yields a sequence of L and is defined by the condition (Def. 11).

(Def. 11) Let i be a natural number. Then there exists a finite sequence r of
elements of the carrier of L such that len r = i + 1 and (p ∗ q)(i) =

∑
r

and for every natural number k such that k ∈ dom r holds r(k) = p(k −′
1) · q((i + 1)−′ k).

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure and let p, q be Polynomials of L. Note that
p ∗ q is finite-Support.

Next we state three propositions:

(32) Let L be an Abelian add-associative right zeroed right complementable
right distributive non empty double loop structure and p, q, r be sequences
of L. Then p ∗ (q + r) = p ∗ q + p ∗ r.

(33) Let L be an Abelian add-associative right zeroed right complementable
left distributive non empty double loop structure and p, q, r be sequences
of L. Then (p + q) ∗ r = p ∗ r + q ∗ r.

(34) Let L be an Abelian add-associative right zeroed right complementable
unital associative distributive non empty double loop structure and p, q,
r be sequences of L. Then (p ∗ q) ∗ r = p ∗ (q ∗ r).

Let L be an Abelian add-associative right zeroed commutative non empty
double loop structure and let p, q be sequences of L. Let us observe that the
functor p ∗ q is commutative.

We now state two propositions:

(35) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure and p be a sequence of L.

the ring of polynomials 345

Then p ∗ 0. L = 0. L.

(36) Let L be an add-associative right zeroed right unital right complementa-
ble right distributive non empty double loop structure and p be a sequence
of L. Then p ∗ 1. L = p.

5. The Ring of Polynomials

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. The functor Polynom-Ring L yields a strict
non empty double loop structure and is defined by the conditions (Def. 12).

(Def. 12)(i) For every set x holds x ∈ the carrier of Polynom-Ring L iff x is a
Polynomial of L,

(ii) for all elements x, y of the carrier of Polynom-Ring L and for all sequ-
ences p, q of L such that x = p and y = q holds x + y = p + q,

(iii) for all elements x, y of the carrier of Polynom-Ring L and for all sequ-
ences p, q of L such that x = p and y = q holds x · y = p ∗ q,

(iv) 0Polynom-Ring L = 0. L, and
(v) 1Polynom-Ring L = 1. L.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive non empty double loop structure. Observe that Polynom-Ring L is
Abelian.

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. One can check the following observations:

∗ Polynom-Ring L is add-associative,

∗ Polynom-Ring L is right zeroed, and

∗ Polynom-Ring L is right complementable.

Let L be an Abelian add-associative right zeroed right complementable com-
mutative distributive non empty double loop structure. Note that Polynom-Ring L

is commutative.
Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive non empty double loop structure. Observe that
Polynom-Ring L is associative.

Let L be an add-associative right zeroed right complementable right unital
distributive non empty double loop structure. Observe that Polynom-Ring L is
right unital.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive non empty double loop structure. Note that Polynom-Ring L is right
distributive and Polynom-Ring L is left distributive.

346 robert milewski

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[8] Agata Darmochwał and Yatsuka Nakamura. The topological space E2
T. Arcs, line segments

and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
[9] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,

6(4):573–577, 1997.
[10] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized

Mathematics, 3(1):107–115, 1992.
[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[12] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring

and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number

of variables. Formalized Mathematics, 9(1):95–110, 2001.
[16] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathe-

matics, 2(1):185–191, 1991.
[17] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received April 17, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Solving Roots of Polynomial Equations of
Degree 2 and 3 with Real Coefficients

Liang Xiquan
Northeast Normal University

China

Summary. In this paper, we describe the definition of the first, second,
and third degree algebraic equations and their properties. In Section 1, we defi-
ned the simple first-degree and second-degree (quadratic) equation and discussed
the relation between the roots of each equation and their coefficients. Also, we
clarified the form of the root within the range of real numbers. Furthermore, the
extraction of the root using the discriminant of equation is clarified. In Section
2, we defined the third-degree (cubic) equation and clarified the relation between
the three roots of this equation and its coefficient. Also, the form of these ro-
ots for various conditions is discussed. This solution is known as the Cardano
solution.

MML Identifier: POLYEQ 1.

The terminology and notation used in this paper are introduced in the following
articles: [4], [3], [2], [1], [5], and [6].

1. Equation of Degree 1 and 2

Let a, b, x be real numbers. The functor Poly1(a, b, x) yields a real number
and is defined as follows:

(Def. 1) Poly1(a, b, x) = a · x + b.

One can prove the following three propositions:

(1) For all real numbers a, b, x such that a 6= 0 holds if Poly1(a, b, x) = 0,

then x = − b
a .

(2) For every real number x holds Poly1(0, 0, x) = 0.

347
c© 2001 University of Białystok

ISSN 1426–2630

348 liang xiquan

(3) For all real numbers a, b, x such that a = 0 and b 6= 0 it is not true that
there exists a real number x such that Poly1(a, b, x) = 0.

Let a, b, c, x be real numbers. The functor Poly2(a, b, c, x) yields a real
number and is defined by:

(Def. 2) Poly2(a, b, c, x) = a · x2 + b · x + c.

One can prove the following propositions:

(4) For all real numbers a, b, c, a′, b′, c′ such that for every real number
x holds Poly2(a, b, c, x) = Poly2(a′, b′, c′, x) holds a = a′ and b = b′ and
c = c′.

(5) Let a, b, c be real numbers. Suppose a 6= 0 and ∆(a, b, c) 0. Let

x be a real number. If Poly2(a, b, c, x) = 0, then x = −b+
√

∆(a,b,c)

2·a or

x = −b−
√

∆(a,b,c)

2·a .

(6) For all real numbers a, b, c, x such that a 6= 0 and ∆(a, b, c) = 0 holds if
Poly2(a, b, c, x) = 0, then x = − b

2·a .

(7) For all real numbers a, b, c such that a 6= 0 and ∆(a, b, c) < 0 it is not
true that there exists a real number x such that Poly2(a, b, c, x) = 0.

(8) For all real numbers a, b, c, x such that a = 0 and b 6= 0 holds if for
every real number x holds Poly2(a, b, c, x) = 0, then x = − c

b .

(9) For all real numbers a, b, c, x such that a = 0 and b = 0 and c = 0 holds
Poly2(a, b, c, x) = 0.

(10) For all real numbers a, b, c such that a = 0 and b = 0 and c 6= 0 it is not
true that there exists a real number x such that Poly2(a, b, c, x) = 0.

Let a, x, x1, x2 be real numbers. The functor Quard(a, x1, x2, x) yielding a
real number is defined by:

(Def. 3) Quard(a, x1, x2, x) = a · ((x− x1) · (x− x2)).
Next we state the proposition

(11) Let a, b, c, x, x1, x2 be real numbers. Suppose a 6= 0. Suppose that
for every real number x holds Poly2(a, b, c, x) = Quard(a, x1, x2, x). Then
b
a = −(x1 + x2) and c

a = x1 · x2.

2. Equation of Degree 3

Let a, b, c, d, x be real numbers. The functor Poly3(a, b, c, d, x) yielding a
real number is defined as follows:

(Def. 4) Poly3(a, b, c, d, x) = a · x3
N + b · x2 + c · x + d.

Next we state the proposition

solving roots of polynomial equations of . . . 349

(12) Let a, b, c, d, a′, b′, c′, d′ be real numbers. Suppose that for every real
number x holds Poly3(a, b, c, d, x) = Poly3(a′, b′, c′, d′, x). Then a = a′ and
b = b′ and c = c′ and d = d′.

Let a, x, x1, x2, x3 be real numbers. The functor Tri(a, x1, x2, x3, x) yields
a real number and is defined as follows:

(Def. 5) Tri(a, x1, x2, x3, x) = a · ((x− x1) · (x− x2) · (x− x3)).
One can prove the following propositions:

(13) Let a, b, c, d, x, x1, x2, x3 be real numbers. Suppose a 6= 0. Suppose
that for every real number x holds Poly3(a, b, c, d, x) = Tri(a, x1, x2, x3, x).
Then b

a = −(x1 + x2 + x3) and c
a = x1 · x2 + x2 · x3 + x1 · x3 and d

a =
−x1 · x2 · x3.

(14) For all real numbers y, h holds (y+h)3N = (y3
N)+(3 ·h ·y2 +3 ·h2 ·y)+h3

N.

(15) Let a, b, c, d, x be real numbers. Suppose a 6= 0. Suppose
Poly3(a, b, c, d, x) = 0. Let a1, a2, a3, h, y be real numbers. Suppose
y = x + b

3·a and h = − b
3·a and a1 = b

a and a2 = c
a and a3 = d

a . Then
(y3
N)+((3·h+a1)·y2+(3·h2+2·(a1·h)+a2)·y)+((h3

N)+a1·h2+(a2·h+a3)) =
0.

(16) Let a, b, c, d, x be real numbers. Suppose a 6= 0. Suppose
Poly3(a, b, c, d, x) = 0. Let a1, a2, a3, h, y be real numbers. Suppose
y = x + b

3·a and h = − b
3·a and a1 = b

a and a2 = c
a and a3 = d

a . Then
(y3
N) + 0 · y2 + 3·a·c−b2

3·a2 · y + (2 · (b
3·a)3N + 3·a·d−b·c

3·a2) = 0.

(17) Let a, b, c, d, y be real numbers. Suppose a 6= 0. Suppose (y3
N) + 0 ·

y2 + 3·a·c−b2

3·a2 · y + (2 · (b
3·a)3N + 3·a·d−b·c

3·a2) = 0. Let p, q be real numbers. If

p = 3·a·c−b2

3·a2 and q = 2 · (b
3·a)3N + 3·a·d−b·c

3·a2 , then Poly3(1, 0, p, q, y) = 0.
(18) Let p, q, y be real numbers. Suppose Poly3(1, 0, p, q, y) = 0. Let u, v be

real numbers. If y = u + v and 3 · v · u + p = 0, then (u3
N) + v3

N = −q and
(u3
N) · v3

N = (−p
3)3N.

(19) Let p, q, y be real numbers. Suppose Poly3(1, 0, p, q, y) = 0. Let u, v be
real numbers. Suppose y = u + v and 3 · v · u + p = 0. Then

(i) y = 3

√
− q

2 +
√

q2

4 + (p
3)3N + 3

√
− q

2 −
√

q2

4 + (p
3)3N, or

(ii) y = 3

√
− q

2 +
√

q2

4 + (p
3)3N + 3

√
− q

2 +
√

q2

4 + (p
3)3N, or

(iii) y = 3

√
− q

2 −
√

q2

4 + (p
3)3N + 3

√
− q

2 −
√

q2

4 + (p
3)3N.

(20) Let a, b, c, d, x be real numbers. Suppose a = 0 and b 6= 0 and ∆(b, c, d) >

0. If Poly3(a, b, c, d, x) = 0, then x = −c+
√

∆(b,c,d)

2·b or x = −c−
√

∆(b,c,d)

2·b .

(21) Let a, b, c, d, p, q, x be real numbers. Suppose a 6= 0 and b = 0 and
p = c

a and q = d
a . Suppose Poly3(a, b, c, d, x) = 0. Let u, v be real numbers.

Suppose x = u + v and 3 · v · u + p = 0. Then

350 liang xiquan

(i) x = 3

√
− d

2·a +
√

d2

4·a2 + (c
3·a)3N + 3

√
− d

2·a −
√

d2

4·a2 + (c
3·a)3N, or

(ii) x = 3

√
− d

2·a +
√

d2

4·a2 + (c
3·a)3N + 3

√
− d

2·a +
√

d2

4·a2 + (c
3·a)3N, or

(iii) x = 3

√
− d

2·a −
√

d2

4·a2 + (c
3·a)3N + 3

√
− d

2·a −
√

d2

4·a2 + (c
3·a)3N.

(22) Let a, b, c, d, x be real numbers. Suppose a 6= 0 and ∆(a, b, c) 0

and d = 0. If Poly3(a, b, c, d, x) = 0, then x = 0 or x = −b+
√

∆(a,b,c)

2·a or

x = −b−
√

∆(a,b,c)

2·a .

(23) Let a, b, c, d, x be real numbers. Suppose a 6= 0 and b = 0 and c
a < 0 and

d = 0. If Poly3(a, b, c, d, x) = 0, then x = 0 or x =
√− c

a or x = −√− c
a .

(24) Let a, b, c, d, x be real numbers. Suppose a 6= 0 and c = 0. Suppose
Poly3(a, b, c, d, x) = 0. Let h be a real number. Suppose a · x + b = h and

h 6= 0 and d
h < 0. Then x = h−b

a or x =
√
− d

h or x = −
√
− d

h .

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[2] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507–509, 1991.
[3] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–

130, 1991.
[4] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized

Mathematics, 2(2):213–216, 1991.
[5] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received May 18, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Concept of Fuzzy Set and Membership
Function and Basic Properties of Fuzzy Set

Operation

Takashi Mitsuishi
Shinshu University

Nagano

Noboru Endou
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. This article introduces the fuzzy theory. At first, the definition
of fuzzy set characterized by membership function is described. Next, definitions
of empty fuzzy set and universal fuzzy set and basic operations of these fuzzy
sets are shown. At last, exclusive sum and absolute difference which are special
operation are introduced.

MML Identifier: FUZZY 1.

The terminology and notation used in this paper have been introduced in the
following articles: [8], [1], [5], [9], [3], [4], [6], [7], and [2].

1. Definition of Membership Function and Fuzzy Set

In this paper C is a non empty set and c is an element of C.
We now state the proposition

(1) rng(χC,C) ⊆ [0, 1].

Let us consider C. A partial function from C to R is said to be a membership
function of C if:

(Def. 1) dom it = C and rng it ⊆ [0, 1].
The following proposition is true

(2) χC,C is a membership function of C.

351
c© 2001 University of Białystok

ISSN 1426–2630

352 takashi mitsuishi et al.

In the sequel f , h, g, h1 denote membership functions of C.
Let C be a non empty set and let h be a membership function of C. A set

is called a FuzzySet of C, h if:

(Def. 2) It = [:C, h◦C :].
Let C be a non empty set, let h, g be membership functions of C, let A be

a FuzzySet of C, h, and let B be a FuzzySet of C, g. The predicate A = B is
defined as follows:

(Def. 3) For every element c of C holds h(c) = g(c).
Let C be a non empty set, let h, g be membership functions of C, let A be

a FuzzySet of C, h, and let B be a FuzzySet of C, g. The predicate A ⊆ B is
defined by:

(Def. 4) For every element c of C holds h(c) ¬ g(c).
In the sequel A denotes a FuzzySet of C, f , B denotes a FuzzySet of C, g,

D denotes a FuzzySet of C, h, and D1 denotes a FuzzySet of C, h1.
One can prove the following propositions:

(3) A = B iff A ⊆ B and B ⊆ A.

(4) A ⊆ A.

(5) If A ⊆ B and B ⊆ D, then A ⊆ D.

2. Intersection, Union and Complement

Let C be a non empty set and let h, g be membership functions of C. The
functor min(h, g) yielding a membership function of C is defined by:

(Def. 5) For every element c of C holds (min(h, g))(c) = min(h(c), g(c)).
Let C be a non empty set and let h, g be membership functions of C. The

functor max(h, g) yields a membership function of C and is defined by:

(Def. 6) For every element c of C holds (max(h, g))(c) = max(h(c), g(c)).
Let C be a non empty set and let h be a membership function of C. The

functor 1-minus h yielding a membership function of C is defined by:

(Def. 7) For every element c of C holds (1-minus h)(c) = 1− h(c).
Let C be a non empty set, let h, g be membership functions of C, let A be a

FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor A ∩B yielding
a FuzzySet of C, min(h, g) is defined as follows:

(Def. 8) A ∩B = [:C, (min(h, g))◦C :].
Let C be a non empty set, let h, g be membership functions of C, let A be

a FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor A ∪B yields
a FuzzySet of C, max(h, g) and is defined by:

(Def. 9) A ∪B = [:C, (max(h, g))◦C :].

the concept of fuzzy set and membership . . . 353

Let C be a non empty set, let h be a membership function of C, and let A

be a FuzzySet of C, h. The functor Ac yielding a FuzzySet of C, 1-minus h is
defined by:

(Def. 10) Ac = [:C, (1-minus h)◦C :].
We now state a number of propositions:

(6) min(h(c), g(c)) = (min(h, g))(c) and max(h(c), g(c)) = (max(h, g))(c).
(7) max(h, h) = h and min(h, h) = h and max(h, h) = min(h, h) and

min(f, g) = min(g, f) and max(f, g) = max(g, f).
(8) f = g iff A = B.

(9) A ∩A = A and A ∪A = A.

(10) A ∩B = B ∩A and A ∪B = B ∪A.

(11) max(max(f, g), h) = max(f, max(g, h)) and min(min(f, g), h) =
min(f, min(g, h)).

(12) (A ∪B) ∪D = A ∪ (B ∪D).
(13) (A ∩B) ∩D = A ∩ (B ∩D).
(14) max(f, min(f, g)) = f and min(f, max(f, g)) = f.

(15) A ∪A ∩B = A and A ∩ (A ∪B) = A.

(16) min(f, max(g, h)) = max(min(f, g), min(f, h)) and max(f, min(g, h)) =
min(max(f, g), max(f, h)).

(17) A ∪B ∩D = (A ∪B) ∩ (A ∪D) and A ∩ (B ∪D) = A ∩B ∪A ∩D.

(18) 1-minus 1-minus h = h.

(19) (Ac)c = A.

(20) 1-minus max(f, g) = min(1-minus f, 1-minus g) and 1-minus min(f, g) =
max(1-minus f, 1-minus g).

(21) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

3. Empty Fuzzy Set and Universal Fuzzy Set

Let C be a non empty set. A set is called an Empty FuzzySet of C if:

(Def. 11) It = [:C, (χ∅,C)◦C :].
Let C be a non empty set. A set is called a Universal FuzzySet of C if:

(Def. 12) It = [:C, (χC,C)◦C :].
In the sequel X is a Universal FuzzySet of C and E is an Empty FuzzySet

of C.
One can prove the following two propositions:

(22) rng(χ∅,C) ⊆ [0, 1].
(23) χ∅,C is a membership function of C.

354 takashi mitsuishi et al.

Let C be a non empty set. The functor EMF C yields a membership function
of C and is defined as follows:

(Def. 13) EMF C = χ∅,C .

Let C be a non empty set. The functor UMF C yields a membership function
of C and is defined as follows:

(Def. 14) UMF C = χC,C .

One can prove the following propositions:

(24) For every membership function h of C such that h = χC,C holds [:C,

(χC,C)◦C :] is a FuzzySet of C, h.

(25) For every membership function h of C such that h = χ∅,C holds [:C,

(χ∅,C)◦C :] is a FuzzySet of C, h.

(26) E is a FuzzySet of C, EMF C.

(27) X is a FuzzySet of C, UMF C.

Let C be a non empty set. We see that the Empty FuzzySet of C is a
FuzzySet of C, EMF C.

Let C be a non empty set. We see that the Universal FuzzySet of C is a
FuzzySet of C, UMF C.

In the sequel X denotes a Universal FuzzySet of C and E denotes an Empty
FuzzySet of C.

One can prove the following propositions:

(28) Let a, b be elements of R and f be a partial function from C to R.
Suppose rng f ⊆ [a, b] and dom f 6= ∅ and a ¬ b. Let x be an element of
C. If x ∈ dom f, then a ¬ f(x) and f(x) ¬ b.

(29) E ⊆ A.

(30) A ⊆ X.

(31) For every element x of C and for every membership function h of C

holds (EMF C)(x) ¬ h(x) and h(x) ¬ (UMF C)(x).
(32) max(f, UMF C) = UMF C and min(f, UMF C) = f and

max(f, EMF C) = f and min(f, EMF C) = EMF C.

(33) A ∪X = X and A ∩X = A.

(34) A ∪ E = A and A ∩ E = E.

(35) A ⊆ A ∪B.

(36) If A ⊆ D and B ⊆ D, then A ∪B ⊆ D.

(37) For all elements a, b, c of R such that a ¬ b holds max(a, c) ¬ max(b, c).
(38) If A ⊆ B, then A ∪D ⊆ B ∪D.

(39) If A ⊆ B and D ⊆ D1, then A ∪D ⊆ B ∪D1.

(40) If A ⊆ B, then A ∪B = B.

(41) A ∩B ⊆ A.

the concept of fuzzy set and membership . . . 355

(42) A ∩B ⊆ A ∪B.

(43) If D ⊆ A and D ⊆ B, then D ⊆ A ∩B.

(44) For all elements a, b, c, d of R such that a ¬ b and c ¬ d holds min(a, c) ¬
min(b, d).

(45) For all elements a, b, c of R such that a ¬ b holds min(a, c) ¬ min(b, c).
(46) If A ⊆ B, then A ∩D ⊆ B ∩D.

(47) If A ⊆ B and D ⊆ D1, then A ∩D ⊆ B ∩D1.

(48) If A ⊆ B, then A ∩B = A.

(49) If A ⊆ B and A ⊆ D and B ∩D = E, then A = E.

(50) If A ∩B ∪A ∩D = A, then A ⊆ B ∪D.

(51) If A ⊆ B and B ∩D = E, then A ∩D = E.

(52) If A ⊆ E, then A = E.

(53) A ∪B = E iff A = E and B = E.

(54) A = B ∪D iff B ⊆ A and D ⊆ A and for all h1, D1 such that B ⊆ D1

and D ⊆ D1 holds A ⊆ D1.

(55) A = B ∩D iff A ⊆ B and A ⊆ D and for all h1, D1 such that D1 ⊆ B

and D1 ⊆ D holds D1 ⊆ A.

(56) If A ⊆ B ∪D and A ∩D = E, then A ⊆ B.

(57) A ⊆ B iff Bc ⊆ Ac.

(58) If A ⊆ Bc, then B ⊆ Ac.

(59) If Ac ⊆ B, then Bc ⊆ A.

(60) (A ∪B)c ⊆ Ac and (A ∪B)c ⊆ Bc.

(61) Ac ⊆ (A ∩B)c and Bc ⊆ (A ∩B)c.

(62) 1-minus EMF C = UMF C and 1-minus UMF C = EMF C.

(63) Ec = X and Xc = E.

4. Exclusive Sum, Absolute Difference

Let C be a non empty set, let h, g be membership functions of C, let A be
a FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor A−. B yields
a FuzzySet of C, max(min(h, 1-minus g), min(1-minus h, g)) and is defined as
follows:

(Def. 15) A−. B = [:C, (max(min(h, 1-minus g), min(1-minus h, g)))◦C :].
The following propositions are true:

(64) A−. B = A ∩Bc ∪Ac ∩B.

(65) A−. B = B−. A.

(66) A−. E = A and E−. A = A.

356 takashi mitsuishi et al.

(67) A−. X = Ac and X−. A = Ac.

(68) A ∩B ∪B ∩D ∪D ∩A = (A ∪B) ∩ (B ∪D) ∩ (D ∪A).
(69) A ∩B ∪Ac ∩Bc ⊆ (A−. B)c.

(70) (A−. B) ∪A ∩B ⊆ A ∪B.

(71) A−. A = A ∩Ac.

Let C be a non empty set and let h, g be membership functions of C. The
functor |h− g| yields a membership function of C and is defined as follows:

(Def. 16) For every element c of C holds |h− g|(c) = |h(c)− g(c)|.
Let C be a non empty set, let h, g be membership functions of C, let A be a

FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor |A−B| yielding
a FuzzySet of C, |h− g| is defined by:

(Def. 17) |A−B| = [:C, |h− g|◦C :].

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[3] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized
Mathematics, 1(4):703–709, 1990.

[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics,
1(2):269–272, 1990.

[5] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.
Formalized Mathematics, 1(4):777–780, 1990.

[6] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[9] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received May 18, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Basic Properties of Fuzzy Set Operation
and Membership Function

Takashi Mitsuishi
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasunari Shidama
Shinshu University

Nagano

Summary. This article introduces the fuzzy theory. The definition of the
difference set, algebraic product and algebraic sum of fuzzy set is shown. In
addition, basic properties of those operations are described. Basic properties of
fuzzy set are a little different from those of crisp set.

MML Identifier: FUZZY 2.

The articles [3], [1], [2], [4], and [5] provide the terminology and notation for
this paper.

1. Basic Properties of Membership Function and Difference Set

For simplicity, we follow the rules: C denotes a non empty set, c denotes
an element of C, f , h, g, h1 denote membership functions of C, A denotes a
FuzzySet of C, f , B denotes a FuzzySet of C, g, D denotes a FuzzySet of C, h,
D1 denotes a FuzzySet of C, h1, X denotes a Universal FuzzySet of C, and E

denotes an Empty FuzzySet of C.
We now state four propositions:

(1) For every element x of C and for every membership function h of C

holds 0 ¬ h(x) and h(x) ¬ 1.

(2) For every element x of C holds (EMF C)(x) = 0 and (UMF C)(x) = 1.
(3) For every c such that f(c) ¬ h(c) holds (max(f, min(g, h)))(c) =

(min(max(f, g), h))(c).
(4) If A ⊆ D, then A ∪B ∩D = (A ∪B) ∩D.

357
c© 2001 University of Białystok

ISSN 1426–2630

358 takashi mitsuishi et al.

Let C be a non empty set, let f , g be membership functions of C, let A be
a FuzzySet of C, f , and let B be a FuzzySet of C, g. The functor A \B yielding
a FuzzySet of C, min(f, 1-minus g) is defined as follows:

(Def. 1) A \B = [:C, (min(f, 1-minus g))◦C :].
Next we state a number of propositions:

(5) A \B = A ∩Bc.

(6) 1-minus min(f, 1-minus g) = max(1-minus f, g).
(7) (A \B)c = Ac ∪B.

(8) For every c such that f(c) ¬ g(c) holds (min(f, 1-minus h))(c) ¬
(min(g, 1-minus h))(c).

(9) If A ⊆ B, then A \D ⊆ B \D.

(10) For every c such that f(c) ¬ g(c) holds (min(h, 1-minus g))(c) ¬
(min(h, 1-minus f))(c).

(11) If A ⊆ B, then D \B ⊆ D \A.

(12) For every c such that f(c) ¬ g(c) and h(c) ¬ h1(c) holds
(min(f, 1-minus h1))(c) ¬ (min(g, 1-minus h))(c).

(13) If A ⊆ B and D ⊆ D1, then A \D1 ⊆ B \D.

(14) For every c holds (min(f, 1-minus g))(c) ¬ f(c).
(15) A \B ⊆ A.

(16) For every c holds (min(f, 1-minus g))(c) ¬ (max(min(f, 1-minus g),
min(1-minus f, g)))(c).

(17) A \B ⊆ A−. B.

(18) A \ E = A.

(19) E \A = E.

(20) For every c holds (min(f, 1-minus g))(c) ¬ (min(f, 1-minus min(f, g)))(c).
(21) A \B ⊆ A \A ∩B.

(22) For every c holds (max(min(f, g), min(f, 1-minus g)))(c) ¬ f(c).
(23) For every c holds (max(f, min(g, 1-minus f)))(c) ¬ (max(f, g))(c).
(24) A ∪ (B \A) ⊆ A ∪B.

(25) A ∩B ∪ (A \B) ⊆ A.

(26) min(f, 1-minus min(g, 1-minus h)) = max(min(f, 1-minus g), min(f, h)).
(27) A \ (B \D) = (A \B) ∪A ∩D.

(28) For every c holds (min(f, g))(c) ¬ (min(f, 1-minus min(f, 1-minus g)))(c).
(29) A ∩B ⊆ A \ (A \B).
(30) For every c holds (min(f, 1-minus g))(c) ¬ (min(max(f, g), 1-minus g))(c).
(31) A \B ⊆ (A ∪B) \B.

(32) min(f, 1-minus max(g, h)) = min(min(f, 1-minus g), min(f, 1-minus h)).

basic properties of fuzzy set operation and . . . 359

(33) A \ (B ∪D) = (A \B) ∩ (A \D).
(34) min(f, 1-minus min(g, h)) = max(min(f, 1-minus g), min(f, 1-minus h)).
(35) A \B ∩D = (A \B) ∪ (A \D).
(36) min(min(f, 1-minus g), 1-minus h) = min(f, 1-minus max(g, h)).
(37) A \B \D = A \ (B ∪D).
(38) For every c holds (min(max(f, g), 1-minus min(f, g)))(c) (max(min(f,

1-minus g), min(g, 1-minus f)))(c).
(39) (A \B) ∪ (B \A) ⊆ (A ∪B) \A ∩B.

(40) min(max(f, g), 1-minus h) = max(min(f, 1-minus h), min(g, 1-minus h)).
(41) (A ∪B) \D = (A \D) ∪ (B \D).
(42) For every c such that (min(f, 1-minus g))(c) ¬ h(c) and (min(g, 1-minus

f))(c) ¬ h(c) holds (max(min(f, 1-minus g), min(1-minus f, g)))(c) ¬ h(c).
(43) If A \B ⊆ D and B \A ⊆ D, then A−. B ⊆ D.

(44) A ∩ (B \D) = A ∩B \D.

(45) For every c holds (min(f, min(g, 1-minus h)))(c) ¬ (min(min(f, g),
1-minus min(f, h)))(c).

(46) A ∩ (B \D) ⊆ A ∩B \A ∩D.

(47) For every c holds (min(max(f, g), 1-minus min(f, g)))(c) (max(min(f,

1-minus g), min(1-minus f, g)))(c).
(48) A−. B ⊆ (A ∪B) \A ∩B.

(49) For every c holds (max(min(f, g), 1-minus max(f, g)))(c) ¬ (1-minus max
(min(f, 1-minus g), min(1-minus f, g)))(c).

(50) A ∩B ∪ (A ∪B)c ⊆ (A−. B)c.

(51) min(max(min(f, 1-minus g), min(1-minus f, g)), 1-minus h) = max(min
(f, 1-minus max(g, h)), min(g, 1-minus max(f, h))).

(52) (A−. B) \D = (A \ (B ∪D)) ∪ (B \ (A ∪D)).
(53) For every c holds (min(f, 1-minus max(min(g, 1-minus h), min(1-minus g,

h))))(c) (max(min(f, 1-minus max(g, h)), min(min(f, g), h)))(c).
(54) (A \ (B ∪D)) ∪A ∩B ∩D ⊆ A \ (B−. D).
(55) For every c such that f(c) ¬ g(c) holds g(c)

(max(f, min(g, 1-minus f)))(c).
(56) If A ⊆ B, then A ∪ (B \A) ⊆ B.

(57) For every c holds (max(f, g))(c) (max(max(min(f, 1-minus g),
min(1-minus f, g)), min(f, g)))(c).

(58) (A−. B) ∪A ∩B ⊆ A ∪B.

(59) If min(f, 1-minus g) = EMF C, then for every c holds f(c) ¬ g(c).
(60) If A \B = E, then A ⊆ B.

(61) If min(f, g) = EMF C, then min(f, 1-minus g) = f.

360 takashi mitsuishi et al.

(62) If A ∩B = E, then A \B = A.

2. Algebraic Product and Algebraic Sum

Let C be a non empty set and let h, g be membership functions of C. The
functor h · g yielding a membership function of C is defined as follows:

(Def. 2) For every element c of C holds (h · g)(c) = h(c) · g(c).
Let C be a non empty set and let h, g be membership functions of C. The

functor h⊕ g yielding a membership function of C is defined as follows:

(Def. 3) For every element c of C holds (h⊕ g)(c) = (h(c) + g(c))− h(c) · g(c).
Let C be a non empty set, let h, g be membership functions of C, let A be

a FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor A ·B yields a
FuzzySet of C, h · g and is defined as follows:

(Def. 4) A ·B = [:C, (h · g)◦C :].
Let C be a non empty set, let h, g be membership functions of C, let A be a

FuzzySet of C, h, and let B be a FuzzySet of C, g. The functor A⊕B yielding
a FuzzySet of C, h⊕ g is defined by:

(Def. 5) A⊕B = [:C, (h⊕ g)◦C :].
We now state a number of propositions:

(63) For every c holds (f · f)(c) ¬ f(c) and (f ⊕ f)(c) f(c).
(64) A ·A ⊆ A and A ⊆ A⊕A.

(65) f · g = g · f and f ⊕ g = g ⊕ f.

(66) A ·B = B ·A and A⊕B = B ⊕A.

(67) (f · g) · h = f · (g · h).
(68) (A ·B) ·D = A · (B ·D).
(69) (f ⊕ g)⊕ h = f ⊕ (g ⊕ h).
(70) (A⊕B)⊕D = A⊕ (B ⊕D).
(71) For every c holds (f · (f ⊕ g))(c) ¬ f(c) and (f ⊕ f · g)(c) f(c).
(72) A · (A⊕B) ⊆ A and A ⊆ A⊕A ·B.

(73) For every c holds (f · (g ⊕ h))(c) ¬ (f · g ⊕ f · h)(c).
(74) A · (B ⊕D) ⊆ A ·B ⊕A ·D.

(75) For every c holds ((f ⊕ g) · (f ⊕ h))(c) ¬ (f ⊕ g · h)(c).
(76) (A⊕B) · (A⊕D) ⊆ A⊕B ·D.

(77) 1-minus f · g = 1-minus f ⊕ 1-minus g.

(78) (A ·B)c = Ac ⊕Bc.

(79) 1-minus f ⊕ g = 1-minus f · 1-minus g.

(80) (A⊕B)c = Ac ·Bc.

basic properties of fuzzy set operation and . . . 361

(81) f ⊕ g = 1-minus 1-minus f · 1-minus g.

(82) A⊕B = (Ac ·Bc)c.

(83) f · EMF C = EMF C and f ·UMF C = f.

(84) A · E = E and A ·X = A.

(85) f ⊕ EMF C = f and f ⊕UMF C = UMF C.

(86) A⊕E = A and A⊕X = X.

(87) For every c holds (EMF C)(c) ¬ (f · 1-minus f)(c).

(88) For every c holds (UMF C)(c) (f ⊕ 1-minus f)(c).

(89) E ⊆ A ·Ac and A⊕Ac ⊆ X.

(90) For every c holds (f · g)(c) ¬ (min(f, g))(c).

(91) A ·B ⊆ A ∩B.

(92) For every c holds (max(f, g))(c) ¬ (f ⊕ g)(c).

(93) A ∪B ⊆ A⊕B.

(94) For all real numbers a, b, c such that 0 ¬ c holds c ·max(a, b) = max(c ·
a, c · b) and c ·min(a, b) = min(c · a, c · b).

(95) For all real numbers a, b, c holds c + max(a, b) = max(c + a, c + b) and
c + min(a, b) = min(c + a, c + b).

(96) f ·max(g, h) = max(f · g, f · h).

(97) f ·min(g, h) = min(f · g, f · h).

(98) A · (B ∩D) = (A ·B) ∩ (A ·D) and A · (B ∪D) = A ·B ∪A ·D.

(99) f ⊕max(g, h) = max(f ⊕ g, f ⊕ h).

(100) f ⊕min(g, h) = min(f ⊕ g, f ⊕ h).

(101) A⊕ (B ∪D) = (A⊕B)∪ (A⊕D) and A⊕B ∩D = (A⊕B)∩ (A⊕D).

(102) For every c holds (max(f, g) ·max(f, h))(c) ¬ (max(f, g · h))(c).

(103) For every c holds (min(f, g) ·min(f, h))(c) ¬ (min(f, g · h))(c).

(104) (A ∪B) · (A ∪D) ⊆ A ∪B ·D and (A ∩B) · (A ∩D) ⊆ A ∩ (B ·D).

(105) For every element c of C and for all membership functions f , g of C

holds (f ⊕ g)(c) = 1− (1− f(c)) · (1− g(c)).

(106) For every c holds (max(f, g ⊕ h))(c) ¬ (max(f, g)⊕max(f, h))(c).

(107) For every c holds (min(f, g ⊕ h))(c) ¬ (min(f, g)⊕min(f, h))(c).

(108) A ∪ (B ⊕D) ⊆ (A ∪B)⊕ (A ∪D) and A ∩ (B ⊕D) ⊆ A ∩B ⊕A ∩D.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[2] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics,
1(2):269–272, 1990.

362 takashi mitsuishi et al.

[3] Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and
membership function and basic properties of fuzzy set operation. Formalized Mathematics,
9(2):351–356, 2001.

[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received May 22, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Hahn Banach Theorem in the Vector
Space over the Field of Complex Numbers

Anna Justyna Milewska
University of Białystok

Summary. This article contains the Hahn Banach theorem in the vector
space over the field of complex numbers.

MML Identifier: HAHNBAN1.

The articles [8], [7], [1], [5], [2], [6], [9], [3], [14], [10], [12], [13], [4], and [11]
provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every element z of C holds ||z|| = |z|.
(2) For all elements x1, y1, x2, y2 of R holds (x1 + y1i) · (x2 + y2i) = (x1 ·

x2 − y1 · y2) + (x1 · y2 + x2 · y1)i.
(3) For every real number r holds (r + 0i) · i = 0 + ri.

(4) For every real number r holds |r + 0i| = |r|.
(5) For every element z of C such that |z| 6= 0 holds |z|+ 0i = z∗

|z|+0i · z.

2. Some Facts on the Field of Complex Numbers

Let x, y be real numbers. The functor x + yiCF yielding an element of CF is
defined by:

(Def. 1) x + yiCF = x + yi.

363
c© 2001 University of Białystok

ISSN 1426–2630

364 anna justyna milewska

The element iCF of CF is defined by:

(Def. 2) iCF = i.

One can prove the following propositions:

(6) iCF = 0 + 1i and iCF = 0 + 1iCF .

(7) |iCF | = 1.

(8) iCF · iCF = −1CF .

(9) (−1CF) · −1CF = 1CF .

(10) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) + (x2 + y2iCF) =
(x1 + x2) + (y1 + y2)iCF .

(11) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) · (x2 + y2iCF) =
(x1 · x2 − y1 · y2) + (x1 · y2 + x2 · y1)iCF .

(12) For every element z of the carrier of CF holds ||z|| = |z|.
(13) For every real number r holds |r + 0iCF | = |r|.
(14) For every real number r holds (r + 0iCF) · iCF = 0 + riCF .

Let z be an element of the carrier of CF. The functor <(z) yields a real
number and is defined as follows:

(Def. 3) There exists an element z′ of C such that z = z′ and <(z) = <(z′).
Let z be an element of the carrier of CF. The functor =(z) yields a real

number and is defined as follows:

(Def. 4) There exists an element z′ of C such that z = z′ and =(z) = =(z′).
The following propositions are true:

(15) For all real numbers x, y holds <(x + yiCF) = x and =(x + yiCF) = y.

(16) For all elements x, y of the carrier of CF holds <(x + y) = <(x) + <(y)
and =(x + y) = =(x) + =(y).

(17) For all elements x, y of the carrier of CF holds <(x · y) = <(x) · <(y)−
=(x) · =(y) and =(x · y) = <(x) · =(y) + <(y) · =(x).

(18) For every element z of the carrier of CF holds <(z) ¬ |z|.
(19) For every element z of the carrier of CF holds =(z) ¬ |z|.

3. Functionals of Vector Space

Let K be a 1-sorted structure and let V be a vector space structure over K.

(Def. 5) A function from the carrier of V into the carrier of K is said to be a
functional in V .

Let K be a non empty loop structure, let V be a non empty vector space
structure over K, and let f , g be functionals in V . The functor f + g yielding a
functional in V is defined by:

the hahn banach theorem in the vector . . . 365

(Def. 6) For every element x of the carrier of V holds (f + g)(x) = f(x) + g(x).
Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let f be a functional in V . The functor −f yielding a
functional in V is defined by:

(Def. 7) For every element x of the carrier of V holds (−f)(x) = −f(x).
Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let f , g be functionals in V . The functor f − g yielding a
functional in V is defined by:

(Def. 8) f − g = f +−g.

Let K be a non empty groupoid, let V be a non empty vector space structure
over K, let v be an element of the carrier of K, and let f be a functional in V .
The functor v · f yields a functional in V and is defined by:

(Def. 9) For every element x of the carrier of V holds (v · f)(x) = v · f(x).
Let K be a non empty zero structure and let V be a vector space structure

over K. The functor 0Functional V yields a functional in V and is defined as
follows:

(Def. 10) 0Functional V = ΩV 7−→ 0K .

Let K be a non empty loop structure, let V be a non empty vector space
structure over K, and let F be a functional in V . We say that F is additive if
and only if:

(Def. 11) For all vectors x, y of V holds F (x + y) = F (x) + F (y).
Let K be a non empty groupoid, let V be a non empty vector space structure

over K, and let F be a functional in V . We say that F is homogeneous if and
only if:

(Def. 12) For every vector x of V and for every scalar r of V holds F (r·x) = r·F (x).
Let K be a non empty zero structure, let V be a non empty vector space

structure over K, and let F be a functional in V . We say that F is 0-preserving
if and only if:

(Def. 13) F (0V) = 0K .

Let K be an add-associative right zeroed right complementable Abelian as-
sociative left unital distributive non empty double loop structure and let V be
a vector space over K. Note that every functional in V which is homogeneous
is also 0-preserving.

Let K be a right zeroed non empty loop structure and let V be a non empty
vector space structure over K. Note that 0Functional V is additive.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V be a non empty vector space
structure over K. Observe that 0Functional V is homogeneous.

Let K be a non empty zero structure and let V be a non empty vector space
structure over K. Observe that 0Functional V is 0-preserving.

366 anna justyna milewska

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V be a non empty vector space
structure over K. Observe that there exists a functional in V which is additive,
homogeneous, and 0-preserving.

The following propositions are true:

(20) Let K be an Abelian non empty loop structure, V be a non empty vector
space structure over K, and f , g be functionals in V . Then f + g = g + f.

(21) Let K be an add-associative non empty loop structure, V be a non
empty vector space structure over K, and f , g, h be functionals in V .
Then (f + g) + h = f + (g + h).

(22) Let K be a non empty zero structure, V be a non empty vector
space structure over K, and x be an element of the carrier of V . Then
(0Functional V)(x) = 0K .

(23) Let K be a right zeroed non empty loop structure, V be a non empty
vector space structure over K, and f be a functional in V . Then f +
0Functional V = f.

(24) Let K be an add-associative right zeroed right complementable non
empty loop structure, V be a non empty vector space structure over K,
and f be a functional in V . Then f − f = 0Functional V.

(25) Let K be a right distributive non empty double loop structure, V be a
non empty vector space structure over K, r be an element of the carrier
of K, and f , g be functionals in V . Then r · (f + g) = r · f + r · g.

(26) Let K be a left distributive non empty double loop structure, V be a
non empty vector space structure over K, r, s be elements of the carrier
of K, and f be a functional in V . Then (r + s) · f = r · f + s · f.

(27) Let K be an associative non empty groupoid, V be a non empty vector
space structure over K, r, s be elements of the carrier of K, and f be a
functional in V . Then (r · s) · f = r · (s · f).

(28) Let K be a left unital non empty double loop structure, V be a non
empty vector space structure over K, and f be a functional in V . Then
1K · f = f.

Let K be an Abelian add-associative right zeroed right complementable right
distributive non empty double loop structure, let V be a non empty vector space
structure over K, and let f , g be additive functionals in V . Observe that f + g

is additive.
Let K be an Abelian add-associative right zeroed right complementable right

distributive non empty double loop structure, let V be a non empty vector space
structure over K, and let f be an additive functional in V . One can verify that
−f is additive.

Let K be an add-associative right zeroed right complementable right di-

the hahn banach theorem in the vector . . . 367

stributive non empty double loop structure, let V be a non empty vector space
structure over K, let v be an element of the carrier of K, and let f be an additive
functional in V . Observe that v · f is additive.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure, let V be a non empty vector space
structure over K, and let f , g be homogeneous functionals in V . Observe that
f + g is homogeneous.

Let K be an Abelian add-associative right zeroed right complementable right
distributive non empty double loop structure, let V be a non empty vector space
structure over K, and let f be a homogeneous functional in V . One can check
that −f is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-
butive associative commutative non empty double loop structure, let V be a non
empty vector space structure over K, let v be an element of the carrier of K,
and let f be a homogeneous functional in V . Observe that v ·f is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-
butive non empty double loop structure and let V be a non empty vector space
structure over K. A linear functional in V is an additive homogeneous functional
in V .

4. The Vector Space of Linear Functionals

Let K be an Abelian add-associative right zeroed right complementable right
distributive associative commutative non empty double loop structure and let
V be a non empty vector space structure over K. The functor V ∗ yielding a non
empty strict vector space structure over K is defined by the conditions (Def. 14).

(Def. 14)(i) For every set x holds x ∈ the carrier of V ∗ iff x is a linear functional
in V ,

(ii) for all linear functionals f , g in V holds (the addition of V ∗)(f, g) =
f + g,

(iii) for every linear functional f in V holds (the reverse-map of V ∗)(f) =
−f,

(iv) the zero of V ∗ = 0Functional V, and
(v) for every linear functional f in V and for every element x of the carrier

of K holds (the left multiplication of V ∗)(x, f) = x · f.

Let K be an Abelian add-associative right zeroed right complementable right
distributive associative commutative non empty double loop structure and let
V be a non empty vector space structure over K. One can check that V ∗ is
Abelian.

Let K be an Abelian add-associative right zeroed right complementable right
distributive associative commutative non empty double loop structure and let

368 anna justyna milewska

V be a non empty vector space structure over K. One can verify the following
observations:

∗ V ∗ is add-associative,

∗ V ∗ is right zeroed, and

∗ V ∗ is right complemented.

Let K be an Abelian add-associative right zeroed right complementable left
unital distributive associative commutative non empty double loop structure
and let V be a non empty vector space structure over K. One can check that
V ∗ is vector space-like.

5. Semi Norm of Vector Space

Let K be a 1-sorted structure and let V be a vector space structure over K.

(Def. 15) A function from the carrier of V into R is said to be a RFunctional of
V .

Let K be a 1-sorted structure, let V be a non empty vector space structure
over K, and let F be a RFunctional of V . We say that F is subadditive if and
only if:

(Def. 16) For all vectors x, y of V holds F (x + y) ¬ F (x) + F (y).
Let K be a 1-sorted structure, let V be a non empty vector space structure

over K, and let F be a RFunctional of V . We say that F is additive if and only
if:

(Def. 17) For all vectors x, y of V holds F (x + y) = F (x) + F (y).
Let V be a non empty vector space structure over CF and let F be a RFunc-

tional of V . We say that F is Real-homogeneous if and only if:

(Def. 18) For every vector v of V and for every real number r holds F ((r + 0iCF) ·
v) = r · F (v).

One can prove the following proposition

(29) Let V be a vector space-like non empty vector space structure over CF

and F be a RFunctional of V . Suppose F is Real-homogeneous. Let v be a
vector of V and r be a real number. Then F ((0+ riCF) · v) = r ·F (iCF · v).

Let V be a non empty vector space structure over CF and let F be a RFunc-
tional of V . We say that F is homogeneous if and only if:

(Def. 19) For every vector v of V and for every scalar r of V holds F (r · v) =
|r| · F (v).

Let K be a 1-sorted structure, let V be a vector space structure over K, and
let F be a RFunctional of V . We say that F is 0-preserving if and only if:

(Def. 20) F (0V) = 0.

the hahn banach theorem in the vector . . . 369

Let K be a 1-sorted structure and let V be a non empty vector space struc-
ture over K. One can verify that every RFunctional of V which is additive is
also subadditive.

Let V be a vector space over CF. Note that every RFunctional of V which
is Real-homogeneous is also 0-preserving.

Let K be a 1-sorted structure and let V be a vector space structure over K.
The functor 0RFunctional V yielding a RFunctional of V is defined as follows:

(Def. 21) 0RFunctional V = ΩV 7−→ 0.

Let K be a 1-sorted structure and let V be a non empty vector space struc-
ture over K. Note that 0RFunctional V is additive and 0RFunctional V is 0-
preserving.

Let V be a non empty vector space structure overCF. Note that 0RFunctional V
is Real-homogeneous and 0RFunctional V is homogeneous.

Let K be a 1-sorted structure and let V be a non empty vector space struc-
ture over K. Note that there exists a RFunctional of V which is additive and
0-preserving.

Let V be a non empty vector space structure over CF. One can check that
there exists a RFunctional of V which is additive, Real-homogeneous, and ho-
mogeneous.

Let V be a non empty vector space structure over CF. A Semi-Norm of V

is a subadditive homogeneous RFunctional of V .

6. The Hahn Banach Theorem

Let V be a non empty vector space structure over CF. The functor RealVS V

yielding a strict RLS structure is defined by the conditions (Def. 22).

(Def. 22)(i) The loop structure of RealVS V = the loop structure of V , and
(ii) for every real number r and for every vector v of V holds (the external

multiplication of RealVS V)(r, v) = (r + 0iCF) · v.

Let V be a non empty vector space structure over CF. Observe that RealVS V

is non empty.
Let V be an Abelian non empty vector space structure over CF. Observe

that RealVS V is Abelian.
Let V be an add-associative non empty vector space structure over CF. One

can check that RealVS V is add-associative.
Let V be a right zeroed non empty vector space structure over CF. Note

that RealVS V is right zeroed.
Let V be a right complementable non empty vector space structure over CF.

One can check that RealVS V is right complementable.

370 anna justyna milewska

Let V be a vector space-like non empty vector space structure over CF. Note
that RealVS V is real linear space-like.

One can prove the following three propositions:

(30) For every non empty vector space V over CF and for every subspace M

of V holds RealVS M is a subspace of RealVS V.

(31) For every non empty vector space structure V over CF holds every
RFunctional of V is a functional in RealVS V.

(32) For every non empty vector space V over CF holds every Semi-Norm of
V is a Banach functional in RealVS V.

Let V be a non empty vector space structure over CF and let l be a functional
in V . The functor projRe l yielding a functional in RealVS V is defined by:

(Def. 23) For every element i of the carrier of V holds (projRe l)(i) = <(l(i)).
Let V be a non empty vector space structure over CF and let l be a functional

in V . The functor projIm l yields a functional in RealVS V and is defined as
follows:

(Def. 24) For every element i of the carrier of V holds (projIm l)(i) = =(l(i)).
Let V be a non empty vector space structure over CF and let l be a functional

in RealVS V. The functor lR→C yielding a RFunctional of V is defined by:

(Def. 25) lR→C = l.

Let V be a non empty vector space structure over CF and let l be a RFunc-
tional of V . The functor lC→R yields a functional in RealVS V and is defined
by:

(Def. 26) lC→R = l.

Let V be a non empty vector space over CF and let l be an additive functional
in RealVS V. One can check that lR→C is additive.

Let V be a non empty vector space over CF and let l be an additive RFunc-
tional of V . Observe that lC→R is additive.

Let V be a non empty vector space over CF and let l be a homogeneous
functional in RealVS V. Observe that lR→C is Real-homogeneous.

Let V be a non empty vector space over CF and let l be a Real-homogeneous
RFunctional of V . One can verify that lC→R is homogeneous.

Let V be a non empty vector space structure over CF and let l be a RFunc-
tional of V . The functor i-shift l yields a RFunctional of V and is defined by:

(Def. 27) For every element v of the carrier of V holds (i-shift l)(v) = l(iCF · v).
Let V be a non empty vector space structure over CF and let l be a functional

in RealVS V. The functor prodReIm l yielding a functional in V is defined as
follows:

(Def. 28) For every element v of the carrier of V holds (prodReIm l)(v) =
(lR→C)(v) + (−(i-shift lR→C)(v))iCF .

the hahn banach theorem in the vector . . . 371

The following four propositions are true:

(33) Let V be a non empty vector space over CF and l be a linear functional
in V . Then projRe l is a linear functional in RealVS V.

(34) Let V be a non empty vector space over CF and l be a linear functional
in V . Then projIm l is a linear functional in RealVS V.

(35) Let V be a non empty vector space over CF and l be a linear functional
in RealVS V. Then prodReIm l is a linear functional in V .

(36) Let V be a non empty vector space over CF, p be a Semi-Norm of V ,
M be a subspace of V , and l be a linear functional in M . Suppose that
for every vector e of M and for every vector v of V such that v = e holds
|l(e)| ¬ p(v). Then there exists a linear functional L in V such that L¹the
carrier of M = l and for every vector e of V holds |L(e)| ¬ p(e).

References

[1] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[5] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics,

9(2):265–269, 2001.
[6] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics,

4(1):29–34, 1993.
[7] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[8] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathe-

matics, 2(1):185–191, 1991.
[9] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics,

2(4):467–474, 1991.
[10] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized

Mathematics, 1(2):297–301, 1990.
[11] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized

Mathematics, 1(5):865–870, 1990.
[12] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received May 23, 2000

372 anna justyna milewska

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Tichonov Theorem

Bartłomiej Skorulski
University of Białystok

MML Identifier: YELLOW17.

The terminology and notation used here are introduced in the following articles:
[15], [11], [1], [5], [7], [4], [3], [13], [8], [10], [16], [14], [12], [6], [9], and [2].

1. Some Properties of Products

One can prove the following propositions:

(1) For every function F and for all sets i, x1 and for every subset A1 of F (i)
such that (proj(F, i))−1({x1}) ∩ (proj(F, i))−1(A1) 6= ∅ holds x1 ∈ A1.

(2) For all functions F , f and for all sets i, x1 such that x1 ∈ F (i) and
f ∈∏

F holds f +· (i, x1) ∈
∏

F.

(3) For every function F and for every set i such that i ∈ dom F and
∏

F 6= ∅
holds rng proj(F, i) = F (i).

(4) For every function F and for every set i such that i ∈ dom F holds
(proj(F, i))−1(F (i)) =

∏
F.

(5) For all functions F , f and for all sets i, x1 such that x1 ∈ F (i) and
i ∈ dom F and f ∈∏

F holds f +· (i, x1) ∈ (proj(F, i))−1({x1}).
(6) Let F , f be functions, i1, i2, x2 be sets, and A2 be a subset of F (i2).

Suppose x2 ∈ F (i1) and i1 ∈ dom F and f ∈ ∏
F. If i1 6= i2, then

f ∈ (proj(F, i2))−1(A2) iff f +· (i1, x2) ∈ (proj(F, i2))−1(A2).
(7) Let F be a function, i1, i2, x2 be sets, and A2 be a subset of F (i2).

Suppose
∏

F 6= ∅ and x2 ∈ F (i1) and i1 ∈ dom F and i2 ∈ dom F and
A2 6= F (i2). Then (proj(F, i1))−1({x2}) ⊆ (proj(F, i2))−1(A2) if and only
if i1 = i2 and x2 ∈ A2.

373
c© 2001 University of Białystok

ISSN 1426–2630

374 bartłomiej skorulski

The scheme ElProductEx deals with a non empty set A, a topological space
yielding nonempty many sorted set B indexed by A, and a binary predicate P,

and states that:
There exists an element f of

∏B such that for every element i of
A holds P[f(i), i]

provided the parameters have the following property:
• For every element i of A there exists an element x of B(i) such

that P[x, i].
One can prove the following propositions:

(8) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and f be an element
of

∏
J. Then (proj(J, i))(f) = f(i).

(9) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, x1 be an element of J(i),
and A1 be a subset of J(i). If (proj(J, i))−1({x1})∩(proj(J, i))−1(A1) 6= ∅,
then x1 ∈ A1.

(10) Let I be a non empty set, J be a topological space yielding no-
nempty many sorted set indexed by I, and i be an element of I. Then
(proj(J, i))−1(ΩJ(i)) = ΩQ J .

(11) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, x1 be an element of
J(i), and f be an element of

∏
J. Then f +· (i, x1) ∈ (proj(J, i))−1({x1}).

(12) Let I be a non empty set, J be a topological space yielding no-
nempty many sorted set indexed by I, i1, i2 be elements of I, x2 be
an element of J(i1), and A2 be a subset of J(i2). If A2 6= ΩJ(i2), then
(proj(J, i1))−1({x2}) ⊆ (proj(J, i2))−1(A2) iff i1 = i2 and x2 ∈ A2.

(13) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i1, i2 be elements of I, x2 be an element
of J(i1), A2 be a subset of J(i2), and f be an element of

∏
J. If i1 6= i2,

then f ∈ (proj(J, i2))−1(A2) iff f +· (i1, x2) ∈ (proj(J, i2))−1(A2).

2. Some Properties of Compact Spaces

One can prove the following three propositions:

(14) Let T be a topological structure and F be a family of subsets of T . Then
F is a cover of T if and only if the carrier of T ⊆ ⋃

F.

(15) Let T be a non empty topological structure. Then T is compact if and
only if for every family F of subsets of T such that F is open and ΩT ⊆

⋃
F

there exists a family G of subsets of T such that G ⊆ F and ΩT ⊆
⋃

G

and G is finite.

the tichonov theorem 375

(16) Let T be a non empty topological space and B be a prebasis of T . Then
T is compact if and only if for every subset F of B such that ΩT ⊆

⋃
F

there exists a finite subset G of F such that ΩT ⊆
⋃

G.

3. The Tichonov Theorem

The following propositions are true:

(17) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, and A be a set. Suppose A ∈ the product
prebasis for J . Then there exists an element i of I and there exists a subset
A1 of J(i) such that A1 is open and (proj(J, i))−1(A1) = A.

(18) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, x1 be an element
of J(i), and A be a set. Suppose A ∈ the product prebasis for J and
(proj(J, i))−1({x1}) ⊆ A. Then A = ΩQ J or there exists a subset A1

of J(i) such that A1 6= ΩJ(i) and x1 ∈ A1 and A1 is open and A =
(proj(J, i))−1(A1).

(19) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and F1 be a
non empty family of subsets of J(i). If ΩJ(i) ⊆

⋃
F1, then ΩQ J ⊆⋃{(proj(J, i))−1(A1) : A1 ranges over elements of F1}.

(20) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, x1 be an ele-
ment of J(i), and G be a subset of the product prebasis for J . Suppose
(proj(J, i))−1({x1}) ⊆

⋃
G and for every set A such that A ∈ the pro-

duct prebasis for J and A ∈ G holds (proj(J, i))−1({x1}) 6⊆ A. Then
ΩQ J ⊆

⋃
G.

(21) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and F be a subset of the
product prebasis for J . Suppose that for every finite subset G of F holds
ΩQ J 6⊆

⋃
G. Let x1 be an element of J(i) and G be a finite subset of F .

Suppose (proj(J, i))−1({x1}) ⊆
⋃

G. Then there exists a set A such that
A ∈ the product prebasis for J and A ∈ G and (proj(J, i))−1({x1}) ⊆ A.

(22) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and F be a subset
of the product prebasis for J . Suppose that for every finite subset G of F

holds ΩQ J 6⊆
⋃

G. Let x1 be an element of J(i) and G be a finite subset
of F . Suppose (proj(J, i))−1({x1}) ⊆

⋃
G. Then there exists a subset A1

of J(i) such that A1 6= ΩJ(i) and x1 ∈ A1 and (proj(J, i))−1(A1) ∈ G and
A1 is open.

376 bartłomiej skorulski

(23) Let I be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by I, i be an element of I, and F be a subset of
the product prebasis for J . Suppose for every element i of I holds J(i) is
compact and for every finite subset G of F holds ΩQ J 6⊆

⋃
G. Then there

exists an element x1 of J(i) such that for every finite subset G of F holds
(proj(J, i))−1({x1}) 6⊆

⋃
G.

(24) Let I be a non empty set and J be a topological space yielding nonempty
many sorted set indexed by I. If for every element i of I holds J(i) is
compact, then

∏
J is compact.

References

[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[2] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized

Mathematics, 5(4):485–492, 1996.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[8] Mariusz Giero. More on products of many sorted algebras. Formalized Mathematics,

5(4):621–626, 1996.
[9] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.

[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[11] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
5(2):233–236, 1996.

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received May 23, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

On the Order-consistent Topology of
Complete and Uncomplete Lattices

Ewa Grądzka
University of Białystok

Summary. This paper is a continuation of the formalisation of [5] pp. 108–
109. Order-consistent and upper topologies are defined. The theorem that the
Scott and the upper topologies are order-consistent is proved. Remark 1.4 and
example 1.5(2) are generalized for proving this theorem.

MML Identifier: WAYBEL32.

The terminology and notation used in this paper are introduced in the following
papers: [8], [12], [1], [13], [9], [15], [14], [16], [11], [3], [6], [7], [2], [10], and [4].

Let T be a non empty FR-structure. We say that T is upper if and only if:

(Def. 1) {−↓x : x ranges over elements of T} is a prebasis of T .

Let us mention that there exists a top-lattice which is Scott, up-complete,
and strict.

Let T be a topological space-like non empty reflexive FR-structure. We say
that T is order consistent if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x be an element of T . Then
(i) ↓x = {x}, and
(ii) for every eventually-directed net N in T such that x = sup N and for

every neighbourhood V of x holds N is eventually in V .

One can verify that every non empty reflexive topological space-like FR-
structure which is trivial is also upper.

Let us mention that there exists a top-lattice which is upper, trivial, up-
complete, and strict.

The following propositions are true:

(1) For every upper up-complete non empty top-poset T and for every subset
A of T such that A is open holds A is upper.

377
c© 2001 University of Białystok

ISSN 1426–2630

378 ewa grądzka

(2) For every up-complete non empty top-poset T such that T is upper holds
T is order consistent.

(3) Let T be a Scott up-complete non empty reflexive transitive antisym-
metric FR-structure and x be an element of T . Then ↓x is directly closed
and lower.

(4) Let T be a Scott up-complete non empty reflexive transitive antisymme-
tric FR-structure and S be a subset of T . Then S is closed if and only if
S is directly closed and lower.

(5) Let T be a Scott up-complete non empty reflexive transitive antisymme-
tric FR-structure and x be an element of T . Then ↓x is closed.

(6) Let S be an up-complete reflexive antisymmetric non empty relational
structure and T be a non empty reflexive relational structure. Suppose
the relational structure of S = the relational structure of T . Let A be a
subset of S and C be a subset of T . If A = C and A is inaccessible, then
C is inaccessible.

(7) For every up-complete non empty reflexive transitive antisymmetric re-
lational structure R holds there exists a topological augmentation of R

which is Scott.

(8) Let R be an up-complete non empty poset and T be a topological au-
gmentation of R. If T is Scott, then T is correct.

Let R be an up-complete non empty reflexive transitive antisymmetric re-
lational structure. Observe that every topological augmentation of R which is
Scott is also correct.

Let R be an up-complete non empty reflexive transitive antisymmetric rela-
tional structure. Note that there exists a topological augmentation of R which
is Scott and correct.

The following propositions are true:

(9) Let T be a Scott up-complete non empty reflexive transitive antisymme-
tric FR-structure and x be an element of T . Then {x} = ↓x.

(10) Every up-complete Scott non empty top-poset is order consistent.

(11) Let R be an inf-complete semilattice, Z be a net in R, and D be a subset
of R. Suppose D = {d−eR{Z(k); k ranges over elements of the carrier of Z:
k j} : j ranges over elements of the carrier of Z}. Then D is non empty
and directed.

(12) Let R be an inf-complete semilattice, S be a subset of R, and a be an
element of R. If a ∈ S, then d−eRS ¬ a.

(13) For every inf-complete semilattice R and for every monotone reflexive
net N in R holds lim inf N = sup N.

(14) Let R be an inf-complete semilattice and S be a subset of R. Then
S ∈ the topology of ConvergenceSpace(the Scott convergence of R) if and

on the order-consistent topology of complete . . . 379

only if S is inaccessible and upper.

(15) Let R be an inf-complete up-complete semilattice and T be a topological
augmentation of R. If the topology of T = σ(R), then T is Scott.

Let R be an inf-complete up-complete semilattice. One can check that there
exists a topological augmentation of R which is strict, Scott, and correct.

One can prove the following two propositions:

(16) Let S be an up-complete inf-complete semilattice and T be a Scott to-
pological augmentation of S. Then σ(S) = the topology of T .

(17) Every Scott up-complete non empty reflexive transitive antisymmetric
FR-structure is a T0-space.

Let R be an up-complete non empty reflexive transitive antisymmetric rela-
tional structure. Note that every topological augmentation of R is up-complete.

The following propositions are true:

(18) Let R be an up-complete non empty reflexive transitive antisymmetric
relational structure, T be a Scott topological augmentation of R, x be an
element of T , and A be an upper subset of T . If x /∈ A, then −↓x is a
neighbourhood of A.

(19) Let R be an up-complete non empty reflexive transitive antisymmetric
FR-structure, T be a Scott topological augmentation of R, and S be an
upper subset of T . Then there exists a family F of subsets of T such that
S =

⋂
F and for every subset X of T such that X ∈ F holds X is a

neighbourhood of S.

(20) Let T be a Scott up-complete non empty reflexive transitive antisymme-
tric FR-structure and S be a subset of T . Then S is open if and only if S

is upper and property(S).

(21) Let R be an up-complete non empty reflexive transitive antisymmetric
FR-structure, S be a non empty directed subset of R, and a be an element
of R. If a ∈ S, then a ¬ ⊔

R S.

Let T be an up-complete non empty reflexive transitive antisymmetric FR-
structure. One can check that every subset of T which is lower is also pro-
perty(S).

One can prove the following propositions:

(22) For every finite up-complete non empty poset T holds every subset of T

is inaccessible.

(23) Let R be a complete connected lattice, T be a Scott topological augmen-
tation of R, and x be an element of T . Then −↓x is open.

(24) Let R be a complete connected lattice, T be a Scott topological augmen-
tation of R, and S be a subset of T . Then S is open if and only if one of
the following conditions is satisfied:

(i) S = the carrier of T , or

380 ewa grądzka

(ii) S ∈ {−↓x : x ranges over elements of T}.
Let R be an up-complete non empty poset. One can check that there exists

a correct topological augmentation of R which is order consistent.
Let us observe that there exists a top-lattice which is order consistent and

complete.
The following three propositions are true:

(25) Let R be a non empty FR-structure and A be a subset of R. Suppose
that for every element x of R holds ↓x = {x}. If A is open, then A is
upper.

(26) Let R be a non empty FR-structure and A be a subset of R. Suppose
that for every element x of R holds ↓x = {x}. Let A be a subset of R. If
A is closed, then A is lower.

(27) For every up-complete inf-complete lattice T and for every net N in T

and for every element i of N holds lim inf(N¹i) = lim inf N.

Let S be a non empty 1-sorted structure, let R be a non empty relational
structure, and let f be a function from the carrier of R into the carrier of S.
The functor R ∗ f yielding a strict non empty net structure over S is defined as
follows:

(Def. 3) The relational structure of R ∗ f = the relational structure of R and the
mapping of R ∗ f = f.

Let S be a non empty 1-sorted structure, let R be a non empty transitive
relational structure, and let f be a function from the carrier of R into the carrier
of S. One can check that R ∗ f is transitive.

Let S be a non empty 1-sorted structure, let R be a non empty directed
relational structure, and let f be a function from the carrier of R into the
carrier of S. Note that R ∗ f is directed.

Let R be a non empty relational structure and let N be a prenet over R. The
functor inf net N yields a strict prenet over R and is defined by the condition
(Def. 4).

(Def. 4) There exists a map f from N into R such that
(i) inf net N = N ∗ f, and
(ii) for every element i of the carrier of N holds f(i) = d−eR{N(k); k ranges

over elements of the carrier of N : k i}.
Let R be a non empty relational structure and let N be a net in R. One can

verify that inf net N is transitive.
Let R be a non empty relational structure and let N be a net in R. Note

that inf net N is directed.
Let R be an inf-complete non empty reflexive antisymmetric relational struc-

ture and let N be a net in R. One can verify that inf net N is monotone.

on the order-consistent topology of complete . . . 381

Let R be an inf-complete non empty reflexive antisymmetric relational struc-
ture and let N be a net in R. One can verify that inf net N is eventually-directed.

We now state several propositions:

(28) Let R be a non empty relational structure and N be a net in R. Then
rng (the mapping of inf net N) = {d−eR{N(i); i ranges over elements of the
carrier of N : i j} : j ranges over elements of the carrier of N}.

(29) For every up-complete inf-complete lattice R and for every net N in R

holds sup inf net N = lim inf N.

(30) For every up-complete inf-complete lattice R and for every net N in R

and for every element i of N holds sup inf net N = lim inf(N¹i).
(31) Let R be an inf-complete semilattice, N be a net in R, and V be an

upper subset of R. If inf net N is eventually in V , then N is eventually in
V .

(32) Let R be an inf-complete semilattice, N be a net in R, and V be a lower
subset of R. If N is eventually in V , then inf net N is eventually in V .

(33) Let R be a topological space-like order consistent up-complete inf-
complete non empty top-lattice, N be a net in R, and x be an element of
R. If x ¬ lim inf N, then x is a cluster point of N .

(34) Let R be an order consistent up-complete inf-complete topological space-
like non empty top-lattice, N be an eventually-directed net in R, and x

be an element of R. Then x ¬ lim inf N if and only if x is a cluster point
of N .

Acknowledgments

I would like to thank Dr. Grzegorz Bancerek for his help in the preparation
of this article.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,

7(1):35–43, 1998.
[5] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-

pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[6] Artur Korniłowicz. Meet–continuous lattices. Formalized Mathematics, 6(1):159–167,

1997.
[7] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized

Mathematics, 6(2):269–277, 1997.
[8] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.

382 ewa grądzka

[10] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225,
1997.

[11] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[16] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received May 23, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

On Segre’s Product of Partial Line Spaces

Adam Naumowicz
University of Białystok

Summary. In this paper the concept of partial line spaces is presented.
We also construct the Segre’s product for a family of partial line spaces indexed
by an arbitrary nonempty set.

MML Identifier: PENCIL 1.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [1], [2], [7], [14], [6], [13], [11], [9], [10], [8], [5], [17], [15],
[12], [4], and [3].

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g such that
∏

f =
∏

g holds if f is non-empty, then
g is non-empty.

(2) For every set X holds 2 ⊆ X iff there exist sets x, y such that x ∈ X

and y ∈ X and x 6= y.

(3) For every set X such that 2 ⊆ X and for every set x there exists a set
y such that y ∈ X and x 6= y.

(4) For every set X holds 2 ⊆ X iff X is non trivial.

(5) For every set X holds 3 ⊆ X iff there exist sets x, y, z such that x ∈ X

and y ∈ X and z ∈ X and x 6= y and x 6= z and y 6= z.

(6) For every set X such that 3 ⊆ X and for all sets x, y there exists a set
z such that z ∈ X and x 6= z and y 6= z.

383
c© 2001 University of Białystok

ISSN 1426–2630

384 adam naumowicz

2. Partial Line Spaces

Let S be a topological structure. A block of S is an element of the topology
of S.

Let S be a topological structure and let x, y be points of S. We say that x,
y are collinear if and only if:

(Def. 1) x = y or there exists a block l of S such that {x, y} ⊆ l.

Let S be a topological structure and let T be a subset of the carrier of S.
We say that T is closed under lines if and only if:

(Def. 2) For every block l of S such that 2 ⊆ l ∩ T holds l ⊆ T.

We say that T is strong if and only if:

(Def. 3) For all points x, y of S such that x ∈ T and y ∈ T holds x, y are collinear.

Let S be a topological structure. We say that S is void if and only if:

(Def. 4) The topology of S is empty.

We say that S is degenerated if and only if:

(Def. 5) The carrier of S is a block of S.

We say that S has non trivial blocks if and only if:

(Def. 6) For every block k of S holds 2 ⊆ k .

We say that S is identifying close blocks if and only if:

(Def. 7) For all blocks k, l of S such that 2 ⊆ k ∩ l holds k = l.

We say that S is truly-partial if and only if:

(Def. 8) There exist points x, y of S such that x, y are not collinear.

We say that S has no isolated points if and only if:

(Def. 9) For every point x of S there exists a block l of S such that x ∈ l.

We say that S is connected if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let x, y be points of S. Then there exists a finite sequence f of elements
of the carrier of S such that

(i) x = f(1),
(ii) y = f(len f), and
(iii) for every natural number i such that 1 ¬ i and i < len f and for all

points a, b of S such that a = f(i) and b = f(i+1) holds a, b are collinear.

We say that S is strongly connected if and only if the condition (Def. 11) is
satisfied.

(Def. 11) Let x be a point of S and X be a subset of the carrier of S. Suppose X

is closed under lines and strong. Then there exists a finite sequence f of
elements of 2the carrier of S such that

(i) X = f(1),
(ii) x ∈ f(len f),

on segre’s product of partial line spaces 385

(iii) for every subset W of the carrier of S such that W ∈ rng f holds W is
closed under lines and strong, and

(iv) for every natural number i such that 1 ¬ i and i < len f holds 2 ⊆
f(i) ∩ f(i + 1) .

One can prove the following propositions:

(7) Let X be a non empty set. Suppose 3 ⊆ X . Let S be a topological
structure. Suppose the carrier of S = X and the topology of S = {L; L
ranges over subsets of X: 2 = L}. Then S is non empty, non void, non
degenerated, non truly-partial, and identifying close blocks and has non
trivial blocks and no isolated points.

(8) Let X be a non empty set. Suppose 3 ⊆ X . Let K be a subset of X.
Suppose K = 2. Let S be a topological structure. Suppose the carrier
of S = X and the topology of S = {L; L ranges over subsets of X: 2 =
L} \ {K}. Then S is non empty, non void, non degenerated, truly-partial,
and identifying close blocks and has non trivial blocks and no isolated
points.

One can verify that there exists a topological structure which is strict, non
empty, non void, non degenerated, non truly-partial, and identifying close blocks
and has non trivial blocks and no isolated points and there exists a topological
structure which is strict, non empty, non void, non degenerated, truly-partial,
and identifying close blocks and has non trivial blocks and no isolated points.

Let S be a non void topological structure. Note that the topology of S is
non empty.

Let S be a topological structure with no isolated points and let x, y be points
of S. Let us observe that x, y are collinear if and only if:

(Def. 12) There exists a block l of S such that {x, y} ⊆ l.

A PLS is a non empty non void non degenerated identifying close blocks
topological structure with non trivial blocks.

Let F be a binary relation. We say that F is TopStruct-yielding if and only
if:

(Def. 13) For every set x such that x ∈ rng F holds x is a topological structure.

Let us mention that every function which is TopStruct-yielding is also 1-
sorted yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I

which is TopStruct-yielding.
Let us note that there exists a function which is TopStruct-yielding.
Let F be a binary relation. We say that F is non-void-yielding if and only

if:

(Def. 14) For every topological structure S such that S ∈ rng F holds S is non
void.

386 adam naumowicz

Let F be a TopStruct-yielding function. Let us observe that F is non-void-
yielding if and only if:

(Def. 15) For every set i such that i ∈ rng F holds i is a non void topological
structure.

Let F be a binary relation. We say that F is trivial-yielding if and only if:

(Def. 16) For every set S such that S ∈ rng F holds S is trivial.

Let F be a binary relation. We say that F is non-Trivial-yielding if and only
if:

(Def. 17) For every 1-sorted structure S such that S ∈ rng F holds S is non trivial.

Let us observe that every binary relation which is non-Trivial-yielding is also
nonempty.

Let F be a 1-sorted yielding function. Let us observe that F is non-Trivial-
yielding if and only if:

(Def. 18) For every set i such that i ∈ rng F holds i is a non trivial 1-sorted
structure.

Let I be a non empty set, let A be a TopStruct-yielding many sorted set
indexed by I, and let j be an element of I. Then A(j) is a topological structure.

Let F be a binary relation. We say that F is PLS-yielding if and only if:

(Def. 19) For every set x such that x ∈ rng F holds x is a PLS.

One can verify the following observations:

∗ every function which is PLS-yielding is also nonempty and TopStruct-
yielding,

∗ every TopStruct-yielding function which is PLS-yielding is also non-void-
yielding, and

∗ every TopStruct-yielding function which is PLS-yielding is also non-
Trivial-yielding.

Let I be a set. One can check that there exists a many sorted set indexed
by I which is PLS-yielding.

Let I be a non empty set, let A be a PLS-yielding many sorted set indexed
by I, and let j be an element of I. Then A(j) is a PLS.

Let I be a set and let A be a many sorted set indexed by I. We say that A

is Segre-like if and only if:

(Def. 20) There exists an element i of I such that for every element j of I such
that i 6= j holds A(j) is non empty and trivial.

Let I be a set and let A be a many sorted set indexed by I. Note that {A}
is trivial-yielding.

The following proposition is true

(9) Let I be a non empty set, A be a many sorted set indexed by I, i be an

on segre’s product of partial line spaces 387

element of I, and S be a non trivial set. Then A +· (i, S) is non trivial-
yielding.

Let I be a non empty set and let A be a many sorted set indexed by I.
Observe that {A} is Segre-like.

We now state two propositions:

(10) For every non empty set I and for every many sorted set A indexed by
I and for all sets i, S holds {A}+· (i, S) is Segre-like.

(11) Let I be a non empty set, A be a nonempty 1-sorted yielding many
sorted set indexed by I, and B be an element of the support of A. Then
{B} is a many sorted subset indexed by the support of A.

Let I be a non empty set and let A be a nonempty 1-sorted yielding many
sorted set indexed by I. One can check that there exists a many sorted subset
indexed by the support of A which is Segre-like, trivial-yielding, and non-empty.

Let I be a non empty set and let A be a non-Trivial-yielding 1-sorted yielding
many sorted set indexed by I. Note that there exists a many sorted subset
indexed by the support of A which is Segre-like, non trivial-yielding, and non-
empty.

Let I be a non empty set. Observe that there exists a many sorted set indexed
by I which is Segre-like and non trivial-yielding.

Let I be a non empty set and let B be a Segre-like non trivial-yielding many
sorted set indexed by I. The functor index(B) yielding an element of I is defined
by:

(Def. 21) B(index(B)) is non trivial.

Next we state the proposition

(12) Let I be a non empty set, A be a Segre-like non trivial-yielding many
sorted set indexed by I, and i be an element of I. If i 6= index(A), then
A(i) is non empty and trivial.

Let I be a non empty set. Note that every many sorted set indexed by I

which is Segre-like and non trivial-yielding is also non-empty.
One can prove the following proposition

(13) Let I be a non empty set and A be a many sorted set indexed by I.

Then 2 ⊆ ∏
A if and only if A is non-empty and non trivial-yielding.

Let I be a non empty set and let B be a Segre-like non trivial-yielding many
sorted set indexed by I. Note that

∏
B is non trivial.

388 adam naumowicz

3. Segre’s Product

Let I be a non empty set and let A be a nonempty TopStruct-yielding many
sorted set indexed by I. The functor Segre Blocks A yields a family of subsets
of

∏
(the support of A) and is defined by the condition (Def. 22).

(Def. 22) Let x be a set. Then x ∈ Segre Blocks A if and only if there exists a
Segre-like many sorted subset B indexed by the support of A such that
x =

∏
B and there exists an element i of I such that B(i) is a block of

A(i).

Let I be a non empty set and let A be a nonempty TopStruct-yielding many
sorted set indexed by I. The functor Segre Product A yielding a non empty
topological structure is defined as follows:

(Def. 23) Segre Product A = 〈∏ (the support of A),Segre Blocks A〉.
The following propositions are true:

(14) Let I be a non empty set and A be a nonempty TopStruct-yielding many
sorted set indexed by I. Then every point of Segre Product A is a many
sorted set indexed by I.

(15) Let I be a non empty set and A be a nonempty TopStruct-yielding many
sorted set indexed by I. If there exists an element i of I such that A(i) is
non void, then Segre Product A is non void.

(16) Let I be a non empty set and A be a nonempty TopStruct-yielding many
sorted set indexed by I. Suppose that for every element i of I holds A(i)
is non degenerated and there exists an element i of I such that A(i) is non
void. Then Segre Product A is non degenerated.

(17) Let I be a non empty set and A be a nonempty TopStruct-yielding many
sorted set indexed by I. Suppose that for every element i of I holds A(i)
has non trivial blocks and there exists an element i of I such that A(i) is
non void. Then Segre Product A has non trivial blocks.

(18) Let I be a non empty set and A be a nonempty TopStruct-yielding
many sorted set indexed by I. Suppose that for every element i of I holds
A(i) is identifying close blocks and has non trivial blocks and there exists
an element i of I such that A(i) is non void. Then Segre Product A is
identifying close blocks.

Let I be a non empty set and let A be a PLS-yielding many sorted set
indexed by I. Then Segre Product A is a PLS.

One can prove the following propositions:

(19) Let T be a topological structure and S be a subset of the carrier of T .
If S is trivial, then S is strong and closed under lines.

on segre’s product of partial line spaces 389

(20) Let S be an identifying close blocks topological structure, l be a block of
S, and L be a subset of the carrier of S. If L = l, then L is closed under
lines.

(21) Let S be a topological structure, l be a block of S, and L be a subset of
the carrier of S. If L = l, then L is strong.

(22) For every non void topological structure S holds ΩS is closed under lines.

(23) Let I be a non empty set, A be a Segre-like non trivial-yielding many
sorted set indexed by I, and x, y be many sorted sets indexed by I. If
x ∈ ∏

A and y ∈ ∏
A, then for every set i such that i 6= index(A) holds

x(i) = y(i).
(24) Let I be a non empty set, A be a PLS-yielding many sorted set indexed

by I, and x be a set. Then x is a block of Segre Product A if and only if
there exists a Segre-like non trivial-yielding many sorted subset L indexed
by the support of A such that x =

∏
L and L(index(L)) is a block of

A(index(L)).
(25) Let I be a non empty set, A be a PLS-yielding many sorted set indexed

by I, and P be a many sorted set indexed by I. Suppose P is a point of
Segre Product A. Let i be an element of I and p be a point of A(i). Then
P +· (i, p) is a point of Segre Product A.

(26) Let I be a non empty set and A, B be Segre-like non trivial-yielding

many sorted sets indexed by I. Suppose 2 ⊆ ∏
A ∩∏

B. Then index(A) =
index(B) and for every set i such that i 6= index(A) holds A(i) = B(i).

(27) Let I be a non empty set, A be a Segre-like non trivial-yielding many
sorted set indexed by I, and N be a non trivial set. Then A+·(index(A), N)
is Segre-like and non trivial-yielding.

(28) Let S be a non empty non void identifying close blocks topological struc-
ture with no isolated points. If S is strongly connected, then S is connected.

(29) Let I be a non empty set, A be a PLS-yielding many sorted set indexed
by I, and S be a subset of the carrier of Segre Product A. Then S is non
trivial, strong, and closed under lines if and only if there exists a Segre-
like non trivial-yielding many sorted subset B indexed by the support of
A such that S =

∏
B and for every subset C of the carrier of A(index(B))

such that C = B(index(B)) holds C is strong and closed under lines.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977, 1990.
[4] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.

390 adam naumowicz

[6] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized
Mathematics, 5(1):47–54, 1996.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Artur Korniłowicz. Some basic properties of many sorted sets. Formalized Mathematics,
5(3):395–399, 1996.

[9] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–
108, 1993.

[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[11] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received May 29, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Evaluation of Polynomials

Robert Milewski
University of Białystok

MML Identifier: POLYNOM4.

The articles [11], [15], [12], [3], [2], [17], [4], [18], [1], [13], [14], [9], [6], [7], [19],
[16], [20], [5], [8], and [10] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every natural number n holds 0−′ n = 0.

(2) Let D be a set, p be a finite sequence of elements of D, and i be a natural
number. If i < len p, then p¹(i + 1) = (p¹i) a 〈p(i + 1)〉.

(3) Let D be a non empty set, p be a finite sequence of elements of D, and
n be a natural number. If 1 ¬ n and n ¬ len p, then p = (p¹(n −′ 1)) a

〈p(n)〉 a (pºn).
(4) Let L be an add-associative right zeroed right complementable non

empty loop structure and n be a natural number. Then
∑

(n 7→ 0L) = 0L.

2. About Polynomials

The following propositions are true:

(5) Let L be an add-associative right zeroed right complementable left di-
stributive non empty double loop structure and p be a sequence of L. Then
0. L ∗ p = 0. L.

(6) For every non empty zero structure L holds len 0. L = 0.

391
c© 2001 University of Białystok

ISSN 1426–2630

392 robert milewski

(7) For every non degenerated non empty multiplicative loop with zero struc-
ture L holds len 1. L = 1.

(8) For every non empty zero structure L and for every Polynomial p of L

such that len p = 0 holds p = 0. L.

(9) Let L be a right zeroed non empty loop structure, p, q be Polynomials
of L, and n be a natural number. If n len p and n len q, then n
len(p + q).

(10) Let L be an add-associative right zeroed right complementable non
empty loop structure and p, q be Polynomials of L. If len p 6= len q, then
len(p + q) = max(len p, len q).

(11) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a Polynomial of L. Then len(−p) = len p.

(12) Let L be an add-associative right zeroed right complementable non
empty loop structure, p, q be Polynomials of L, and n be a natural number.
If n len p and n len q, then n len(p− q).

(13) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative left unital field-like non empty double loop
structure and p, q be Polynomials of L. If len p > 0 and len q > 0, then
len(p ∗ q) = (len p + len q)− 1.

3. Leading Monomials

Let L be a non empty zero structure and let p be a Polynomial of L. The
functor Leading-Monomial p yielding a sequence of L is defined as follows:

(Def. 1) (Leading-Monomial p)(len p −′ 1) = p(len p −′ 1) and for every natural
number n such that n 6= len p−′ 1 holds (Leading-Monomial p)(n) = 0L.

The following proposition is true

(14) For every non empty zero structure L and for every Polynomial p of L

holds Leading-Monomial p = 0. L +· (len p−′ 1, p(len p−′ 1)).

Let L be a non empty zero structure and let p be a Polynomial of L. Observe
that Leading-Monomial p is finite-Support.

We now state several propositions:

(15) For every non empty zero structure L and for every Polynomial p of L

such that len p = 0 holds Leading-Monomial p = 0. L.

(16) For every non empty zero structure L holds Leading-Monomial 0. L =
0. L.

(17) For every non degenerated non empty multiplicative loop with zero struc-
ture L holds Leading-Monomial 1. L = 1. L.

the evaluation of polynomials 393

(18) For every non empty zero structure L and for every Polynomial p of L

holds len Leading-Monomial p = len p.

(19) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a Polynomial of L. Suppose len p 6= 0.

Then there exists a Polynomial q of L such that len q < len p and
p = q + Leading-Monomial p and for every natural number n such that
n < len p− 1 holds q(n) = p(n).

4. Evaluation of Polynomials

Let L be a unital non empty double loop structure, let p be a Polynomial of
L, and let x be an element of the carrier of L. The functor eval(p, x) yields an
element of L and is defined by the condition (Def. 2).

(Def. 2) There exists a finite sequence F of elements of the carrier of L such that
eval(p, x) =

∑
F and len F = len p and for every natural number n such

that n ∈ dom F holds F (n) = p(n−′ 1) · powerL(x, n−′ 1).
Next we state several propositions:

(20) For every unital non empty double loop structure L and for every element
x of the carrier of L holds eval(0. L, x) = 0L.

(21) Let L be a well unital add-associative right zeroed right complementable
associative non degenerated non empty double loop structure and x be an
element of the carrier of L. Then eval(1. L, x) = 1L.

(22) Let L be an Abelian add-associative right zeroed right complementable
unital left distributive non empty double loop structure, p, q be Polyno-
mials of L, and x be an element of the carrier of L. Then eval(p + q, x) =
eval(p, x) + eval(q, x).

(23) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p be a Polynomial of
L, and x be an element of the carrier of L. Then eval(−p, x) = −eval(p, x).

(24) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p, q be Polynomials
of L, and x be an element of the carrier of L. Then eval(p − q, x) =
eval(p, x)− eval(q, x).

(25) Let L be an add-associative right zeroed right complementable ri-
ght zeroed distributive unital non empty double loop structure, p be
a Polynomial of L, and x be an element of the carrier of L. Then
eval(Leading-Monomial p, x) = p(len p−′ 1) · powerL(x, len p−′ 1).

(26) Let L be an add-associative right zeroed right complementable distri-
butive commutative associative field-like left unital non degenerated non

394 robert milewski

empty double loop structure, p, q be Polynomials of L, and x be an
element of the carrier of L. Then eval(Leading-Monomial p ∗ q, x) =
eval(Leading-Monomial p, x) · eval(q, x).

(27) Let L be a field, p, q be Polynomials of L, and x be an element of the
carrier of L. Then eval(p ∗ q, x) = eval(p, x) · eval(q, x).

5. Evaluation Homomorphism

Let L be an add-associative right zeroed right complementable distributive
unital non empty double loop structure and let x be an element of the carrier
of L. The functor Polynom-Evaluation(L, x) yields a map from Polynom-Ring L

into L and is defined by:

(Def. 3) For every Polynomial p of L holds (Polynom-Evaluation(L, x))(p) =
eval(p, x).

Let L be an add-associative right zeroed right complementable distribu-
tive associative well unital non degenerated non empty double loop struc-
ture and let x be an element of the carrier of L. One can verify that
Polynom-Evaluation(L, x) is unity-preserving.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive unital non empty double loop structure and let x be an element of
the carrier of L. One can verify that Polynom-Evaluation(L, x) is additive.

Let L be a field and let x be an element of the carrier of L. Observe that
Polynom-Evaluation(L, x) is multiplicative.

Let L be a field and let x be an element of the carrier of L. Note that
Polynom-Evaluation(L, x) is ring homomorphism.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[7] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[9] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
[10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.

Formalized Mathematics, 2(1):3–11, 1991.

the evaluation of polynomials 395

[11] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring
and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.

[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[14] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number

of variables. Formalized Mathematics, 9(1):95–110, 2001.
[15] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathe-

matics, 2(1):185–191, 1991.
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[17] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 7, 2000

396 robert milewski

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Construction and Computation of
While-Loop Programs for SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. This article defines two while-loop statements on SCMPDS,
i.e. “while<0” and “while>0”, which resemble the while-statements of the com-
mon high language such as C. We previously presented a number of tricks for
computing while-loop statements on SCMFSA, e.g. step-while. However, after
inspecting a few realistic examples, we found that they are neither very useful
nor of generalization. To cover much more computation cases of while-loop sta-
tements, we generalize the computation model of while-loop statements, based
on the principle of Hoare’s axioms on the verification of programs.

MML Identifier: SCMPDS 8.

The notation and terminology used here are introduced in the following articles:
[14], [15], [19], [16], [1], [3], [17], [4], [5], [20], [2], [12], [13], [22], [23], [10], [6], [9],
[7], [8], [11], [21], and [18].

1. Preliminaries

In this paper x, a denote Int positions and s denotes a state of SCMPDS.
We now state the proposition

(1) For every Int position a there exists a natural number i such that a =
intpos i.

Let t be a state of SCMPDS. The functor Dstate t yielding a state of
SCMPDS is defined by the condition (Def. 1).

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

397
c© 2001 University of Białystok

ISSN 1426–2630

398 jing-chao chen

(Def. 1) Let x be a set. Then
(i) if x ∈ Data-LocSCM, then (Dstate t)(x) = t(x),
(ii) if x ∈ the instruction locations of SCMPDS, then (Dstate t)(x) =

goto 0, and
(iii) if x = ICSCMPDS, then (Dstate t)(x) = inspos 0.

One can prove the following four propositions:

(2) For all states t1, t2 of SCMPDS such that t1¹Data-LocSCM =
t2¹Data-LocSCM holds Dstate t1 = Dstate t2.

(3) For every state t of SCMPDS and for every instruction i of SCMPDS
such that InsCode(i) ∈ {0, 4, 5, 6} holds Dstate t = Dstate Exec(i, t).

(4) (Dstate s)(a) = s(a).
(5) Let a be an Int position. Then there exists a function f from

∏
(the

object kind of SCMPDS) into N such that for every state s of SCMPDS
holds

(i) if s(a) ¬ 0, then f(s) = 0, and
(ii) if s(a) > 0, then f(s) = s(a).

2. The Construction and Several Basic Properties of “while<0”
Program

Let a be an Int position, let i be an integer, and let I be a Program-block.
The functor while < 0(a, i, I) yielding a Program-block is defined by:

(Def. 2) while < 0(a, i, I) = ((a, i) >= 0 goto card I+2); I; goto (−(card I + 1)).
Let I be a shiftable Program-block, let a be an Int position, and let i be an

integer. Observe that while < 0(a, i, I) is shiftable.
Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while < 0(a, i, I) is No-StopCode.
Next we state several propositions:

(6) For every Int position a and for every integer i and for every Program-
block I holds card while < 0(a, i, I) = card I + 2.

(7) Let a be an Int position, i be an integer, m be a natural number, and
I be a Program-block. Then m < card I + 2 if and only if inspos m ∈
dom while < 0(a, i, I).

(8) Let a be an Int position, i be an integer, and I be a Program-block. Then
(while < 0(a, i, I))(inspos 0) = (a, i) >= 0 goto card I + 2 and (while <

0(a, i, I))(inspos card I + 1) = goto (−(card I + 1)).
(9) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) 0, then while < 0(a, i, I) is
closed on s and while < 0(a, i, I) is halting on s.

the construction and computation of . . . 399

(10) Let s be a state of SCMPDS, I be a Program-block, a, c be Int posi-
tions, and i be an integer. If s(DataLoc(s(a), i)) 0, then IExec(while <

0(a, i, I), s) = s+·Start-At(inspos card I + 2).

(11) Let s be a state of SCMPDS, I be a Program-block, a be an
Int position, and i be an integer. If s(DataLoc(s(a), i)) 0, then
ICIExec(while<0(a,i,I),s) = inspos card I + 2.

(12) Let s be a state of SCMPDS, I be a Program-block, a, b be Int posi-
tions, and i be an integer. If s(DataLoc(s(a), i)) 0, then (IExec(while <

0(a, i, I), s))(b) = s(b).

In this article we present several logical schemes. The scheme WhileLHalt
deals with a unary functor F yielding a natural number, a state A of SCMPDS,
a No-StopCode shiftable Program-block B, an Int position C, an integer D, and
a unary predicate P, and states that:

F(A) = F(A) or P[A] but while < 0(C,D,B) is closed on A but
while < 0(C,D,B) is halting on A

provided the following conditions are met:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
The scheme WhileLExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while < 0(C,D,B),A) =
IExec(while < 0(C,D,B), IExec(B,A))

provided the parameters meet the following conditions:
• cardB > 0,

• A(DataLoc(A(C),D)) < 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
One can prove the following propositions:

400 jing-chao chen

(13) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, X be a set, and f be a function
from

∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds
t(DataLoc(s(a), i)) 0, and

(iii) for every state t of SCMPDS such that for every Int position x such
that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) < 0
holds (IExec(I, t))(a) = t(a) and f(Dstate IExec(I, t)) < f(Dstate t) and
I is closed on t and halting on t and for every Int position x such that
x ∈ X holds (IExec(I, t))(x) = t(x).
Then while < 0(a, i, I) is closed on s and while < 0(a, i, I) is halting on s.

(14) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, X be a set, and f be a function
from

∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) s(DataLoc(s(a), i)) < 0,

(iii) for every state t of SCMPDS such that f(Dstate t) = 0 holds
t(DataLoc(s(a), i)) 0, and

(iv) for every state t of SCMPDS such that for every Int position x such
that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) < 0
holds (IExec(I, t))(a) = t(a) and I is closed on t and halting on t and
f(Dstate IExec(I, t)) < f(Dstate t) and for every Int position x such that
x ∈ X holds (IExec(I, t))(x) = t(x).
Then IExec(while < 0(a, i, I), s) = IExec(while < 0(a, i, I), IExec(I, s)).

(15) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, and X be a set. Suppose
that

(i) card I > 0, and
(ii) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) <

0 holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) >

t(DataLoc(s(a), i)) and I is closed on t and halting on t and for every
Int position x such that x ∈ X holds (IExec(I, t))(x) = t(x).
Then while < 0(a, i, I) is closed on s and while < 0(a, i, I) is halting on s.

(16) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, and X be a set. Suppose
that

(i) s(DataLoc(s(a), i)) < 0,

(ii) card I > 0, and
(iii) for every state t of SCMPDS such that for every Int position x such

the construction and computation of . . . 401

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) <

0 holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) >

t(DataLoc(s(a), i)) and I is closed on t and halting on t and for every
Int position x such that x ∈ X holds (IExec(I, t))(x) = t(x).
Then IExec(while < 0(a, i, I), s) = IExec(while < 0(a, i, I), IExec(I, s)).

3. The Construction and Several Basic Properties of “while>0”
Program

Let a be an Int position, let i be an integer, and let I be a Program-block.
The functor while > 0(a, i, I) yields a Program-block and is defined by:

(Def. 3) while > 0(a, i, I) = ((a, i) <= 0 goto card I+2); I; goto (−(card I + 1)).
Let I be a shiftable Program-block, let a be an Int position, and let i be an

integer. One can verify that while > 0(a, i, I) is shiftable.
Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while > 0(a, i, I) is No-StopCode.
Next we state several propositions:

(17) For every Int position a and for every integer i and for every Program-
block I holds card while > 0(a, i, I) = card I + 2.

(18) Let a be an Int position, i be an integer, m be a natural number, and
I be a Program-block. Then m < card I + 2 if and only if inspos m ∈
dom while > 0(a, i, I).

(19) Let a be an Int position, i be an integer, and I be a Program-block. Then
(while > 0(a, i, I))(inspos 0) = (a, i) <= 0 goto card I + 2 and (while >

0(a, i, I))(inspos card I + 1) = goto (−(card I + 1)).
(20) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then while > 0(a, i, I) is
closed on s and while > 0(a, i, I) is halting on s.

(21) Let s be a state of SCMPDS, I be a Program-block, a, c be Int posi-
tions, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then IExec(while >

0(a, i, I), s) = s+·Start-At(inspos card I + 2).
(22) Let s be a state of SCMPDS, I be a Program-block, a be an

Int position, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then
ICIExec(while>0(a,i,I),s) = inspos card I + 2.

(23) Let s be a state of SCMPDS, I be a Program-block, a, b be Int posi-
tions, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then (IExec(while >

0(a, i, I), s))(b) = s(b).
Now we present two schemes. The scheme WhileGHalt deals with a unary

functor F yielding a natural number, a state A of SCMPDS, a No-StopCode

402 jing-chao chen

shiftable Program-block B, an Int position C, an integerD, and a unary predicate
P, and states that:

F(A) = F(A) or P[A] but while > 0(C,D,B) is closed on A but
while > 0(C,D,B) is halting on A

provided the parameters meet the following conditions:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
The scheme WhileGExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while > 0(C,D,B),A) =
IExec(while > 0(C,D,B), IExec(B,A))

provided the following conditions are satisfied:
• cardB > 0,

• A(DataLoc(A(C),D)) > 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
One can prove the following propositions:

(24) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i, c be integers, X, Y be sets, and f be a
function from

∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds
t(DataLoc(s(a), i)) ¬ 0,

(iii) for every x such that x ∈ X holds s(x) c + s(DataLoc(s(a), i)), and
(iv) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) c+t(DataLoc(s(a), i)) and for every x such that x ∈ Y holds t(x) =
s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) =
t(a) and I is closed on t and halting on t and f(Dstate IExec(I, t)) <

f(Dstate t) and for every x such that x ∈ X holds (IExec(I, t))(x)

the construction and computation of . . . 403

c + (IExec(I, t))(DataLoc(s(a), i)) and for every x such that x ∈ Y holds
(IExec(I, t))(x) = t(x).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting on s.

(25) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i, c be integers, X, Y be sets, and f be a
function from

∏
(the object kind of SCMPDS) into N. Suppose that

(i) s(DataLoc(s(a), i)) > 0,

(ii) card I > 0,

(iii) for every state t of SCMPDS such that f(Dstate t) = 0 holds
t(DataLoc(s(a), i)) ¬ 0,

(iv) for every x such that x ∈ X holds s(x) c + s(DataLoc(s(a), i)), and
(v) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) c+t(DataLoc(s(a), i)) and for every x such that x ∈ Y holds t(x) =
s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) =
t(a) and I is closed on t and halting on t and f(Dstate IExec(I, t)) <

f(Dstate t) and for every x such that x ∈ X holds (IExec(I, t))(x)
c + (IExec(I, t))(DataLoc(s(a), i)) and for every x such that x ∈ Y holds
(IExec(I, t))(x) = t(x).
Then IExec(while > 0(a, i, I), s) = IExec(while > 0(a, i, I), IExec(I, s)).

(26) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, X be a set, and f be a function
from

∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds
t(DataLoc(s(a), i)) ¬ 0, and

(iii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds
(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and
f(Dstate IExec(I, t)) < f(Dstate t) and for every x such that x ∈ X holds
(IExec(I, t))(x) = t(x).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

(27) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i, c be integers, and X, Y be sets. Suppose
that

(i) card I > 0,

(ii) for every x such that x ∈ X holds s(x) c + s(DataLoc(s(a), i)), and
(iii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) c + t(DataLoc(s(a), i)) and for every x such that x ∈ Y

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds

404 jing-chao chen

(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and
(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such
that x ∈ X holds (IExec(I, t))(x) c+(IExec(I, t))(DataLoc(s(a), i)) and
for every x such that x ∈ Y holds (IExec(I, t))(x) = t(x).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

(28) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, and X be a set. Suppose
that

(i) card I > 0, and
(ii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds
(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and
(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such
that x ∈ X holds (IExec(I, t))(x) = t(x).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

(29) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i, c be integers, and X be a set. Suppose
that

(i) card I > 0,

(ii) for every x such that x ∈ X holds s(x) c + s(DataLoc(s(a), i)), and
(iii) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) c+ t(DataLoc(s(a), i)) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0
holds (IExec(I, t))(a) = t(a) and I is closed on t and halting on t and
(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such
that x ∈ X holds (IExec(I, t))(x) c + (IExec(I, t))(DataLoc(s(a), i)).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized

Mathematics, 8(1):193–199, 1999.

the construction and computation of . . . 405

[7] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[8] Jing-Chao Chen. The construction and computation of conditional statements for
SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.

[9] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[10] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[11] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,

1990.
[14] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[15] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received June 14, 2000

406 jing-chao chen

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Insert Sort on SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The goal of this article is to examine the effectiveness of “for-
loop” and “while-loop” statements on SCMPDS by insert sort. In this article,
first of all, we present an approach to compute the execution result of “for-loop”
program by “loop-invariant”, based on Hoare’s axioms for program verification.
Secondly, we extend the fundamental properties of the finite sequence and com-
plex instructions of SCMPDS. Finally, we prove the correctness of the insert sort
program described in the article.

MML Identifier: SCPISORT.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [19], [1], [3], [4], [20], [2], [13], [15], [9], [5], [8], [6], [7],
[12], [10], [11], [17], [21], [18], and [14].

1. Preliminaries

In this paper n, p0 are natural numbers.
Let f be a finite sequence of elements of Z, let s be a state of SCMPDS, and

let m be a natural number. We say that f is FinSequence on s, m if and only if:

(Def. 1) For every natural number i such that 1 ¬ i and i ¬ len f holds f(i) =
s(intpos m + i).

We now state four propositions:

(1) Let f be a finite sequence of elements of Z and m, n be natural numbers.
If m n, then f is non decreasing on m, n.

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

407
c© 2001 University of Białystok

ISSN 1426–2630

408 jing-chao chen

(2) Let s be a state of SCMPDS and n, m be natural numbers. Then there
exists a finite sequence f of elements of Z such that len f = n and for every
natural number i such that 1 ¬ i and i ¬ len f holds f(i) = s(intpos m+i).

(3) Let s be a state of SCMPDS and n, m be natural numbers. Then there
exists a finite sequence f of elements of Z such that len f = n and f is
FinSequence on s, m.

(4) Let f , g be finite sequences of elements of Z and m, n be natural numbers.
Suppose that 1 ¬ n and n ¬ len f and 1 ¬ m and m ¬ len f and len f =
len g and f(m) = g(n) and f(n) = g(m) and for every natural number k

such that k 6= m and k 6= n and 1 ¬ k and k ¬ len f holds f(k) = g(k).
Then f and g are fiberwise equipotent.

The following propositions are true:

(5) For all states s1, s2 of SCMPDS such that for every Int position a holds
s1(a) = s2(a) holds Dstate s1 = Dstate s2.

(6) Let s be a state of SCMPDS, I be a No-StopCode Program-block, and
j be a parahalting shiftable instruction of SCMPDS. Suppose I is closed
on s and halting on s. Then I; j is closed on s and I; j is halting on s.

(7) Let s be a state of SCMPDS, I be a No-StopCode Program-block, J be a
shiftable parahalting Program-block, and a be an Int position. If I is closed
on s and halting on s, then (IExec(I; J, s))(a) = (IExec(J, IExec(I, s)))(a).

(8) Let s be a state of SCMPDS, I be a No-StopCode parahalting Program-
block, J be a shiftable Program-block, and a be an Int position. If J is
closed on IExec(I, s) and halting on IExec(I, s), then (IExec(I; J, s))(a) =
(IExec(J, IExec(I, s)))(a).

(9) Let s be a state of SCMPDS, I be a Program-block, and J be a shiftable
parahalting Program-block. Suppose I is closed on s and halting on s.
Then I; J is closed on s and I; J is halting on s.

(10) Let s be a state of SCMPDS, I be a parahalting Program-block, and
J be a shiftable Program-block. Suppose J is closed on IExec(I, s) and
halting on IExec(I, s). Then I; J is closed on s and I; J is halting on s.

(11) Let s be a state of SCMPDS, I be a Program-block, and j be a para-
halting shiftable instruction of SCMPDS. Suppose I is closed on s and
halting on s. Then I; j is closed on s and I; j is halting on s.

2. Computing the Execution Result of For-Loop Program by
Loop-Invariant

In this article we present several logical schemes. The scheme ForDownHalt
deals with a state A of SCMPDS, a No-StopCode shiftable Program-block B,

insert sort on scmpds 409

an Int position C, an integer D, a natural number E , and a unary predicate P,

and states that:
P[A] or not P[A] but for-down(C,D, E ,B) is closed on A but
for-down(C,D, E ,B) is halting on A

provided the following requirements are met:
• E > 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =
t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =
t(DataLoc(A(C),D)) − E and B is closed on t and B is halting
on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

The scheme ForDownExec deals with a state A of SCMPDS, a No-StopCode
shiftable Program-block B, an Int position C, an integer D, a natural number
E , and a unary predicate P, and states that:

P[A] or not P[A] but IExec(for-down(C,D, E ,B),A) =
IExec(for-down(C,D, E ,B), IExec(B; AddTo(C,D,−E),A))

provided the parameters meet the following conditions:
• E > 0,

• A(DataLoc(A(C),D)) > 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =
t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =
t(DataLoc(A(C),D)) − E and B is closed on t and B is halting
on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

The scheme ForDownEnd deals with a state A of SCMPDS, a No-StopCode
shiftable Program-block B, an Int position C, an integer D, a natural number
E , and a unary predicate P, and states that:

P[A] or not P[A] but (IExec(for-down(C,D, E ,B),A))(DataLoc(A(C),D)) ¬
0 but P[Dstate IExec(for-down(C,D, E ,B),A)]

provided the parameters have the following properties:
• E > 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =
t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =
t(DataLoc(A(C),D)) − E and B is closed on t and B is halting
on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

We now state three propositions:

(12) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, x, y be Int positions, i, c be integers, and n be a natural number.

410 jing-chao chen

Suppose that
(i) n > 0,

(ii) s(x) s(y) + c, and
(iii) for every state t of SCMPDS such that t(x) t(y) + c and t(a) = s(a)

and t(DataLoc(s(a), i)) > 0 holds (IExec(I; AddTo(a, i,−n), t))(a) = t(a)
and (IExec(I; AddTo(a, i,−n), t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i))
−n and I is closed on t and halting on t and (IExec(I; AddTo(a, i,−n), t))
(x) (IExec(I; AddTo(a, i,−n), t))(y) + c.

Then for-down(a, i, n, I) is closed on s and for-down(a, i, n, I) is halting
on s.

(13) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, x, y be Int positions, i, c be integers, and n be a natural number.
Suppose that

(i) n > 0,

(ii) s(x) s(y) + c,

(iii) s(DataLoc(s(a), i)) > 0, and
(iv) for every state t of SCMPDS such that t(x) t(y) + c and t(a) = s(a)

and t(DataLoc(s(a), i)) > 0 holds (IExec(I; AddTo(a, i,−n), t))(a) = t(a)
and (IExec(I; AddTo(a, i,−n), t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i))
−n and I is closed on t and halting on t and (IExec(I; AddTo(a, i,−n), t))
(x) (IExec(I; AddTo(a, i,−n), t))(y) + c.

Then IExec(for-down(a, i, n, I), s) = IExec(for-down(a, i, n, I),
IExec(I; AddTo(a, i,−n), s)).

(14) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, and n be a natural number.
Suppose that

(i) s(DataLoc(s(a), i)) > 0,

(ii) n > 0,

(iii) card I > 0,

(iv) a 6= DataLoc(s(a), i), and
(v) for every state t of SCMPDS such that t(a) = s(a)

holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) =
t(DataLoc(s(a), i)) and I is closed on t and halting on t.
Then for-down(a, i, n, I) is closed on s and for-down(a, i, n, I) is halting
on s.

3. A Program for Insert Sort

Let n, p0 be natural numbers. The functor insert-sort(n, p0) yielding a
Program-block is defined by the condition (Def. 2).

insert sort on scmpds 411

(Def. 2) insert-sort(n, p0) = (GBP :=0); ((GBP)1:=0); ((GBP)2:=n− 1);
((GBP)3:=p0); for-down(GBP, 2, 1, AddTo(GBP, 3, 1);
((GBP, 4) := (GBP, 3)); AddTo(GBP, 1, 1); ((GBP, 6) := (GBP, 1));
while > 0(GBP, 6, ((GBP, 5) := (intpos 4,−1));
SubFrom(GBP, 5, intpos 4, 0); (if GBP > 5 then
((GBP, 5) := (intpos 4,−1)); ((intpos 4,−1) := (intpos 4, 0));
((intpos 4, 0) := (GBP, 5)); AddTo(GBP, 4,−1); AddTo(GBP, 6,−1)
else Load((GBP)6:=0)))).

4. The Property of Insert Sort and Its Correctness

We now state two propositions:

(15) card insert-sort(n, p0) = 23.

(16) If p0 7, then insert-sort(n, p0) is parahalting.

One can prove the following propositions:

(17) Let s be a state of SCMPDS, f , g be finite sequences of elements of Z, and
k0, k be natural numbers. Suppose that s(a4) 7+s(a6) and s(GBP) = 0
and k = s(a6) and k0 = s(a4) − s(a6) − 1 and f is FinSequence on s, k0

and g is FinSequence on IExec(I2, s), k0 and len f = len g and len f > k

and f is non decreasing on 1, k. Then
(i) f and g are fiberwise equipotent,
(ii) g is non decreasing on 1, k + 1,

(iii) for every natural number i such that i > k + 1 and i ¬ len f holds
f(i) = g(i), and

(iv) for every natural number i such that 1 ¬ i and i ¬ k + 1 there exists a
natural number j such that 1 ¬ j and j ¬ k + 1 and g(i) = f(j),
where a4 = intpos 4, a6 = intpos 6, I2 = W1, W1 = while >

0(GBP, 6, B1), B1 = k1; k2; I1, k1 = (GBP, 5) := (intpos 4,−1), k2 =
SubFrom(GBP, 5, intpos 4, 0), I1 = if GBP > 5 then T1 else F1, T1 =
k3; k4; k5; k6; k7, k3 = (GBP, 5) := (intpos 4,−1), k4 = (intpos 4,−1) :=
(intpos 4, 0), k5 = (intpos 4, 0) := (GBP, 5), k6 = AddTo(GBP, 4,−1),
k7 = AddTo(GBP, 6,−1), and F1 = Load((GBP)6:=0).

(18) Let s be a state of SCMPDS, f , g be finite sequences of elements of Z, and
p0, n be natural numbers. Suppose p0 6 and len f = n and len g = n and
f is FinSequence on s, p0 and g is FinSequence on IExec(insert-sort(n, p0+
1), s), p0. Then f and g are fiberwise equipotent and g is non decreasing
on 1, n.

412 jing-chao chen

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized

Mathematics, 8(1):193–199, 1999.
[6] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-

lized Mathematics, 8(1):211–217, 1999.
[7] Jing-Chao Chen. The construction and computation of conditional statements for

SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.
[8] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.

Formalized Mathematics, 8(1):201–210, 1999.
[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.

Formalized Mathematics, 8(1):183–191, 1999.
[10] Jing-Chao Chen. The construction and computation of while-loop programs for SCMPDS.

Formalized Mathematics, 9(2):397–405, 2001.
[11] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[12] Jing-Chao Chen and Piotr Rudnicki. The construction and computation of for-loop pro-

grams for SCMPDS. Formalized Mathematics, 9(1):209–219, 2001.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[14] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,

6(4):573–577, 1997.
[15] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-

matics, 3(2):275–278, 1992.
[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[17] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107–

114, 1998.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 14, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Quick Sort on SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University / China Bell Labs

Summary. Proving the correctness of quick sort is much more complicated
than proving the correctness of the insert sort. Its difficulty is determined mainly
by the following points:

• Quick sort needs to use a push-down stack.

• It contains three nested loops.

• A subroutine of this algorithm, “Partition”, has no loop-invariant.

This means we cannot justify the correctness of the “Partition” subroutine by
the Hoare’s axiom on program verification. This article is organized as follows.
First, we present several fundamental properties of “while” program and finite
sequence. Second, we define the “Partition” subroutine on SCMPDS, the task of
which is to split a sequence into a smaller and a larger subsequence. The definition
of quick sort on SCMPDS follows. Finally, we describe the basic property of the
“Partition” and quick sort, and prove their correctness.

MML Identifier: SCPQSORT.

The terminology and notation used here have been introduced in the following
articles: [18], [19], [23], [21], [1], [3], [4], [6], [24], [2], [15], [26], [17], [11], [7], [10],
[8], [9], [12], [14], [5], [13], [20], [25], [22], and [16].

1. The Several Properties of “while” Program and Finite
Sequence

In this paper n, p0 denote natural numbers.
Let I, J be shiftable Program-blocks, let a be an Int position, and let k1 be

an integer. Observe that if a > k1 then I else J is shiftable.
Next we state the proposition

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

413
c© 2001 University of Białystok

ISSN 1426–2630

414 jing-chao chen

(1) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a, b be Int positions, and k1 be an
integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting
on s. Then (IExec(if a > k1 then I else J, s))(b) = (IExec(I, s))(b).

One can prove the following propositions:

(2) Let s, s1 be states of SCMPDS, I be a No-StopCode shiftable Program-
block, a be an Int position, i be an integer, and m be a natural num-
ber. Suppose card I > 0 and I is closed on s and halting on s and
s(DataLoc(s(a), i)) > 0 and m = LifeSpan(s+· Initialized(stop I)) + 2
and s1 = (Computation(s+· Initialized(stop while > 0(a, i, I))))(m). Then
s1¹Data-LocSCM = IExec(I, s)¹Data-LocSCM and s1+· Initialized(stop while >

0(a, i, I)) = s1.

(3) Let s be a state of SCMPDS and I be a Program-block. Suppose that
for every state t of SCMPDS such that t¹Data-LocSCM = s¹Data-LocSCM

holds I is halting on t. Then I is closed on s.

(4) For all instructions i1, i2, i3, i4 of SCMPDS holds card(i1; i2; i3; i4) = 4.

(5) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, x, y be Int positions, and i, c be integers. Suppose that

(i) card I > 0,

(ii) s(x) c + s(DataLoc(s(a), i)), and
(iii) for every state t of SCMPDS such that t(x) c + t(DataLoc(s(a), i))

and t(y) = s(y) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0
holds (IExec(I, t))(a) = t(a) and I is closed on t and halting
on t and (IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and
(IExec(I, t))(x) c+(IExec(I, t))(DataLoc(s(a), i)) and (IExec(I, t))(y) =
t(y).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

(6) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, x, y be Int positions, and i, c be integers. Suppose that

(i) card I > 0,

(ii) s(x) c, and
(iii) for every state t of SCMPDS such that t(x) c and t(y) = s(y) and

t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) = t(a) and
I is closed on t and halting on t and (IExec(I, t))(DataLoc(s(a), i)) <

t(DataLoc(s(a), i)) and (IExec(I, t))(x) c and (IExec(I, t))(y) = t(y).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

quick sort on scmpds 415

(7) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, x1, x2, x3, x4 be Int positions, and i, c, m1 be integers. Suppose
that

(i) card I > 0,

(ii) s(x4) = (s(x3)− c) + s(x1),
(iii) m1 ¬ s(x3)− c, and
(iv) for every state t of SCMPDS such that t(x4) = (t(x3) − c) +

t(x1) and m1 ¬ t(x3) − c and t(x2) = s(x2) and t(a) = s(a) and
t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) = t(a) and I is closed on t

and halting on t and (IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i))
and (IExec(I, t))(x4) = ((IExec(I, t))(x3) − c) + (IExec(I, t))(x1) and
m1 ¬ (IExec(I, t))(x3)− c and (IExec(I, t))(x2) = t(x2).
Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =
IExec(while > 0(a, i, I), IExec(I, s)).

(8) Let f be a finite sequence of elements of Z and m, k1, k, n be natural
numbers. Suppose that m ¬ k and k ¬ n and k1 = k − 1 and f is non
decreasing on m, k1 and f is non decreasing on k + 1, n and for every
natural number i such that m ¬ i and i < k holds f(i) ¬ f(k) and for
every natural number i such that k < i and i ¬ n holds f(k) ¬ f(i). Then
f is non decreasing on m, n.

(9) Let f , g be finite sequences and x be arbitrary. Suppose x ∈ dom g and
f and g are fiberwise equipotent. Then there exists arbitrary y such that
y ∈ dom g and f(x) = g(y).

(10) Let f , g, h be finite sequences. Then f and g are fiberwise equipotent if
and only if h a f and h a g are fiberwise equipotent.

(11) Let f , g be finite sequences and m, n, j be natural numbers. Suppose
that f and g are fiberwise equipotent and m ¬ n and n ¬ len f and for
every natural number i such that 1 ¬ i and i ¬ m holds f(i) = g(i) and
for every natural number i such that n < i and i ¬ len f holds f(i) = g(i)
and m < j and j ¬ n. Then there exists a natural number k such that
m < k and k ¬ n and f(j) = g(k).

2. Program Partition is to Split a Sequence into a Smaller and a
Larger Subsequence

The Program-block Partition is defined by the condition (Def. 1).

(Def. 1) Partition = ((GBP, 5) := (GBP, 4)); SubFrom(GBP, 5, GBP, 2);
((GBP, 3) := (GBP, 2)); AddTo(GBP, 3, 1); while > 0(GBP, 5, while >

0(GBP, 5, ((GBP, 7) := (GBP, 5)); AddTo(GBP, 5,−1); ((GBP, 6) :=
(intpos 4, 0)); SubFrom(GBP, 6, intpos 2, 0); (if GBP > 6 then

416 jing-chao chen

AddTo(GBP, 4,−1); AddTo(GBP, 7,−1) else Load((GBP)5:=0)));
while > 0(GBP, 7, ((GBP, 5) := (GBP, 7)); AddTo(GBP, 7,−1);
((GBP, 6) := (intpos 2, 0)); SubFrom(GBP, 6, intpos 3, 0); (if GBP >

6 then AddTo(GBP, 3, 1); AddTo(GBP, 5,−1) else Load((GBP)7:=0)));
(if GBP > 0 then 5 else (((GBP, 6) := (intpos 4, 0)); ((intpos 4, 0) :=
(intpos 3, 0)); ((intpos 3, 0) := (GBP, 6)); AddTo(GBP, 5,−2);
AddTo(GBP, 3, 1); AddTo(GBP, 4,−1)))); ((GBP, 6) := (intpos 4, 0));
((intpos 4, 0) := (intpos 2, 0)); ((intpos 2, 0) := (GBP, 6)).

3. The Construction of Quick Sort

Let n, p0 be natural numbers. The functor QuickSort(n, p0) yielding a
Program-block is defined by the condition (Def. 2).

(Def. 2) QuickSort(n, p0) = (GBP :=0); (SBP :=1); ((SBP)p1 :=p0 + 1);
((SBP)p1+1:=p1); while > 0(GBP, 1, ((GBP, 2) := (SBP, p1 + 1));
SubFrom(GBP, 2, SBP, p1); (if GBP > 2 then ((GBP, 2) := (SBP, p1));
((GBP, 4) := (SBP, p1 + 1)); Partition ; (((SBP, p1 + 3) := (SBP, p1 +
1)); ((SBP, p1 + 1) := (GBP, 4)); ((SBP, p1 + 2) := (GBP, 4));
AddTo(SBP, p1 + 1,−1); AddTo(SBP, p1 + 2, 1);
AddTo(GBP, 1, 2)) else Load(AddTo(GBP, 1,−2)))), where p1 = p0 + n.

4. The Basic Property of Partition Program

The following four propositions are true:

(12) card Partition = 38.

(13) Let s be a state of SCMPDS and m1, p0 be natural numbers. Suppose
s(GBP) = 0 and s(intpos 4) − s(intpos 2) > 0 and s(intpos 2) = m1 and
m1 p0 + 1 and p0 7. Then Partition is closed on s and Partition is
halting on s.

(14) Let s be a state of SCMPDS, m1, p0, n be natural numbers, and f ,
f1 be finite sequences of elements of Z. Suppose that s(GBP) = 0 and
s(intpos 4) − s(intpos 2) > 0 and s(intpos 2) = m1 and m1 p0 + 1 and
s(intpos 4) ¬ p0+n and p0 7 and f is FinSequence on s, p0 and len f = n

and f1 is FinSequence on IExec(Partition, s), p0 and len f1 = n. Then
(i) (IExec(Partition, s))(GBP) = 0,
(ii) (IExec(Partition, s))(intpos 1) = s(intpos 1),
(iii) f and f1 are fiberwise equipotent, and
(iv) there exists a natural number m4 such that m4 = (IExec(Partition, s))

quick sort on scmpds 417

(intpos 4) and m1 ¬ m4 and m4 ¬ s(intpos 4) and for every natural num-
ber i such that m1 ¬ i and i < m4 holds (IExec(Partition, s))(intpos m4)
(IExec(Partition, s))(intpos i) and for every natural number i such that
m4 < i and i ¬ s(intpos 4) holds (IExec(Partition, s))(intpos m4) ¬
(IExec(Partition, s))(intpos i) and for every natural number i such
that i p0 + 1 but i < s(intpos 2) or i > s(intpos 4) holds
(IExec(Partition, s))(intpos i) = s(intpos i).

(15) Partition is No-StopCode and shiftable.

5. The Basic Property of Quick Sort and Its Correctness

One can prove the following three propositions:

(16) card QuickSort(n, p0) = 57.

(17) For all natural numbers p0, n such that p0 7 holds QuickSort(n, p0) is
parahalting.

(18) Let s be a state of SCMPDS and p0, n be natural numbers. Suppose
p0 7. Then there exist finite sequences f , g of elements of Z such that

(i) len f = n,

(ii) f is FinSequence on s, p0,
(iii) len g = n,

(iv) g is FinSequence on IExec(QuickSort(n, p0), s), p0,
(v) f and g are fiberwise equipotent, and
(vi) g is non decreasing on 1, n.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized

Mathematics, 4(1):61–67, 1993.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized

Mathematics, 8(1):193–199, 1999.
[8] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-

lized Mathematics, 8(1):211–217, 1999.
[9] Jing-Chao Chen. The construction and computation of conditional statements for

SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.
[10] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.

Formalized Mathematics, 8(1):201–210, 1999.
[11] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.

Formalized Mathematics, 8(1):183–191, 1999.

418 jing-chao chen

[12] Jing-Chao Chen. The construction and computation of while-loop programs for SCMPDS.
Formalized Mathematics, 9(2):397–405, 2001.

[13] Jing-Chao Chen. Insert sort on SCMPDS. Formalized Mathematics, 9(2):407–412, 2001.
[14] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,

6(4):573–577, 1997.
[17] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-

matics, 3(2):275–278, 1992.
[18] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[19] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[20] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107–

114, 1998.
[21] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[23] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 14, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

Justifying the Correctness of the Fibonacci
Sequence and the Euclide Algorithm by

Loop-Invariant1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. If a loop-invariant exists in a loop program, computing its
result by loop-invariant is simpler and easier than computing its result by the
inductive method. For this purpose, the article describes the premise and the final
computation result of the program such as “while<0”, “while>0”, “while<>0”
by loop-invariant. To test the effectiveness of the computation method given
in this article, by using loop-invariant of the loop programs mentioned above,
we justify the correctness of the following three examples: Summing n integers
(used for testing “while>0”), Fibonacci sequence (used for testing “while<0”),
Greatest Common Divisor, i.e. Euclide algorithm (used for testing “while<>0”).

MML Identifier: SCPINVAR.

The notation and terminology used here have been introduced in the following
papers: [18], [22], [19], [1], [3], [4], [6], [7], [24], [23], [2], [5], [16], [26], [27], [12],
[8], [11], [9], [10], [13], [15], [14], [21], [25], [20], and [17].

1. Preliminaries

For simplicity, we adopt the following rules: m, n are natural numbers, i, j

are instructions of SCMPDS, I is a Program-block, and a is an Int position.
One can prove the following propositions:

(1) For all natural numbers n, m, l such that n | m and n | l holds n | m− l.

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

419
c© 2001 University of Białystok

ISSN 1426–2630

420 jing-chao chen

(2) m | n iff m | n qua integer.

(3) gcd(m,n) = gcd(m, |n−m|).
(4) For all integers a, b such that a 0 and b 0 holds a gcd b = a gcd b−a.

(5) (i; j; I)(inspos 0) = i and (i; j; I)(inspos 1) = j.

(6) Let a, b be Int positions. Then there exists a function f from
∏

(the
object kind of SCMPDS) into N such that for every state s of SCMPDS
holds

(i) if s(a) = s(b), then f(s) = 0, and
(ii) if s(a) 6= s(b), then f(s) = max(|s(a)|, |s(b)|).
(7) There exists a function f from

∏
(the object kind of SCMPDS) into N

such that for every state s of SCMPDS holds
(i) if s(a) 0, then f(s) = 0, and
(ii) if s(a) < 0, then f(s) = −s(a).

2. Computing Directly the Result of “while<0” Program by
Loop-Invariant

The scheme WhileLEnd deals with a unary functor F yielding a natural
number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while <

0(C,D,B),A)) = 0 but P[Dstate IExec(while < 0(C,D,B),A)]
provided the parameters satisfy the following conditions:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds
F(Dstate t) = 0 iff t(DataLoc(A(C),D)) 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

3. An Example: Summing Directly n Integers by Loop-Invariant

Let n, p0 be natural numbers. The functor sum(n, p0) yields a Program-block
and is defined as follows:

(Def. 1) sum(n, p0) = (GBP :=0); (intpos 1:=0); (intpos 2:=−n); (intpos 3:=p0 +
1); while < 0(GBP, 2, AddTo(GBP, 1, intpos 3, 0); AddTo(GBP, 2, 1);
AddTo(GBP, 3, 1)).

justifying the correctness of the . . . 421

We now state the proposition

(8) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, b, c be Int positions, n, i, p0 be natural numbers, and f be a finite
sequence of elements of Z. Suppose that card I > 0 and f is FinSequence
on s, p0 and len f = n and s(b) = 0 and s(a) = 0 and s(intpos i) = −n

and s(c) = p0 + 1 and for every state t of SCMPDS such that there exists
a finite sequence g of elements of Z such that g is FinSequence on s, p0

and len g = t(intpos i) + n and t(b) =
∑

g and t(c) = p0 + 1 + len g and
t(a) = 0 and t(intpos i) < 0 and for every natural number i such that
i > p0 holds t(intpos i) = s(intpos i) holds (IExec(I, t))(a) = 0 and I is
closed on t and halting on t and (IExec(I, t))(intpos i) = t(intpos i)+1 and
there exists a finite sequence g of elements of Z such that g is FinSequence
on s, p0 and len g = t(intpos i) + n + 1 and (IExec(I, t))(c) = p0 + 1 +
len g and (IExec(I, t))(b) =

∑
g and for every natural number i such that

i > p0 holds (IExec(I, t))(intpos i) = s(intpos i). Then (IExec(while <

0(a, i, I), s))(b) =
∑

f and while < 0(a, i, I) is closed on s and while <

0(a, i, I) is halting on s.

One can prove the following proposition

(9) Let s be a state of SCMPDS, n, p0 be natural numbers, and f be a
finite sequence of elements of Z. Suppose p0 3 and f is FinSequence
on s, p0 and len f = n. Then (IExec(sum(n, p0), s))(intpos 1) =

∑
f and

sum(n, p0) is parahalting.

4. Computing Directly the Result of “while>0” Program by
Loop-Invariant

The scheme WhileGEnd deals with a unary functor F yielding a natural
number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while >

0(C,D,B),A)) = 0 but P[Dstate IExec(while > 0(C,D,B),A)]
provided the parameters meet the following requirements:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds
F(Dstate t) = 0 iff t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

422 jing-chao chen

5. An Example: Computing Directly Fibonacci Sequence by
Loop-Invariant

Let n be a natural number. The functor Fib-macro n yields a Program-block
and is defined by:

(Def. 2) Fib-macro n = (GBP :=0); (intpos 1:=0); (intpos 2:=1); (intpos 3:=n);
while > 0(GBP, 3, ((GBP, 4) := (GBP, 2)); AddTo(GBP, 2, GBP, 1);
((GBP, 1) := (GBP, 4)); AddTo(GBP, 3,−1)).

We now state the proposition

(10) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, f0, f1 be Int positions, and n, i be natural numbers. Suppose
that

(i) card I > 0,

(ii) s(a) = 0,
(iii) s(f0) = 0,

(iv) s(f1) = 1,

(v) s(intpos i) = n, and
(vi) for every state t of SCMPDS and for every natural number k such

that n = t(intpos i) + k and t(f0) = Fib(k) and t(f1) = Fib(k + 1) and
t(a) = 0 and t(intpos i) > 0 holds (IExec(I, t))(a) = 0 and I is closed
on t and halting on t and (IExec(I, t))(intpos i) = t(intpos i) − 1 and
(IExec(I, t))(f0) = Fib(k + 1) and (IExec(I, t))(f1) = Fib(k + 1 + 1).
Then (IExec(while > 0(a, i, I), s))(f0) = Fib(n) and (IExec(while >

0(a, i, I), s))(f1) = Fib(n + 1) and while > 0(a, i, I) is closed on s and
while > 0(a, i, I) is halting on s.

One can prove the following proposition

(11) For every state s of SCMPDS and for every natural number n holds
(IExec(Fib-macro n, s))(intpos 1) = Fib(n) and (IExec(Fib-macro n, s))
(intpos 2) = Fib(n + 1) and Fib-macro n is parahalting.

6. The Construction of “while<>0” Loop Program

Let a be an Int position, let i be an integer, and let I be a Program-block.
The functor while <> 0(a, i, I) yields a Program-block and is defined as follows:

(Def. 3) while <> 0(a, i, I) = ((a, i) <> 0 goto2); goto (card I + 2); I;
goto (−(card I + 2)).

justifying the correctness of the . . . 423

7. The Basic Property of “while<>0” Program

One can prove the following propositions:

(12) For every Int position a and for every integer i and for every Program-
block I holds card while <> 0(a, i, I) = card I + 3.

(13) Let a be an Int position, i be an integer, m be a natural number, and
I be a Program-block. Then m < card I + 3 if and only if inspos m ∈
dom while <> 0(a, i, I).

(14) For every Int position a and for every integer i and for every Program-
block I holds inspos 0 ∈ dom while <> 0(a, i, I) and inspos 1 ∈
dom while <> 0(a, i, I).

(15) Let a be an Int position, i be an integer, and I be a Program-
block. Then (while <> 0(a, i, I))(inspos 0) = (a, i) <> 0 goto2 and
(while <> 0(a, i, I))(inspos 1) = goto (card I + 2) and (while <>

0(a, i, I))(inspos card I + 2) = goto (−(card I + 2)).
(16) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) = 0, then while <> 0(a, i, I) is
closed on s and while <> 0(a, i, I) is halting on s.

(17) Let s be a state of SCMPDS, I be a Program-block, a, c be Int positions,
and i be an integer. If s(DataLoc(s(a), i)) = 0, then IExec(while <>

0(a, i, I), s) = s+·Start-At(inspos card I + 3).
(18) Let s be a state of SCMPDS, I be a Program-block, a be an

Int position, and i be an integer. If s(DataLoc(s(a), i)) = 0, then
ICIExec(while<>0(a,i,I),s) = inspos card I + 3.

(19) Let s be a state of SCMPDS, I be a Program-block, a, b be Int positions,
and i be an integer. If s(DataLoc(s(a), i)) = 0, then (IExec(while <>

0(a, i, I), s))(b) = s(b).

Let I be a shiftable Program-block, let a be an Int position, and let i be an
integer. Observe that while <> 0(a, i, I) is shiftable.

Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while <> 0(a, i, I) is No-StopCode.

8. Computing Directly the Result of “while<>0” Program by
Loop-Invariant

Now we present three schemes. The scheme WhileNHalt deals with a unary
functor F yielding a natural number, a state A of SCMPDS, a No-StopCode

424 jing-chao chen

shiftable Program-block B, an Int position C, an integerD, and a unary predicate
P, and states that:

F(A) = F(A) or P[A] but while <> 0(C,D,B) is closed on A
but while <> 0(C,D,B) is halting on A

provided the following conditions are satisfied:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) = 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
The scheme WhileNExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while <> 0(C,D,B),A) =
IExec(while <> 0(C,D,B), IExec(B,A))

provided the parameters meet the following conditions:
• cardB > 0,

• A(DataLoc(A(C),D)) 6= 0,

• For every state t of SCMPDS such that P[Dstate t] and
F(Dstate t) = 0 holds t(DataLoc(A(C),D)) = 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].
The scheme WhileNEnd deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an
Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but F(Dstate IExec(while <>

0(C,D,B),A)) = 0 but P[Dstate IExec(while <> 0(C,D,B),A)]
provided the parameters satisfy the following conditions:
• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] holds
F(Dstate t) = 0 iff t(DataLoc(A(C),D)) = 0,

• P[DstateA], and
• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) 6= 0. Then (IExec(B, t))(C) = t(C) and
B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

justifying the correctness of the . . . 425

We now state the proposition

(20) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, b, c be Int positions, and i, d be integers. Suppose that

(i) card I > 0,

(ii) s(a) = d,

(iii) s(b) > 0,

(iv) s(c) > 0,

(v) s(DataLoc(d, i)) = s(b)− s(c), and
(vi) for every state t of SCMPDS such that t(b) > 0 and t(c) > 0

and t(a) = d and t(DataLoc(d, i)) = t(b) − t(c) and t(b) 6= t(c) holds
(IExec(I, t))(a) = d and I is closed on t and halting on t and if t(b) > t(c),
then (IExec(I, t))(b) = t(b) − t(c) and (IExec(I, t))(c) = t(c) and if
t(b) ¬ t(c), then (IExec(I, t))(c) = t(c) − t(b) and (IExec(I, t))(b) = t(b)
and (IExec(I, t))(DataLoc(d, i)) = (IExec(I, t))(b)− (IExec(I, t))(c).
Then while <> 0(a, i, I) is closed on s and while <> 0(a, i, I) is halting
on s and if s(DataLoc(s(a), i)) 6= 0, then IExec(while <> 0(a, i, I), s) =
IExec(while <> 0(a, i, I), IExec(I, s)).

9. An Example: Computing Greatest Common Divisor (Euclide
Algorithm) by Loop-Invariant

The Program-block GCD-Algorithm is defined by:

(Def. 4) GCD-Algorithm = (GBP :=0); ((GBP, 3) := (GBP, 1));
SubFrom(GBP, 3, GBP, 2); while <> 0(GBP, 3, (if GBP > 3 then
Load(SubFrom(GBP, 1, GBP, 2)) else Load(SubFrom(GBP, 2, GBP, 1)));
((GBP, 3) := (GBP, 1)); SubFrom(GBP, 3, GBP, 2)).

Next we state the proposition

(21) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a, b, c be Int positions, and i, d be integers. Suppose that

(i) card I > 0,

(ii) s(a) = d,

(iii) s(b) > 0,

(iv) s(c) > 0,

(v) s(DataLoc(d, i)) = s(b)− s(c), and
(vi) for every state t of SCMPDS such that t(b) > 0 and t(c) > 0

and t(a) = d and t(DataLoc(d, i)) = t(b) − t(c) and t(b) 6= t(c) holds
(IExec(I, t))(a) = d and I is closed on t and halting on t and if t(b) > t(c),
then (IExec(I, t))(b) = t(b) − t(c) and (IExec(I, t))(c) = t(c) and if
t(b) ¬ t(c), then (IExec(I, t))(c) = t(c) − t(b) and (IExec(I, t))(b) = t(b)
and (IExec(I, t))(DataLoc(d, i)) = (IExec(I, t))(b)− (IExec(I, t))(c).

426 jing-chao chen

Then (IExec(while <> 0(a, i, I), s))(b) = s(b) gcd s(c) and (IExec(while <>

0(a, i, I), s))(c) = s(b) gcd s(c).
We now state the proposition

(22) card GCD-Algorithm = 12.

The following proposition is true

(23) Let s be a state of SCMPDS and x, y be integers. Sup-
pose s(intpos 1) = x and s(intpos 2) = y and x > 0 and
y > 0. Then (IExec(GCD-Algorithm, s))(intpos 1) = x gcd y and
(IExec(GCD-Algorithm, s))(intpos 2) = x gcd y and GCD-Algorithm is
closed on s and GCD-Algorithm is halting on s.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries.

Formalized Mathematics, 4(1):69–72, 1993.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized

Mathematics, 8(1):193–199, 1999.
[9] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-

lized Mathematics, 8(1):211–217, 1999.
[10] Jing-Chao Chen. The construction and computation of conditional statements for

SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.
[11] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.

Formalized Mathematics, 8(1):201–210, 1999.
[12] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.

Formalized Mathematics, 8(1):183–191, 1999.
[13] Jing-Chao Chen. The construction and computation of while-loop programs for SCMPDS.

Formalized Mathematics, 9(2):397–405, 2001.
[14] Jing-Chao Chen. Insert sort on SCMPDS. Formalized Mathematics, 9(2):407–412, 2001.
[15] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[17] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,

6(4):573–577, 1997.
[18] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[22] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.

justifying the correctness of the . . . 427

[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received June 14, 2000

428 jing-chao chen

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

On the Isomorphism between Finite Chains

Marta Pruszyńska
University of Białystok

Marek Dudzicz
University of Białystok

MML Identifier: ORDERS 4.

The notation and terminology used here are introduced in the following papers:
[11], [1], [4], [8], [9], [7], [10], [3], [5], [2], and [6].

A relational structure is said to be a chain if:

(Def. 1) It is a connected non empty poset or it is empty.

One can verify that every relational structure which is empty is also reflexive,
transitive, and antisymmetric.

One can verify that every chain is reflexive, transitive, and antisymmetric.
Let us note that there exists a chain which is non empty.
One can check that every non empty chain is connected.
Let L be a 1-sorted structure. We say that L is countable if and only if:

(Def. 2) The carrier of L is countable.

Let us observe that there exists a chain which is finite and non empty.
Let us mention that there exists a chain which is countable.
Let A be a connected non empty relational structure. Observe that every

non empty relational substructure of A which is full is also connected.
Let A be a finite relational structure. Observe that every relational substruc-

ture of A is finite.
We now state the proposition

(1) For all natural numbers n, m such that n ¬ m holds 〈n,⊆〉 is a full
relational substructure of 〈m,⊆〉.

Let L be a relational structure and let A, B be sets. We say that A, B form
upper lower partition of L if and only if:

(Def. 3) A ∪ B = the carrier of L and for all elements a, b of L such that a ∈ A

and b ∈ B holds a < b.

Next we state four propositions:

429
c© 2001 University of Białystok

ISSN 1426–2630

430 marta pruszyńska and marek dudzicz

(2) Let L be a relational structure and A, B be sets. If A, B form upper
lower partition of L, then A ∩B = ∅.

(3) Let L be an upper-bounded antisymmetric non empty relational struc-
ture. Then (the carrier of L) \ {>L}, {>L} form upper lower partition of
L.

(4) Let L1, L2 be relational structures and f be a map from L1 into L2.
Suppose f is isomorphic. Then

(i) the carrier of L1 6= ∅ iff the carrier of L2 6= ∅,
(ii) the carrier of L2 6= ∅ or the carrier of L1 = ∅, and
(iii) the carrier of L1 = ∅ iff the carrier of L2 = ∅.
(5) Let L1, L2 be antisymmetric relational structures and A1, B1 be subsets

of L1. Suppose A1, B1 form upper lower partition of L1. Let A2, B2 be
subsets of L2. Suppose A2, B2 form upper lower partition of L2. Let f

be a map from sub(A1) into sub(A2). Suppose f is isomorphic. Let g be
a map from sub(B1) into sub(B2). Suppose g is isomorphic. Then there
exists a map h from L1 into L2 such that h = f+·g and h is isomorphic.

Let n be a natural number. Observe that n + 1 is non empty.
The following proposition is true

(6) Let A be a finite chain and n be a natural number. If the carrier of A =
n, then A and 〈n,⊆〉 are isomorphic.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[5] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[6] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-

ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.
[7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[9] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.

Received June 29, 2000

FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Białystok

The Jónsson Theorem about the
Representation of Modular Lattices

Mariusz Łapiński
University of Białystok

Summary. Formalization of [14, pp. 192–199], chapter IV. Partition Lat-
tices, theorem 8.

MML Identifier: LATTICE8.

The articles [8], [18], [6], [9], [10], [3], [15], [20], [1], [21], [13], [2], [17], [7], [23],
[24], [22], [19], [5], [12], [16], [4], [25], and [11] provide the terminology and
notation for this paper.

1. Preliminaries

Let A be a non empty set and let P , R be binary relations on A. Let us
observe that P ⊆ R if and only if:

(Def. 1) For all elements a, b of A such that 〈〈a, b〉〉 ∈ P holds 〈〈a, b〉〉 ∈ R.

Let L be a relational structure. We say that L is finitely typed if and only
if the condition (Def. 2) is satisfied.

(Def. 2) There exists a non empty set A such that
(i) for every set e such that e ∈ the carrier of L holds e is an equivalence

relation of A, and
(ii) there exists a natural number o such that for all equivalence relations

e1, e2 of A and for all sets x, y such that e1 ∈ the carrier of L and e2 ∈ the
carrier of L and 〈〈x, y〉〉 ∈ e1 t e2 there exists a non empty finite sequence
F of elements of A such that len F = o and x and y are joint by F , e1 and
e2.

431
c© 2001 University of Białystok

ISSN 1426–2630

432 mariusz Łapiński

Let L be a lower-bounded lattice and let n be a natural number. We say
that L has a representation of type ¬ n if and only if the condition (Def. 3) is
satisfied.

(Def. 3) There exists a non trivial set A and there exists a homomorphism f from
L to EqRelPoset(A) such that

(i) f is one-to-one,
(ii) Im f is finitely typed,
(iii) there exists an equivalence relation e of A such that e ∈ the carrier of

Im f and e 6= idA, and
(iv) the type of Im f ¬ n.

Let us mention that there exists a lattice which is lower-bounded, distribu-
tive, and finite.

Let A be a non trivial set. Observe that there exists a non empty sublattice
of EqRelPoset(A) which is non trivial, finitely typed, and full.

One can prove the following propositions:

(1) For every non empty set A and for every lower-bounded lattice L and
for every distance function d of A, L holds succ ∅ ⊆ DistEsti(d).

(2) Every trivial semilattice is modular.

(3) Let A be a non empty set and L be a non empty sublattice of
EqRelPoset(A). Then L is trivial or there exists an equivalence relation e

of A such that e ∈ the carrier of L and e 6= idA.

(4) Let L1, L2 be lower-bounded lattices and f be a map from L1 into
L2. Suppose f is infs-preserving and sups-preserving. Then f is meet-
preserving and join-preserving.

(5) For all lower-bounded lattices L1, L2 such that L1 and L2 are isomorphic
and L1 is modular holds L2 is modular.

(6) Let S be a lower-bounded non empty poset, T be a non empty poset,
and f be a monotone map from S into T . Then Im f is lower-bounded.

(7) Let L be a lower-bounded lattice, x, y be elements of L, A be a non
empty set, and f be a homomorphism from L to EqRelPoset(A). If f is
one-to-one, then if f◦(x) ¬ f◦(y), then x ¬ y.

2. The Jónsson Theorem

We now state two propositions:

(8) Let A be a non trivial set, L be a finitely typed full non empty sublattice
of EqRelPoset(A), and e be an equivalence relation of A. Suppose e ∈ the
carrier of L and e 6= idA. If the type of L ¬ 2, then L is modular.

the jónsson theorem about the . . . 433

(9) For every lower-bounded lattice L such that L has a representation of
type ¬ 2 holds L is modular.

Let A be a set. The functor new set2 A is defined by:

(Def. 4) new set2 A = A ∪ {{A}, {{A}}}.
Let A be a set. One can verify that new set2 A is non empty.
Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, and let q be an element of [:A, A, the carrier of
L, the carrier of L :]. The functor new bi fun2(d, q) yielding a bifunction from
new set2 A into L is defined by the conditions (Def. 5).

(Def. 5)(i) For all elements u, v of A holds (new bi fun2(d, q))(u, v) = d(u, v),
(ii) (new bi fun2(d, q))({A}, {A}) = ⊥L,

(iii) (new bi fun2(d, q))({{A}}, {{A}}) = ⊥L,

(iv) (new bi fun2(d, q))({A}, {{A}}) = (d(q1, q2) t q3) u q4,

(v) (new bi fun2(d, q))({{A}}, {A}) = (d(q1, q2) t q3) u q4, and
(vi) for every element u of A holds (new bi fun2(d, q))(u, {A}) =

d(u, q1) t q3 and (new bi fun2(d, q))({A}, u) = d(u, q1) t q3 and
(new bi fun2(d, q))(u, {{A}}) = d(u, q2)tq3 and (new bi fun2(d, q))({{A}},
u) = d(u, q2) t q3.

Next we state several propositions:

(10) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is zeroed. Let q be an element of [:A,

A, the carrier of L, the carrier of L :]. Then new bi fun2(d, q) is zeroed.

(11) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is symmetric. Let q be an element
of [:A, A, the carrier of L, the carrier of L :]. Then new bi fun2(d, q) is
symmetric.

(12) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is
modular. Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let q be an element of [:A, A, the carrier of
L, the carrier of L :]. If d(q1, q2) ¬ q3 t q4, then new bi fun2(d, q) satisfies
triangle inequality.

(13) For every set A holds A ⊆ new set2 A.

(14) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction
from A into L, and q be an element of [:A, A, the carrier of L, the carrier
of L :]. Then d ⊆ new bi fun2(d, q).

Let A be a non empty set and let O be an ordinal number. The functor
ConsecutiveSet2(A,O) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequence L0 such that
(i) ConsecutiveSet2(A, O) = last L0,

(ii) dom L0 = succ O,

434 mariusz Łapiński

(iii) L0(∅) = A,

(iv) for every ordinal number C and for every set z such that succ C ∈ succ O

and z = L0(C) holds L0(succ C) = new set2 z, and
(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succ O and C 6= ∅ and C is a limit ordinal number and L1 = L0¹C
holds L0(C) =

⋃
rng L1.

One can prove the following three propositions:

(15) For every non empty set A holds ConsecutiveSet2(A, ∅) = A.

(16) For every non empty set A and for every ordinal number O holds
ConsecutiveSet2(A, succ O) = new set2 ConsecutiveSet2(A,O).

(17) Let A be a non empty set, O be an ordinal number, and T be a transfinite
sequence. Suppose O 6= ∅ and O is a limit ordinal number and dom T =
O and for every ordinal number O1 such that O1 ∈ O holds T (O1) =
ConsecutiveSet2(A, O1). Then ConsecutiveSet2(A,O) =

⋃
rng T.

Let A be a non empty set and let O be an ordinal number. Note that
ConsecutiveSet2(A,O) is non empty.

We now state the proposition

(18) For every non empty set A and for every ordinal number O holds A ⊆
ConsecutiveSet2(A, O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bi-
function from A into L, let q be a sequence of quadruples of d, and let O be an
ordinal number. Let us assume that O ∈ dom q. The functor Quadr2(q, O) yiel-
ding an element of [: ConsecutiveSet2(A,O), ConsecutiveSet2(A,O), the carrier
of L, the carrier of L :] is defined by:

(Def. 7) Quadr2(q, O) = q(O).
Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, let q be a sequence of quadruples of d, and let O

be an ordinal number. The functor ConsecutiveDelta2(q, O) is defined by the
condition (Def. 8).

(Def. 8) There exists a transfinite sequence L0 such that
(i) ConsecutiveDelta2(q, O) = last L0,

(ii) dom L0 = succ O,

(iii) L0(∅) = d,

(iv) for every ordinal number C and for every set z such
that succ C ∈ succ O and z = L0(C) holds L0(succ C) =
new bi fun2(BiFun(z, ConsecutiveSet2(A,C), L), Quadr2(q, C)), and

(v) for every ordinal number C and for every transfinite sequence L1 such
that C ∈ succ O and C 6= ∅ and C is a limit ordinal number and L1 = L0¹C
holds L0(C) =

⋃
rng L1.

Next we state several propositions:

the jónsson theorem about the . . . 435

(19) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, and q be a sequence of quadruples of d. Then
ConsecutiveDelta2(q, ∅) = d.

(20) Let A be a non empty set, L be a lower-bounded lattice, d be
a bifunction from A into L, q be a sequence of quadruples of d,
and O be an ordinal number. Then ConsecutiveDelta2(q, succ O) =
new bi fun2(BiFun(ConsecutiveDelta2(q,O), ConsecutiveSet2(A, O), L),
Quadr2(q, O)).

(21) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunc-
tion from A into L, q be a sequence of quadruples of d, T be a trans-
finite sequence, and O be an ordinal number. Suppose O 6= ∅ and O is
a limit ordinal number and dom T = O and for every ordinal number
O1 such that O1 ∈ O holds T (O1) = ConsecutiveDelta2(q, O1). Then
ConsecutiveDelta2(q, O) =

⋃
rng T.

(22) For every non empty set A and for all ordinal numbers O, O1, O2 such
that O1 ⊆ O2 holds ConsecutiveSet2(A,O1) ⊆ ConsecutiveSet2(A,O2).

(23) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, q be a sequence of quadruples of d, and O be
an ordinal number. Then ConsecutiveDelta2(q, O) is a bifunction from
ConsecutiveSet2(A,O) into L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
bifunction from A into L, let q be a sequence of quadruples of d, and let
O be an ordinal number. Then ConsecutiveDelta2(q,O) is a bifunction from
ConsecutiveSet2(A,O) into L.

The following propositions are true:

(24) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction
from A into L, q be a sequence of quadruples of d, and O be an ordinal
number. Then d ⊆ ConsecutiveDelta2(q, O).

(25) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, O1, O2 be ordinal numbers, and q be a sequ-
ence of quadruples of d. If O1 ⊆ O2, then ConsecutiveDelta2(q, O1) ⊆
ConsecutiveDelta2(q, O2).

(26) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is zeroed. Let q be a sequence of qu-
adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)
is zeroed.

(27) Let A be a non empty set, L be a lower-bounded lattice, and d be a bi-
function from A into L. Suppose d is symmetric. Let q be a sequence of qu-
adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)
is symmetric.

436 mariusz Łapiński

(28) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is
modular. Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let O be an ordinal number and q be a sequ-
ence of quadruples of d. If O ⊆ DistEsti(d), then ConsecutiveDelta2(q, O)
satisfies triangle inequality.

(29) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, O be an ordinal number, and q be a sequence
of quadruples of d. If O ⊆ DistEsti(d), then ConsecutiveDelta2(q, O) is a
distance function of ConsecutiveSet2(A, O), L.

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a
bifunction from A into L. The functor NextSet2 d is defined by:

(Def. 9) NextSet2 d = ConsecutiveSet2(A, DistEsti(d)).
Let A be a non empty set, let L be a lower-bounded lattice, and let d be a

bifunction from A into L. Note that NextSet2 d is non empty.
Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, and let q be a sequence of quadruples of d. The
functor NextDelta2 q is defined as follows:

(Def. 10) NextDelta2 q = ConsecutiveDelta2(q, DistEsti(d)).
Let A be a non empty set, let L be a lower-bounded modular lattice, let d

be a distance function of A, L, and let q be a sequence of quadruples of d. Then
NextDelta2 q is a distance function of NextSet2 d, L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
distance function of A, L, let A1 be a non empty set, and let d1 be a distance
function of A1, L. We say that A1, d1 is extension2 of A, d if and only if:

(Def. 11) There exists a sequence q of quadruples of d such that A1 = NextSet2 d

and d1 = NextDelta2 q.

Next we state the proposition

(30) Let A be a non empty set, L be a lower-bounded lattice, d be a distance
function of A, L, A1 be a non empty set, and d1 be a distance function of
A1, L. Suppose A1, d1 is extension2 of A, d. Let x, y be elements of A and
a, b be elements of L. Suppose d(x, y) ¬ a t b. Then there exist elements
z1, z2 of A1 such that d1(x, z1) = a and d1(z1, z2) = (d(x, y) t a) u b and
d1(z2, y) = a.

Let A be a non empty set, let L be a lower-bounded modular lattice, and
let d be a distance function of A, L. A function is called a ExtensionSeq2 of A,
d if it satisfies the conditions (Def. 12).

(Def. 12)(i) dom it = N,

(ii) it(0) = 〈〈A, d〉〉, and
(iii) for every natural number n there exists a non empty set A′ and there

exists a distance function d′ of A′, L and there exists a non empty set

the jónsson theorem about the . . . 437

A1 and there exists a distance function d1 of A1, L such that A1, d1 is
extension2 of A′, d′ and it(n) = 〈〈A′, d′〉〉 and it(n + 1) = 〈〈A1, d1〉〉.

We now state several propositions:

(31) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be
natural numbers. If k ¬ l, then S(k)1 ⊆ S(l)1.

(32) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be
natural numbers. If k ¬ l, then S(k)2 ⊆ S(l)2.

(33) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the
carrier of L, δ0(L), and F1 be a non empty set. Suppose F1 =

⋃{S(i)1 :
i ranges over natural numbers}. Then

⋃{S(i)2 : i ranges over natural
numbers} is a distance function of F1, L.

(34) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the
carrier of L, δ0(L), F1 be a non empty set, F2 be a distance function
of F1, L, x, y be elements of F1, and a, b be elements of L. Suppose
F1 =

⋃{S(i)1 : i ranges over natural numbers} and F2 =
⋃{S(i)2 : i

ranges over natural numbers} and F2(x, y) ¬ a t b. Then there exist
elements z1, z2 of F1 such that F2(x, z1) = a and F2(z1, z2) = (F2(x,

y) t a) u b and F2(z2, y) = a.

(35) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the
carrier of L, δ0(L), F1 be a non empty set, F2 be a distance function of F1,
L, f be a homomorphism from L to EqRelPoset(F1), e1, e2 be equivalence
relations of F1, and x, y be sets. Suppose that

(i) f = α(F2),
(ii) F1 =

⋃{S(i)1 : i ranges over natural numbers},
(iii) F2 =

⋃{S(i)2 : i ranges over natural numbers},
(iv) e1 ∈ the carrier of Im f,

(v) e2 ∈ the carrier of Im f, and
(vi) 〈〈x, y〉〉 ∈ e1 t e2.

Then there exists a non empty finite sequence F of elements of F1 such
that len F = 2 + 2 and x and y are joint by F , e1 and e2.

(36) For every lower-bounded modular lattice L holds L has a representation
of type ¬ 2.

(37) For every lower-bounded lattice L holds L has a representation of type
¬ 2 iff L is modular.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

438 mariusz Łapiński

[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[7] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[13] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,

1996.
[14] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.
[15] Jarosław Gryko. The Jónson’s theorem. Formalized Mathematics, 6(4):515–524, 1997.
[16] Adam Naumowicz. On the characterization of modular and distributive lattices. Forma-

lized Mathematics, 7(1):53–55, 1998.
[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.

Formalized Mathematics, 1(3):441–444, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[21] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[25] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices

and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received June 29, 2000

the jónsson theorem about the . . . 439

alalalalalal alalalalalalal

Index of MML Identifiers

AMISTD 1 .291
AMISTD 2 .303
CARD FIL .323
COMPLFLD . 265
FUZZY 1 .351
FUZZY 2 .357
HAHNBAN1 . 363
INTEGRA4 . 271
INTEGRA5 . 281
LATTICE7 . 261
LATTICE8 . 431
ORDERS 4 .429
PENCIL 1 .383
POLYEQ 1 .347
POLYNOM2 . 331
POLYNOM3 . 339
POLYNOM4 . 391
RADIX 2 .1275
RFUNCT 4 .285
SCMPDS 8 .397
SCMRING3 . 317
SCPINVAR . 419
SCPISORT . 407
SCPQSORT . 413
WAYBEL28 . 237
WAYBEL29 . 241
WAYBEL30 . 249
WAYBEL31 . 255
WAYBEL32 . 377
YELLOW17 . 373

440

Contents Formaliz. Math. 9 (2)

Lim-Inf Convergence
By Bartłomiej Skorulski . 237

The Characterization of the Continuity of Topologies
By Grzegorz Bancerek and Adam Naumowicz 241

Meet Continuous Lattices Revisited
By Artur Korniłowicz . 249

Weights of Continuous Lattices
By Robert Milewski . 255

Representation Theorem for Finite Distributive Lattices
By Marek Dudzicz . 261

The Field of Complex Numbers
By Anna Justyna Milewska . 265

Integrability of Bounded Total Functions
By Noboru Endou et al. 271

High-Speed Algorithms for RSA Cryptograms
By Yasushi Fuwa and Yoshinori Fujisawa275

Definition of Integrability for Partial Functions from R to R and
Integrability for Continuous Functions

By Noboru Endou et al. 281

Introduction to Several Concepts of Convexity and Semicontinuity
for Function from R to R

By Noboru Endou et al. 285

Standard Ordering of Instruction Locations
By Andrzej Trybulec et al. 291

On the Composition of Macro Instructions of Standard Compu-
ters

By Artur Korniłowicz . 303

Continued on inside back cover

The Properties of Instructions of SCM over Ring
By Artur Korniłowicz . 317

Basic Facts about Inaccessible and Measurable Cardinals
By Josef Urban . 323

The Evaluation of Multivariate Polynomials
By Christoph Schwarzweller and Andrzej Trybulec . . . 331

The Ring of Polynomials
By Robert Milewski . 339

Solving Roots of Polynomial Equations of Degree 2 and 3 with
Real Coefficients

By Liang Xiquan . 347

The Concept of Fuzzy Set and Membership Function and Basic
Properties of Fuzzy Set Operation

By Takashi Mitsuishi et al. 351

Basic Properties of Fuzzy Set Operation and Membership Func-
tion

By Takashi Mitsuishi et al. 357

The Hahn Banach Theorem in the Vector Space over the Field of
Complex Numbers

By Anna Justyna Milewska . 363

The Tichonov Theorem
By Bartłomiej Skorulski . 373

On the Order-consistent Topology of Complete and Uncomplete
Lattices

By Ewa Grądzka . 377

On Segre’s Product of Partial Line Spaces
By Adam Naumowicz .383

The Evaluation of Polynomials
By Robert Milewski . 391

The Construction and Computation of While-Loop Programs for
SCMPDS

By Jing-Chao Chen . 397

Insert Sort on SCMPDS
By Jing-Chao Chen . 407

Quick Sort on SCMPDS
By Jing-Chao Chen . 413

Justifying the Correctness of the Fibonacci Sequence and the Euc-
lide Algorithm by Loop-Invariant

By Jing-Chao Chen . 419

On the Isomorphism between Finite Chains
By Marta Pruszyńska and Marek Dudzicz 429

The Jónsson Theorem about the Representation of Modular Lat-
tices

By Mariusz Łapiński . 431

Index of MML Identifiers . 440

Continued on inside back cover

