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Summary. The earlier SCM computer did not contain recursive function,
so Trybulec and Nakamura proved the correctness of the Euclid’s algorithm only
by way of an iterative program. However, the recursive method is a very im-
portant programming method, furthermore, for some algorithms, for example
Quicksort, only by employing a recursive method (note push-down stack is es-
sentially also a recursive method) can they be implemented. The main goal of
the article is to test the recursive function of the SCMPDS computer by proving
the correctness of the Euclid’s algorithm by way of a recursive program. In this
article, we observed that the memory required by the recursive Euclide algori-
thm is variable but it is still autonomic. Although the algorithm here is more
complicated than the non-recursive algorithm, its focus is that the SCMPDS
computer will be able to implement many algorithms like Quicksort which the
SCM computer cannot do.

MML Identifier: SCMP_GCD.

The articles [12], [14], [1], [3], [5], [4], [16], [15], [11], [2], [10], [18], [9], [8], [6],
[7], [17], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: m, n denote natural numbers, i, j
denote instructions of SCMPDS, s denotes a state of SCMPDS, and I, J denote
Program-block.
One can prove the following three propositions:
(1) If m >0, then ged(n, m) = ged(m, n mod m).
(2) For all integers ¢, j such that i > 0 and j > 0 holds i ged j = j ged imod .
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(3) For every natural number m and for every integer j such that insposm =
j holds insposm + 2 =2 (|j| +2) + 4.

Let k be a natural number. The functor intpos k yields a Int position and is
defined as follows:

(Def. 1) intposk = d.
Next we state three propositions:

(4) For all natural numbers ni, ny such that ny # ng holds intposn; #
intposns.

(5) For all natural numbers nj, ng holds DataLoc(ny,ng) = intposni + na.

(6) For every state s of SCMPDS and for all natural numbers m;j, mo such
that IC; = insposmj + mg holds ICplusConst(s, —mg) = insposm;.

The Int position GBP is defined by:
(Def. 2) GBP = intpos 0.
The Int position SBP is defined as follows:
(Def. 3) SBP = intpos 1.

The following propositions are true:

(7) GBP # SBP.

(8) card([;i) =card ] + 1.

(9) card(isj) = 2.
(10) (I;i)(insposcardI) =i and insposcard I € dom(7;i).
(11) (I3i;J)(insposcard [) = i.

2. THE CONSTRUCTION OF RECURSIVE EUCLIDE ALGORITHM

The Program-block GCD — Algorithm is defined by:
(Def. 4) GCD — Algorithm = (GBP :=0);(SBP :=7); saveIC(SBP, RetIC);goto 2;
haltscvpps; ((SBP, 3) <= 0_goto9);((SBP, 6) := (SBP, 3));
Divide(SBP, 2,SBP, 3);((SBP,7) := (SBP,3));((SBP,4 + RetSP) :=
(GBP,1)); AddTo(GBP, 1,4); savel C(SBP, RetIC);goto (—7);((SBP,2) :=
(SBP, 6)); return SBP .

3. THE COMPUTATION OF RECURSIVE EUCLIDE ALGORITHM

One can prove the following propositions:
(12) card GCD — Algorithm = 15.
(13) n < 15 iff insposn € dom GCD — Algorithm .
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(14) (GCD — Algorithm)(inspos0) = GBP :=0 and (GCD — Algorithm)
(inspos 1) = SBP:=7 and (GCD — Algorithm)(inspos 2) = savelC(SBP,
RetIC) and (GCD — Algorithm)(inspos 3) = goto 2 and (GCD — Algorithm)
(inspos4) = haltscmpps and (GCD — Algorithm)(insposb) =
(SBP,3) <= 0_goto9 and (GCD — Algorithm)(inspos6) = (SBP,6) :=
(SBP,3) and (GCD — Algorithm)(inspos7) = Divide(SBP,2,SBP, 3)
and (GCD — Algorithm)(inspos8) = (SBP,7) := (SBP,3) and
(GCD — Algorithm)(inspos9) = (SBP,4 + RetSP) := (GBP,1) and
(GCD — Algorithm)(inspos 10) = AddTo(GBP, 1,4) and (GCD — Algorithm)
(inspos 11) = savelC(SBP, RetIC) and (GCD — Algorithm)(inspos 12) =
goto (—7) and (GCD — Algorithm)(inspos 13) = (SBP, 2) := (SBP, 6) and
(GCD — Algorithm)(inspos 14) = return SBP .

(15) Let s be a state of SCMPDS. Suppose Initialized(GCD — Algorithm) C

s. Then IC(computation(s))(4) = inspos 5 and (Computation(s))(4)(GBP) =

0 and (Computation(s))(4)(SBP) = 7 and (Computation(s))(4)(intpos 7+

RetIC) = inspos2 and (Computation(s))(4)(intpos9) = s(intpos9) and

(Computation(s))(4)(intpos 10) = s(intpos 10).

(16) Let s be a state of SCMPDS. Suppose GCD — Algorithm C s and IC, =
inspos 5 and s(SBP) > 0 and s(GBP) = 0 and s(DataLoc(s(SBP),3)) > 0
and s(DataLoc(s(SBP),2)) > s(DataLoc(s(SBP), 3)). Then there exists n
such that

(i)  Curlnstr((Computation(s))(n)) = return SBP,

(i)  s(SBP) = (Computation(s))(n)(SBP),

(iii)  (Computation(s))(n)(DataLoc(s(SBP),2)) = s(DataLoc(s(SBP), 2))
ged s(DataLoc(s(SBP), 3)), and

(iv)  for every natural number j such that 1 < j and j < s(SBP) + 1 holds
s(intpos j) = (Computation(s))(n)(intpos j).

(17) Let s be a state of SCMPDS. Suppose GCD — Algorithm C s and IC; =
inspos 5 and s(SBP) > 0 and s(GBP) = 0 and s(DataLoc(s(SBP),3)) > 0
and s(DataLoc(s(SBP),2)) > 0. Then there exists n such that

(i)  Curlnstr((Computation(s))(n)) = return SBP,

(ii)  s(SBP) = (Computation(s))(n)(SBP),

(iii)  (Computation(s))(n)(DataLoc(s(SBP),2)) = s(DataLoc(s(SBP),2))
ged s(DataLoc(s(SBP), 3)), and

(iv)  for every natural number j such that 1 < j and j < s(SBP) + 1 holds
s(intpos j) = (Computation(s))(n)(intpos j).
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4. THE CORRECTNESS OF RECURSIVE EUCLIDE ALGORITHM

The following proposition is true

(18) Let s be a state of SCMPDS. Suppose Initialized(GCD — Algorithm) C
s. Let x, y be integers. If s(intpos9) = = and s(intpos10) =y and = > 0
and y > 0, then (Result(s))(intpos9) = x ged y.

5. THE AUTONOMY OF RECURSIVE EUCLIDE ALGORITHM

We now state the proposition

(19) Let p be a finite partial state of SCMPDS and z, y be integers. If
y 2> 0and z > y and p = [intpos9 —— z,intpos10 —— y|, then
Initialized(GCD — Algorithm)+-p is autonomic.
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The terminology and notation used here are introduced in the following articles:
[13], [5], [1], [16], [6], [14], [11], [18], [17], [12], [15], 7], [3], [4], [10], [2], [8], [19],
and [9].

1. PRELIMINARIES

One can prove the following proposition

(1) Let S, T be up-complete Scott top-lattices and M be a subset of
SCMaps(S,T). Then | |gopaps(sry M is a continuous map from S into
T.

Let S be a non empty relational structure and let T be a non empty reflexive
relational structure. One can check that every map from S into T which is
constant is also monotone.

Let S be a non empty relational structure, let T be a reflexive non empty
relational structure, and let a be an element of the carrier of 7. One can check
that S — a is monotone.

One can prove the following propositions:

(2) Let S be anon empty relational structure and 7" be a lower-bounded anti-
symmetric reflexive non empty relational structure. Then Lyjonmaps(s,7) =
S — _LT.

(3) Let S be a non empty relational structure and T be an upper-
bounded antisymmetric reflexive non empty relational structure. Then
TMonMaps(S,T) =S+ Tr.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(4) Let S, T be complete lattices, f be a monotone map from S into 7', and
x be an element of S. Then f(z) = sup(f°|z).

(5) Let S, T be complete lower-bounded lattices, f be a monotone map from
S into T', and x be an element of S. Then f(z) = | | {f(w); w ranges over
elements of S: w < x}.

(6) Let S be a relational structure, 7' be a non empty relational structure,
and F be a subset of Tthe carrier of S Thep sup F' is a map from S into 7.

2. ON THE ScOTT CONTINUITY OF MAPS

Let X1, X2, Y be non empty relational structures, let f be a map from [ X7,
Xy ] into Y, and let = be an element of the carrier of X;. The functor Proj(f, z)
yields a map from X5 into Y and is defined as follows:

(Def. 1) Proj(f,z) = (curry f)(x).

For simplicity, we use the following convention: X7, X5, Y denote non empty
relational structures, f denotes a map from [ X;, Xo] into Y, = denotes an
element of the carrier of X7, and y denotes an element of the carrier of Xs.

We now state the proposition

(7) For every element y of the carrier of Xy holds (Proj(f,x))(y) = f({x,
y))-
Let X1, X2, Y be non empty relational structures, let f be a map from [ X7,

X ] into Y, and let y be an element of the carrier of Xo. The functor Proj(f,y)
yielding a map from X; into Y is defined by:

(Def. 2)  Proj(f,y) = (curry’ f)(y).

The following propositions are true:

(8) For every element x of the carrier of X holds (Proj(f,y))(z) = f({x,
v)-

(9) Let R, S, T be non empty relational structures, f be a map from
ER, S]into T, a be an element of R, and b be an element of S. Then
(Proj(f,a))(b) = (Proj(f,b))(a).

Let S be a non empty relational structure and let T' be a non empty reflexive
relational structure. Observe that there exists a map from .S into 1" which is
antitone.

The following two propositions are true:

(10) Let R, S, T be non empty reflexive relational structures, f be a map
from [ R, S] into T, a be an element of the carrier of R, and b be an
element of the carrier of S. If f is monotone, then Proj(f,a) is monotone
and Proj(f,b) is monotone.
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(11) Let R, S, T be non empty reflexive relational structures, f be a map
from [ R, S{ into T, a be an element of the carrier of R, and b be an
element of the carrier of S. If f is antitone, then Proj(f, a) is antitone and
Proj(f,b) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone
map from [ R, S'] into T, and let a be an element of the carrier of R. Note that
Proj(f,a) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone
map from [ R, S into T, and let b be an element of the carrier of S. Note that
Proj(f,b) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone
map from [ R, S] into T, and let a be an element of the carrier of R. Observe
that Proj(f,a) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone
map from [ R, S ] into T, and let b be an element of the carrier of S. Note that
Proj(f,b) is antitone.

We now state several propositions:

(12) Let R, S, T be lattices and f be a map from [ R, S] into 7". Suppose
that for every element a of R and for every element b of S holds Proj(f,a)
is monotone and Proj(f,b) is monotone. Then f is monotone.

(13) Let R, S, T be lattices and f be a map from [ R, S] into 7. Suppose
that for every element a of R and for every element b of S holds Proj(f,a)
is antitone and Proj(f,b) is antitone. Then f is antitone.

(14) Let R, S, T be lattices, f be a map from [ R, S ] into T, b be an element
of S, and X be a subset of R. Then (Proj(f,b))°X = f°} X, {b}{.

(15) Let R, S, T be lattices, f be a map from [ R, S'] into T, b be an element
of R, and X be a subset of S. Then (Proj(f,b))°X = f°} {b}, X 1.

(16) Let R, S, T be lattices, f be a map from [ R, S ]into T, a be an element
of R, and b be an element of S. Suppose f is directed-sups-preserving.
Then Proj(f, a) is directed-sups-preserving and Proj(f, b) is directed-sups-
preserving.

(17) Let R, S, T be lattices, f be a monotone map from [ R, S] into T, a
be an element of R, b be an element of S, and X be a directed subset of
FR, S If sup f°X exists in T and a € 71(X) and b € 72(X), then f({a,
b)) < sup(f°X).

(18) Let R, S, T be complete lattices and f be a map from [ R, S into
T. Suppose that for every element a of R and for every element b of S
holds Proj(f, a) is directed-sups-preserving and Proj( f, b) is directed-sups-
preserving. Then f is directed-sups-preserving.

(19) Let S be a non empty 1-sorted structure, 7' be a non empty relational
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structure, and f be a set. Then f is an element of T'the carrier of S if and
only if f is a map from .S into T'.

3. THE POSET OF CONTINUOUS MAPS

Let S be a topological structure and let 7" be a non empty FR-structure. The
functor [S — T yielding a strict relational structure is defined by the conditions
(Def. 3).

(Def. 3)(i) [S — T] is a full relational substructure of T'the carrier of S 51
(ii) for every set x holds = € the carrier of ([S — T1) iff there exists a map
f from S into T such that x = f and f is continuous.

Let S be a non empty topological space and let T be a non empty topological
space-like FR-structure. Observe that [S — T is non empty.

Let S be a non empty topological space and let T' be a non empty topological
space-like FR-structure. Note that [S — T is constituted functions.

One can prove the following propositions:

(20) Let S be a non empty topological space, T' be a non empty reflexive
topological space-like FR-structure, and x, y be elements of [S — T].
Then x < y if and only if for every element i of S holds (z(7), y(i)) € the
internal relation of T'.

(21) Let S be a non empty topological space, T' be a non empty reflexive
topological space-like FR-structure, and x be a set. Then x is a continuous
map from S into 7' if and only if z is an element of [S — T7.

Let S be a non empty topological space and let T' be a non empty reflexive
topological space-like FR-structure. Note that [S — T is reflexive.

Let S be a non empty topological space and let T' be a non empty transitive
topological space-like FR-structure. Note that [S — T is transitive.

Let S be a non empty topological space and let T" be a non empty anti-
symmetric topological space-like FR-structure. One can check that [S — T is
antisymmetric.

Let S be a non empty 1-sorted structure and let T' be a non empty topolo-
gical space-like FR-structure. One can verify that 7'the carrier of S ig constituted
functions.

One can prove the following three propositions:

(22) Let S be a non empty l-sorted structure, 7' be a complete lattice,
fs g, h be maps from S into 7T, and ¢ be an element of S. If h =
|_|(Tthe carrier of S){f, g}, then h(Z) = Sup{f(i)a g(l)}

(23) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
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every element i of I holds J(7) is a complete lattice. Let X be a subset of
[IJ and i be an element of I. Then (inf X)(i) = inf m; X.

(24) Let S be a non empty l-sorted structure, T' be a complete lattice,
f, g, h be maps from S into 7T, and ¢ be an element of S. If h =
H(Tthe carrier of S){f,g}, then h(@) = Hlf{f(l), g(Z)}

Let S be a non empty 1-sorted structure and let T" be a lattice. Observe that
every element of T'the carrier of S ig function-like and relation-like.

Let S, T be top-lattices. One can check that every element of [S — T is
function-like and relation-like.

One can prove the following propositions:

(25) Let S be a non empty relational structure, 7' be a complete lattice, F' be
a non empty subset of Tthe carrier of S "51q j he an element of the carrier of
S. Then (sup F)(i) = | |p{f(i); f ranges over elements of T'the carrier of 5,

fery}.

(26) Let S, T be complete top-lattices, F' be a non empty subset of [S — T,
and ¢ be an element of the carrier of S. Then (|| zume carier or 5y F) (i) =
LIp{f(3); f ranges over elements of Tthe carrier of 5. ¢ ¢ [}

In the sequel S denotes a non empty relational structure, T' denotes a com-
plete lattice, and i denotes an element of S.
Next we state two propositions:

(27) Let F be a non empty subset of Tthe carrier of S anq D be a non empty
subset of S. Then (sup F)°D = {| ] {f(?);f ranges over elements of
Tthe carrier of S, £« [l ranges over elements of S: i € D}.

(28) Let S, T be complete Scott top-lattices, F' be a non empty subset of [S —
T], and D be a non empty subset of S. Then (|| carsier or 57 F)°D =
{LIp{f(9); f ranges over elements of Tthe carrier of 5. £ ¢ Y. ranges over
elements of S: i € D}.

The scheme FraenkelF’RSS deals with a non empty relational structure A, a
unary functor F yielding a set, a unary functor G yielding a set, and and states
that:

{F(v1);v1 ranges over elements of A : Plvi|} = {G(vs); v2 ranges
over elements of A : Plva]}
provided the following condition is met:
e For every element v of A such that P[v] holds F(v) = G(v).

The following propositions are true:

(29) Let S, T be complete Scott top-lattices and F' be a non empty subset of
[S — T. Then | |(pume camier or sy F' is & monotone map from ' into 7.

(30) Let S, T be complete Scott top-lattices, F' be a non empty subset of
[S — T}, and D be a directed non empty subset of S. Then | | {||7{g();
ranges over elements of S: i € D}; g ranges over elements of 7the carrier of S,
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g € F} = | {lUp{d' (i"); ¢ ranges over elements of Tthe cartier of S. g/ ¢
F}; 4 ranges over elements of S: i’ € D}.

(31) Let S, T be complete Scott top-lattices, F' be a non empty sub-
set of [S — TJ], and D be a directed non empty subset of S. Then
|_|T((|_|(Tthe carrier of ) F)OD) = (I_I(Tthe carrier of ) F)(Sup D)

(32) Let S, T be complete Scott top-lattices and F' be a non empty subset of
[S — T. Then | |(pume camier o 5y F' € the carrier of ([S — T1).

(33) Let S be a non empty relational structure and 7" be a lower-bounded an-
tisymmetric non empty relational structure. Then Lpume carrier o s = S
1.

(34) Let S be a non empty relational structure and 7" be an upper-bounded
antisymmetric non empty relational structure. Then T e carrier o 5 =
S+ TT.

Let S be a non empty reflexive relational structure, let T' be a complete
lattice, and let @ be an element of T. Note that S —— a is directed-sups-
preserving.

One can prove the following proposition

(35) Let S, T be complete Scott top-lattices. Then [S — TJ] is a sups-
inheriting relational substructure of 7'the carrier of 5

Let S, T be complete Scott top-lattices. Observe that [S — T is complete.

We now state three propositions:

(36) For all non empty Scott complete top-lattices S, T holds Lig_7) = S
L.

(37) For all non empty Scott complete top-lattices S, T" holds Tis—m=5+—
TT.

(38) For all Scott complete top-lattices S, T" holds SCMaps(S,T) = [S — T7.
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1. PRELIMINARIES

The following propositions are true:
(1) 2'={o,1}.
(2) For every set X and for every subset ¥ of X holds rng(idx[Y) =Y.
(3) For every function f and for all sets a, b holds (f+-(a——b))(a) = b.
Let us observe that there exists a relational structure which is strict and
empty.
Next we state four propositions:
(4) Let S be an empty 1-sorted structure, T be a 1-sorted structure, and f
be a map from S into T'. If rng f = Qp, then T is empty.
(5) Let S be a l-sorted structure, T be an empty 1-sorted structure, and f
be a map from S into T. If dom f = (g, then S is empty.
(6) Let S be a non empty 1-sorted structure, 7' be a 1-sorted structure, and
f be a map from S into 7. If dom f = Qg, then T is non empty.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(7) Let S be a 1-sorted structure, 7' be a non empty 1-sorted structure, and
f be amap from S into T'. If rng f = Qp, then S is non empty.

Let S be a non empty reflexive relational structure, let T° be a non empty
relational structure, and let f be a map from S into 7. Let us observe that f is
directed-sups-preserving if and only if:

(Def. 1) For every non empty directed subset X of S holds f preserves sup of X.

Let R be a 1-sorted structure and let N be a net structure over R. We say

that N is function yielding if and only if:
(Def. 2) The mapping of N is function yielding.

Let us note that there exists a 1-sorted structure which is strict, non empty,
and constituted functions.

One can verify that there exists a relational structure which is strict, non
empty, and constituted functions.

Let R be a constituted functions 1-sorted structure. One can verify that
every net structure over R is function yielding.

Let R be a constituted functions 1-sorted structure. Note that there exists
a net structure over R which is strict and function yielding.

Let R be a non empty constituted functions 1-sorted structure. Note that
there exists a net structure over R which is strict, non empty, and function
yielding.

Let R be a constituted functions 1-sorted structure and let N be a func-
tion yielding net structure over R. Observe that the mapping of N is function
yielding.

Let R be a non empty constituted functions 1-sorted structure. Note that
there exists a net in R which is strict and function yielding.

Let S be a non empty 1-sorted structure and let N be a non empty net
structure over S. Note that rng (the mapping of N) is non empty.

Let S be a non empty 1-sorted structure and let N be a non empty net
structure over S. Observe that rngnetmap(N, S) is non empty.

One can prove the following two propositions:

(8) Let A, B, C be non empty relational structures, f be a map from B into
C, and g, h be maps from A into B. If g < h and f is monotone, then
fr9<[f-h

(9) Let S be a non empty topological space, T be a non empty topological
space-like FR-structure, f, g be maps from S into 7', and z, y be elements
of [S—T|.Ifz=fandy=g, thenz <y iff f<g.

Let I be a set and let R be a non empty relational structure. Note that every
element of the carrier of R! is function-like and relation-like.

Let I be a non empty set, let R be a non empty relational structure, let f
be an element of the carrier of R!, and let i be an element of I. Then f(i) is an
element of R.
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2. SOME PROPERTIES OF ISOMORPHISM BETWEEN RELATIONAL STRUCTURES

One can prove the following proposition
(10) For all relational structures S, T" and for every map f from S into T
such that f is isomorphic holds f is onto.
Let S, T be relational structures. Note that every map from .S into T which
is isomorphic is also onto.
We now state four propositions:
(11) Let S, T be non empty relational structures and f be a map from S into
T. If f is isomorphic, then f~! is isomorphic.

(12) For all non empty relational structures S, T' such that S and T are

isomorphic and S has g.l.b.’s holds 7" has g.l.b.’s.

(13) For all non empty relational structures S, T' such that S and T are

isomorphic and S has l.u.b.’s holds T" has l.u.b.’s.

(14) For every relational structure L such that L is empty holds L is bounded.
Let us note that every relational structure which is empty is also bounded.
The following propositions are true:

(15) Let S, T be relational structures. Suppose S and T' are isomorphic and

S is lower-bounded. Then T is lower-bounded.
(16) Let S, T be relational structures. Suppose S and T are isomorphic and
S is upper-bounded. Then T is upper-bounded.

(17) Let S, T be non empty relational structures, A be a subset of S, and f
be a map from S into T. Suppose f is isomorphic and sup A exists in S.
Then sup f°A exists in 7.

(18) Let S, T be non empty relational structures, A be a subset of S, and f
be a map from S into T'. Suppose f is isomorphic and inf A exists in S.
Then inf f°A exists in 7T'.

3. ON THE PrRODUCT OF TOPOLOGICAL SPACES

Next we state two propositions:
(19) Let S, T be topological structures. Suppose S and T' are homeomorphic
or there exists a map f from S into 7" such that dom f = Qg and rng f =
Qp. Then S is empty if and only if T" is empty.
(20) For every non empty topological space T holds T and the topological
structure of 1" are homeomorphic.
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Let T be a Scott reflexive non empty FR-structure. One can verify that every
subset of T" which is open is also inaccessible and upper and every subset of T’
which is inaccessible and upper is also open.

Next we state several propositions:

(21) Let T be a topological structure, x, y be points of 7', and X, Y be subsets
of T.1f X ={z}and X CY, thenz €Y.

(22) Let T be a topological structure, =, y be points of 7', and Y, V be subsets
of T.IfY ={y} and z € Y and V is open and z € V, then y € V.

(23) Let T be a topological structure, z, y be points of 7', and X, Y be subsets
of T. Suppose X = {z} and Y = {y}. Suppose that for every subset V' of
T such that V is open holds if z € V, then y € V. Then X C Y.

(24) Let S, T be non empty topological spaces, A be an irreducible subset of
S, and B be a subset of T. Suppose A = B and the topological structure
of S = the topological structure of T'. Then B is irreducible.

(25) Let S, T be non empty topological spaces, a be a point of S, b be a point
of T, A be a subset of the carrier of S, and B be a subset of the carrier
of T. Suppose a = b and A = B and the topological structure of S = the
topological structure of T and a is dense point of A. Then b is dense point
of B.

(26) Let S, T be topological structures, A be a subset of S, and B be a subset
of T'. Suppose A = B and the topological structure of S = the topological
structure of T" and A is compact. Then B is compact.

(27) Let S, T be non empty topological spaces. Suppose the topological struc-
ture of .S = the topological structure of T" and S is sober. Then T is sober.

(28) Let S, T be non empty topological spaces. Suppose the topological struc-
ture of S = the topological structure of 7" and S is locally-compact. Then
T is locally-compact.

(29) Let S, T be topological structures. Suppose the topological structure of
S = the topological structure of 7" and S is compact. Then T is compact.

Let I be a non empty set, let T' be a non empty topological space, let = be
a point of [[(/ — T'), and let i be an element of I. Then z(i) is an element of
T.

The following propositions are true:

(30) Let M be a non empty set, J be a topological space yielding nonempty
many sorted set indexed by M, and x, y be points of [[J. Then z € {y}

if and only if for every element ¢ of M holds x(i) € {y(i)}.

(31) Let M be a non empty set, 7' be a non empty topological space, and z,
y be points of [[(M +— T). Then = € {y} if and only if for every element
i of M holds x(i) € {y(i)}.

(32) Let M be a non empty set, i be an element of M, J be a topological
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space yielding nonempty many sorted set indexed by M, and x be a point
of [T J. Then m;{z} = {z(:)}.
(33) Let M be a non empty set, i be an element of M, T be a non empty
topological space, and z be a point of [[(M +—— T). Then m;{z} = {z(i)}.
(34) Let X, Y be non empty topological structures, f be a map from X into
Y, and g be a map from Y into X. Suppose f =idx and g = idx and f is
continuous and g is continuous. Then the topological structure of X = the

topological structure of Y.

(35) Let X, Y be non empty topological spaces and f be a map from X into
Y. If f° is continuous, then f is continuous.

Let X, Y be non empty topological spaces. Observe that every continuous
map from X into Y is continuous.

Let X be a non empty topological space and let Y be a non empty subspace
of X. Note that i is continuous.

The following propositions are true:

(36) For every non empty topological space T and for every map f from T
into T such that f - f = f holds f°- ("™7/) = idp 7.

(37) For every non empty topological space Y and for every non empty sub-
space W of Y holds (!)° is a homeomorphism.

(38) Let M be a non empty set and J be a topological space yielding no-
nempty many sorted set indexed by M. Suppose that for every element ¢
of M holds J(i) is a Tp topological space. Then [ J is Tp.

Let I be a non empty set and let T" be a non empty 7y topological space.
One can check that [[(I — T) is Tp.
The following proposition is true

(39) Let M be a non empty set and J be a topological space yielding no-
nempty many sorted set indexed by M. Suppose that for every element ¢
of M holds J(i) is T and topological space-like. Then []J is a T space.

Let I be a non empty set and let 7' be a non empty 77 topological space.
Observe that [[(I — T) is T3.
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Summary. On the Euclidean plane Jordan’s curve may be approximated
with a polygonal path of sides parallel to coordinate axes, either externally, or
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1. GENERALITIES

We adopt the following rules: k, n are natural numbers, D is a non empty
set, and f, g are finite sequences of elements of D.
One can prove the following propositions:

(1) For all sets A, B such that A meets B holds AN B meets B.

(2) For every non empty set A and for all sets By, By such that A C By and
A C Bs holds By meets Bs.
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(3) Let T be a non empty topological space and B, Cy, C3, D be subsets
of T. Suppose B is connected and C is a component of D and C» is a
component of D and B meets C7 and B meets Co and B C D. Then
Cy = Cs.

(4) If for every n holds f[n = g[n, then f = g.

(5) If n € dom f, then there exists k such that & € domRev(f) and n+k =
len f + 1 and 7, f = 7 Rev(f).

(6) If n € domRev(f), then there exists k such that k¥ € dom f and n+k =
len f + 1 and 7, Rev(f) = m f.

2. GO-BOARD PRELIMINARIES

For simplicity, we adopt the following convention: G denotes a Go-board, f,
g denote finite sequences of elements of 5%, p denotes a point of S%, r, s denote
real numbers, ¢, j, k denote natural numbers, and x denotes a set.

Next we state a number of propositions:

(7) f is a sequence which elements belong to G iff Rev(f) is a sequence
which elements belong to G.

(8) If f is a sequence which elements belong to G and 1 < k and k < len f,
then 7 f € ValuesG.

(9) Ifn<lenf and x € E(fm), then there exists a natural number ¢ such
that n+1<iand i+ 1<lenf and x € L(f,7).
(10) If f is a sequence which elements belong to G and 1 < k and k+1 < len f,
then 7y f € left_cell(f, k, G) and 7y f € right_cell(f, k, G).

(11) If f is a sequence which elements belong to G and 1 < k and k+1 < len f,
then Int left_cell(f, k, G) # 0 and Int right_cell(f, k, G) # 0.

(12) Suppose f is a sequence which elements belong to G and 1 < k and k +
1 <len f. Then Intleft_cell(f, k, G) is connected and Int right_cell(f, k, G)

is connected.

(13) If f is a sequence which elements belong to G and 1 < k and k+1 < len f,
then Intleft_cell(f,k,G) = left_cell(f, k,G) and Intright_cell(f, k, G) =
right_cell(f, k, G).

(14) Suppose f is a sequence which elements belong to G and L(f, k) is
horizontal. Then there exists j such that 1 < j and j < widthG and
for every p such that p € L(f, k) holds pa = (G1,5)2.

(15) Suppose f is a sequence which elements belong to G and L(f, k) is
vertical. Then there exists ¢ such that 1 < i and ¢ < len G and for every p
such that p € L(f, k) holds p1 = (Gi1)1.
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(16) If f is a sequence which elements belong to G’ and special and i < len G
and j < width G, then Int cell(G, i, j) misses L£(f).

(17) Suppose f is a sequence which elements belong to G and special and
1 < kand k+1 < lenf. Then Intleft_cell(f,k, G) misses £(f) and
Int right_cell(f, k, G) misses L£(f).

(18) Suppose 1 <iand i+ 1<lenG and 1 < j and j + 1 < width G. Then
(Gijh = (Gij+1)1 and (Gij)2 = (Git1,5)2 and (Git1,j41)1 = (Git1,5)1
and (Gir1j41)2 = (Gijt1)e-

(19) Let 4, j be natural numbers. Suppose 1 < i and i+ 1 <lenG and 1 <
and j + 1 < widthG. Then p € cell(G,i,j) if and only if the followmg
conditions are satisfied:

) (Gij)1 <p1,
) p1 < (Git15)1,

(i)  (Gij)2 < p2, and

) P2 < (Gz,j—H) .

(200 f1 <idiandi+1<lenG and 1 < j and j+ 1 < widthG, then
cell(G,i,5) = {[r,s] : (Gij)1 <7 A 7 < (Gix15)1 N (Gij)2 <s A s<
(Gijy1)2}

(21) Suppose 1 < i and i +1 < lenG and 1 < j and j + 1 < widthG
and p € ValuesG and p € cell(G,4,5). Then p = G;j or p = G 41 or
p=Git1j41 0r p=Gip1;.

(22) If 1 <diandi+1 < lenG and 1 < j and j + 1 < widthG, then
Gij € cell(G,1,j) and G; j11 € cell(G, 1, j) and Giq1, 41 € cell(G, 1, 7) and
Gi+1j € CGH(G ) ])

(23) Ifl<iandi+1<lenGand1l < jandj+1 < widthG and p € ValuesG
and p € cell(G, 1, 7), then p is extremal in cell(G, 1, 7).

(24) Suppose 2 < len G and 2 < width G and f is a sequence which elements
belong to G and 1 < k and k£ + 1 < len f. Then there exist ¢, j such
that 1 < ¢dand i+ 1 < lenG and 1 < j and j + 1 < widthG and
L(f k) C cell(G,1,j).

(25) Suppose 2 < len G and 2 < width G and f is a sequence which elements
belong to G and 1 < k and k+1 < len f and p € ValuesG and p € L(f, k).
Then p =7 f or p = mp41 f-

(26) If (i, j) € the indices of G and 1 < k and k < width G, then (G; ;)1 <
(GlenG,k)L

(27) If (i, j) € the indices of G and 1 < k and k < lenG, then (G, ;)2 <
(Gr,width @) 2-

(28) Suppose f is a sequence which elements belong to G and special and
L(g) C L(f) and 1 < k and k4 1 < len f. Let A be a subset of E2. 1f
A = right_cell(f,k,G) \ L(g) or A = left_cell(f,k,G) \ L(g), then A is
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connected.

(29) Let f be a non constant standard special circular sequence. Suppose f is
a sequence which elements belong to G. Let given k. If 1 < k and k+ 1 <
len f, then right_cell(f, k, G)\L(f) C RightComp(f) and left_cell(f, k, G)\
L(f) C LeftComp(f).

3. CAGES

We follow the rules: C' is a compact non vertical non horizontal non empty
subset of 8% and i, k, n, i1, 12 are natural numbers.
Next we state three propositions:
(30) There exists ¢ such that 1 < 4 and ¢ + 1 < lenGauge(C,n) and
N-minC' € cell(Gauge(C,n), i, width Gauge(C,n) —" 1) and N-minC #
(GaUge(Ca n))i,width Gauge(C,n)—'1-
(31) Suppose that
1 < 4 and 43 + 1 < lenGauge(C,n) and N-minC €
cell(Gauge(C,n), i1, width Gauge(C,n) —' 1) and N-min C' #
(Gauge(C,n));; width Gauge(Cn)—1 and 1 <ig and dg + 1 < len Gauge(C, n)
and N-minC € cell(Gauge(C,n), iz, width Gauge(C,n) —' 1) and
N-min C' # (Gauge(C, 1)), width Gauge(C,n)—'1- Then iy = i.
(32) Let f be a standard non constant special circular sequence. Suppose that
(i)  f is a sequence which elements belong to Gauge(C,n),
(i)  for every k such that 1 < k and k¥ + 1 < lenf holds
left_cell(f, k, Gauge(C,n)) N C = 0 and right_cell(f, k, Gauge(C,n)) N C #
0, and

(iii)  there exists i such that 1 < ¢ and i + 1 < len Gauge(C,n) and m f =
(GaUge(Ca n))i,widthGauge(C,n) and T f = (GaUge(Ca n))z’—i—l,widthGauge(C,n)
and N-min C' € cell(Gauge(C, n), i, width Gauge(C,n)—'1) and N-min C' #
(GaUge(Ca n) )i,width Gauge(C,n)—'1-
Then N-min Z(f) =mf.

Let C be a compact non vertical non horizontal non empty subset of 5%
and let n be a natural number. Let us assume that C' is connected. The functor
Cage(C,n) yields a clockwise oriented standard non constant special circular
sequence and is defined by the conditions (Def. 1).

(Def. 1)(i) Cage(C,n) is a sequence which elements belong to Gauge(C,n),

(ii)  there exists ¢ such that 1 < ¢ and i + 1 < lenGauge(C,n)
and m Cage(C,n) = (Gauge(ca n))i,widthGauge(C,n) and o Cage(C, n) =
(Gauge(C, n))it1,width Gauge(C,n) and N-min C' € cell(Gauge(C, n), i, width
Gauge(C,n) =" 1) and N-min C # (Gauge(C,n)); width Gauge(C,n)—'1, and
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(ili)  for every k such that 1 < k and k£ + 2 < lenCage(C,n)
holds if front_left_cell(Cage(C,n), k, Gauge(C,n)) N C = @ and
front_right_cell(Cage(C,n), k, Gauge(C,n))NC = ), then Cage(C,n) turns
right k, Gauge(C,n) and if front_left_cell(Cage(C,n), k, Gauge(C,n)) N
C = 0 and front_right_cell(Cage(C,n), k, Gauge(C,n)) N C # (), then
Cage(C, n) goes straight k, Gauge(C, n) and if front_left_cell(Cage(C, n), k,
Gauge(C,n)) N C # 0, then Cage(C,n) turns left k, Gauge(C,n).

One can prove the following propositions:

(33) If C is connected and 1 < k and k + 1 < lenCage(C,n), then
left_cell(Cage(C, n), k, Gauge(C,n)) N C' = () and right_cell(Cage(C, n), k,
Gauge(C,n))NC # .

(34) If C is connected, then N-min £(Cage(C,n)) = m Cage(C,n).
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The notation and terminology used here are introduced in the following papers:
[21], [15], [1], [14], [6], [7], [19], [9], [8], [17], [2], [22], (18], [13], [12], [20], [16],
(23], [11], [4], [5], [10], and [3].

1. PRELIMINARIES

The scheme SeqLambdalC deals with a natural number A, a non empty set
B, a unary functor F yielding a set, a unary functor G yielding a set, and and
states that:
There exists a finite sequence p of elements of B such that lenp =
A and for every natural number i such that ¢ € Seg. A holds if
Pli], then p(i) = F(i) and if not P[i], then p(i) = G(7)
provided the following requirement is met:
e For every natural number i such that i € Seg A holds if P[i], then
F(i) € B and if not P[i], then G(i) € B.
Let X be a set and let p be a finite sequence of elements of 2%. Then rngp
is a family of subsets of X.
Let us observe that Boolean is finite.
We now state two propositions:

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(2)2 For every natural number i and for every finite set D holds D? is finite.
(3) For every finite set T holds every family of subsets of T is finite.
Let T be a finite set. One can check that every family of subsets of T is
finite.
Let T be a finite 1-sorted structure. One can verify that every family of
subsets of T' is finite.
One can prove the following proposition
(4) For every infinite set X there exist sets z, y such that x € X and y € X
and x # y.

2. COMPONENTS

Let X be a set, let p be a finite sequence of elements of 2%, and let ¢ be a
finite sequence of elements of Boolean. The functor MergeSequence(p, q) yielding
a finite sequence of elements of 2% is defined as follows:

(Def. 1) len MergeSequence(p, ¢) = len p and for every natural number ¢ such that
i € domp holds (MergeSequence(p, q)) (i) = (q(i) = true — p(i), X \ p(3)).
One can prove the following propositions:

(5) Let X be a set, p be a finite sequence of elements of 2%, and ¢ be a finite
sequence of elements of Boolean. Then dom MergeSequence(p, ¢) = dom p.

(6) Let X be a set, p be a finite sequence of elements of 2%, ¢ be a finite
sequence of elements of Boolean, and i be a natural number. If ¢(i) = true,
then (MergeSequence(p, q))(i) = p(i).

(7) Let X be a set, p be a finite sequence of elements of 2%, ¢ be a finite
sequence of elements of Boolean, and i be a natural number. If i € domp
and ¢(i) = false, then (MergeSequence(p, q))(i) = X \ p(4).

(8) For every set X and for every finite sequence ¢ of elements of Boolean
holds len MergeSequence(eyx, q) = 0.

(9) For every set X and for every finite sequence ¢ of elements of Boolean
holds MergeSequence(gyx, q) = €9x.

(10) For every set X and for every element x of 2% and for every finite
sequence ¢ of elements of Boolean holds len MergeSequence({x),q) = 1.
(11) Let X be a set,  be an element of 2%, and ¢ be a finite sequence of
elements of Boolean. Then
(i) if ¢(1) = true, then (MergeSequence((z),q))(1) = z, and
(ii)  if ¢(1) = false, then (MergeSequence({x),q))(1) = X \ =.

2The proposition (1) has been removed.
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(12) For every set X and for all elements x, y of 2% and for every finite
sequence ¢ of elements of Boolean holds len MergeSequence({z, y), q) = 2.

(13) Let X be a set, x, y be elements of 2X and ¢ be a finite sequence of
elements of Boolean. Then

(i) if ¢(1) = true, then (MergeSequence((z,y),q))(1) = z,

(ii)  if ¢(1) = false, then (MergeSequence({z,y),q))(1) = X \ z,

(iii)  if ¢(2) = true, then (MergeSequence((z,y),q))(2) =y, and

(iv) if q(2) = false, then (MergeSequence({(z,y),q))(2) = X \ y.

(14) Let X be a set, x, y, z be elements of 2%, and ¢ be a finite sequence of
elements of Boolean. Then len MergeSequence((z, v, 2),q) = 3.

(15) Let X be a set, x, y, z be elements of 2%, and ¢ be a finite sequence of
elements of Boolean. Then

(i) if (1) = true, then (MergeSequence({z,y, z),q))(1) = =,

(ii) if ¢(1) = false, then (MergeSequence((z,y, 2),q))(1) = X \ z,
(i) if ¢(2) = true, then (MergeSequence((z, vy, 2),q))(2) =y,
(iv)  if q¢(2) = false, then (MergeSequence({x,y, z),q))(2) = X \ v,
(v) if ¢(3) = true, then (MergeSequence({(x,y, z),q))(3) = z, and
(vi) if ¢(3) = false, then (MergeSequence((z,y, z),¢))(3) = X \ z.

(16) Let X be a set and p be a finite sequence of elements of 2X. Then
{Intersect(rng MergeSequence(p, q)); ¢ ranges over finite sequences of ele-
ments of Boolean: len g = lenp} is a family of subsets of X.

Let X be a set and let Y be a finite family of subsets of X. The functor
ComponentsY yields a family of subsets of X and is defined by the condition
(Def. 2).

(Def. 2) There exists a finite sequence p of elements of 2% such that len p = card Y
and rngp = Y and Components Y = {Intersect(rng MergeSequence(p, q)); q
ranges over finite sequences of elements of Boolean: len ¢ = len p}.

Let X be a set and let Y be a finite family of subsets of X. Note that
Components Y is finite.

One can prove the following four propositions:

(17) For every set X and for every empty family Y of subsets of X holds
Components Y = {X}.

(18) For every set X and for all finite families Y, Z of subsets of X such that
Z C 'Y holds Components Y is finer than Components Z.

(19) For every set X and for every finite family Y of subsets of X holds
|J Components Y = X.

(20) Let X be a set, Y be a finite family of subsets of X, and A, B be sets. If
A € Components Y and B € ComponentsY and A # B, then AN B = ().

Let X be a set and let Y be a finite family of subsets of X. We say that Y
is in general position if and only if:
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(Def. 3) 0 ¢ ComponentsY.
We now state three propositions:

(21) Let X be a set and Y, Z be finite families of subsets of X. If Z is in
general position and Y C Z, then Y is in general position.

(22) For every non empty set X holds every empty family of subsets of X is
in general position.

(23) Let X be a non empty set and Y be a finite family of subsets of X. If Y
is in general position, then ComponentsY is a partition of X.

3. ABOUT BASIS OF TOPOLOGICAL SPACES

We now state two propositions:

(24) For every non empty relational structure L holds €27, is infs-closed and
sups-closed.

(25) For every non empty relational structure L holds €7, has bottom and

top.

Let L be a non empty relational structure. Observe that 27, is infs-closed
and sups-closed and has bottom and top.
The following propositions are true:

(26) For every continuous sup-semilattice L holds Qf, is a CLbasis of L.

(27) For every up-complete non empty poset L such that L is finite holds the
carrier of L = the carrier of CompactSublatt(L).

(28) For every lower-bounded sup-semilattice L and for every subset B of L
such that B is infinite holds B = finsups(B).

(29) For every Tp non empty topological space T holds the carrier of T C

the topology of T'.

(30) Let T be a topological structure and X be a subset of T'. Suppose X is
open. Let B be a finite family of subsets of T'. Suppose B is a basis of T'.
Let Y be a set. If Y € Components B, then X NY =0 or Y C X.

(31) For every Tp topological space T' such that 7" is infinite holds every basis
of T is infinite.

(32) Let T be a non empty topological space. Suppose T is finite. Let B be a
basis of T" and x be an element of T'. Then ({A; A ranges over elements
of the topology of T: x € A} € B.
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The articles [20], [6], [14], [7], [2], [18], [17], [13], [3], [5], [10], [1], [11], [15], [4],
9], [12], [19], [16], and [8] provide the terminology and notation for this paper.
One can verify that there exists a subset of E% which is connected, compact,
non vertical, and non horizontal.
We adopt the following rules: i, j, k, n are natural numbers, P is a subset
of 5%, and C' is a connected compact non vertical non horizontal subset of 5%.
The following propositions are true:

(1) Suppose that

) 1<k,

) k+1<lenCage(C,n),

(iii) (4, j) € the indices of Gauge(C,n),
) (i, j+ 1) € the indices of Gauge(C,n),
) 7, Cage(C,n) = (Gauge(C,n)); ;, and
) 7ry1 Cage(C,n) = (Gauge(C,n)); jt1-

Then ¢ < len Gauge(C, n).

(2) Suppose that

(i) 1<k,

) k-+1<lenCage(C,n),

(iii) (4, j) € the indices of Gauge(C,n),
) (i, + 1) € the indices of Gauge(C,n),
) 7 Cage(C,n) = (Gauge(C,n)); j+1, and
) 741 Cage(C,n) = (Gauge(C,n)); ;.

Then 7 > 1.

IThis paper was written while the author visited Shinshu University, winter 1999.

@ 2001 University of Bialystok
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(3) Suppose that
) 1<k,
) k-+1<lenCage(C,n),

) (i, j) € the indices of Gauge(C,n),
(iv) (i +1, j) € the indices of Gauge(C,n),
)

)

(v) m,Cage(C,n) = (Gauge(C,n)); j, and

(Vi Thk+1 Cage(cu n) = (Ga’uge(cv n))i-‘rl,j-
Then j > 1.

(4) Suppose that

) 1<k,
) k41 <lenCage(C,n),
(iii) (4, j) € the indices of Gauge(C,n),
) (i+1, j) € the indices of Gauge(C,n),
) 7, Cage(C,n) = (Gauge(C,n))it+1,4, and
) 741 Cage(C,n) = (Gauge(C,n)); ;.
Then j < width Gauge(C, n).
(5) C N L(Cage(C,n)) = 0.
(6) N-bound £(Cage(C,n)) = N-bound ' + N-bound ¢Sbound €
(7) 1If i < j, then N-bound £(Cage(C, 7)) < N-bound £(Cage(C,7)).
Let C be a connected compact non vertical non horizontal subset of 5% and

let n be a natural number. Note that RightComp(Cage(C,n)) is compact.
The following propositions are true:

) N-minC € RightComp(Cage(C,n)).

) C N RightComp(Cage(C, n)) # 0.
10) C N LeftComp(Cage(C,n)) = 0.

)

)

)

C C RightComp(Cage(C, n)).
C C BDD L(Cage(C, n)).
UBD £(Cage(C,n)) C UBD C.

Let C be a compact non vertical non horizontal subset of 5%. The functor
UBD-Family C' is defined as follows:

(Def. 1) UBD-FamilyC = {UBD L(Cage(C,n)) : n ranges over natural
numbers}.
The functor BDD-Family C' is defined by:
(Def. 2) BDD-FamilyC = {BDD £(Cage(C,n)) : n ranges over natural
numbers}.

Let C be a compact non vertical non horizontal subset of £%. Then UBD-Family
C is a family of subsets of £2. Then BDD-Family C' is a family of subsets of
£2.
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Let C' be a compact non vertical non horizontal subset of 5%. Note that
UBD-Family C' is non empty and BDD-Family C' is non empty.
One can prove the following propositions:

14) |JUBD-Family C = UBDC.

C C (" BDD-Family C.

BDD C N LeftComp(Cage(C,n)) = 0.

BDD C C RightComp(Cage(C, n)).

If P is inside component of C, then P N £(Cage(C,n)) = 0.
BDD C N £(Cage(C,n)) = 0.

(1 BDD-Family C = C UBDD C.

AAA/_\/_\,_\A
—
~— — N~ ~— ~— ~—
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Summary. We prove the irrationality of square roots of prime numbers
and of the number e. In order to be able to prove the last, a proof is given that
number_e = exp(1l) as defined in the Mizar library, that is that

X 1

k!
k=0

1
li 1+ )" =
1m(—|—n)

n—oo

MML Identifier: TRRAT_1.

The articles [2], [3], [4], [18], [14], [1], [6], [13], [15], [8], [7], [20], [12], [5], [10],
[11], [9], [16], [21], [17], and [19] provide the notation and terminology for this
paper.

1. SQUARE ROOTS OF PRIMES ARE IRRATIONAL

For simplicity, we follow the rules: k, n, p, K, N are natural numbers, z, ¥,
ey are real numbers, s1, sg, s3 are sequences of real numbers, and s4 is a finite
sequence of elements of R.

Let us consider . We introduce z is irrational as an antonym of x is rational.

Let us consider x, y. We introduce x¥ as a synonym of z¥.

One can prove the following two propositions:

(1) If pis prime, then ,/p is irrational.
(2) There exist x, y such that x is irrational and y is irrational and z¥ is
rational.

"Written while a guest of the Institute of Mathematics of the University of Biatystok.
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2. A PROOF THAT e =¢

The scheme LambdaRealSeq deals with a unary functor F yielding a real
number, and states that:
There exists s; such that for every n holds s;(n) = F(n) and for
all s2, s3 such that for every n holds sa2(n) = F(n) and for every
n holds s3(n) = F(n) holds sy = s3
for all values of the parameter.
Let us consider k. The functor a; is a sequence of real numbers and is defined
by:
(Def. 1) For every n holds ag(n) = "T_k
Let us consider k. The functor by, is a sequence of real numbers and is defined
by:
(Def. 2)  For every n holds by(n) = (}) - n™".
Let us consider n. The functor c,, is a sequence of real numbers and is defined
as follows:
(Def. 3) For every k holds ¢, (k) = (}) -n™".
Next we state the proposition
(3) cn(k) =bg(n).
The sequence d of real numbers is defined as follows:
(Def. 4) For every n holds d(n) = (1+ 2)".
The sequence e of real numbers is defined as follows:
(Def. 5) For every k holds e(k) = 4.
We now state a number of propositions:
(4) Ifn >0, then n~ -+ = %
(5) For all real numbers x, y, z, v, w such that y # 0 and z # 0 and v # 0
andw;éOholdsw%zw L

z oy
If n > 0, then bgy1(n) =

(6)
(7) -bi(n) - ag(n).
(8) Ifn >0, then ag(n) =1— %.
(9)
10)

=
~ |-
=

n
ay, is convergent and lim(ag) = 1.

For every s; such that for every n holds s;(n) = z holds s; is convergent
and lim s1 = .
For every n such that n > 0 holds by(n) = 1.

by, is convergent and lim(by) = Z; and lim(by) = e(k).

(11)
(13)
(14) If k < n, then 0 < ax(n) and ag(n) < 1.
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(15) Ifn >0, then 0 < bi(n) and by(n) < % and bg(n) < e(k) and 0 < ¢, (k)
and ¢, (k) < & and ¢, (k) < e(k).

(16) For every s; such that s; 7 1 is summable holds s; is summable and
Yos1=51(0)+ > (s1 T1).

(17) For every s4 such that lensy =mn and 1 < k and k < n holds (s4)|1(k) =
sq(k+1).

(18) For every s4 such that lensy > 0 holds Y~ s4 = s4(1) + > ((s4)11)-

(19) Let given n and given si, s4. Suppose lenss = n and for every k such
that k£ < n holds s1(k) = s4(k + 1) and for every k such that k > n holds
s1(k) = 0. Then s is summable and Y s1 =) s4.

(20) If z # 0 and y # 0 and k < n, then ((5)2%", ..., (1)a"y")(k + 1) =
n n—=k k
(o) -2 7* -y,
(21) Ifn> 0 and k < n, then c, (k) = ((}) 101y (1)) (k + 1).
(22) Ifn > 0, then ¢, is summable and > (c,) = (1+ %)" and Y (c,) = d(n).
(23) d is convergent and limd = e.
(24)
(25)

e is summable and ) e =exp 1.

Let given K and d; be a sequence of real numbers. If for every n
holds di(n) = (3_h_o(cn)(@))ken(K), then d; is convergent and limd; =

(2 =0 €(@))ren(K).

(26) If s1 is convergent and lims; = x, then for every e; such that e; > 0
there exists N such that for every n such that n > N holds s1(n) > z—ey.

(27) Suppose that
(i)  for every e; such that e; > 0 there exists N such that for every n such
that n > N holds s1(n) > z — e1, and
(ii)  there exists N such that for every n such that n > N holds s1(n) < z.
Then s; is convergent and lim s; = .

(28) If s1 is summable, then for every e; such that e; > 0 there exists K such

that (3°5—o(51)(@))ren(K) > D051 —ey.
(29) If n>1, thend(n) <> e.

(30) If s; is summable and for every k holds si(k) > 0, then > s1 >
(Xa=o(51)(@))ren(K).
(31) d is convergent and limd = ) e.

e can be characterized by the condition:
(Def. 6) e=>e.
e can be characterized by the condition:

(Def. 7) e=-expl.
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3. THE NUMBER e IS IRRATIONAL

We now state a number of propositions:

(32) If x is rational, then there exists n such that n > 2 and n! - z is integer.
(33) nl-e(k)="H.
(34) o >o.
(35) 1If s is summable and for every n holds s1(n) > 0, then > s; > 0.
(36) n!->(eT(n+1)) >0.
(37) If k <mn, then Z—,‘ is integer.
(38) n!-(>n_pe(a))ren(n) is integer.
(39) Ifzx= n%rl, then (n++'+1), S Lan
(40) Ifn>0andx:n%_l,thenn!~Z(eT(n+1))<ﬁ.
(41) Ifn)Qandxzﬁrl,thenlf—x<l.
(42) e is irrational.
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The notation and terminology used in this paper are introduced in the following
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1. INJECTIVE SPACES

The following propositions are true:
(1) For every point p of the Sierpifiski space such that p = 0 holds {p} is
closed.

(2) For every point p of the Sierpifiski space such that p = 1 holds {p} is
non closed.

Let us note that the Sierpinski space is non 77.
One can check that every top-lattice which is complete and Scott is also
discernible.
Let us observe that there exists a Tp-space which is injective and strict.
Let us observe that there exists a top-lattice which is complete, Scott, and
strict.
Next we state several propositions:
(3) Let I be a non empty set and T" be a Scott topological augmentation
of [[(I — 2L). Then the carrier of T = the carrier of [[(I +— the
Sierpinski space).

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(4) Let Ly, Ly be complete lattices, T} be a Scott topological augmentation
of L1, Ty be a Scott topological augmentation of Lo, h be a map from Lq
into Lo, and H be a map from T} into T>. If h = H and h is isomorphic,
then H is a homeomorphism.

(5) Let L1, Ly be complete lattices, T} be a Scott topological augmentation
of Ly, and T5 be a Scott topological augmentation of Lo. If L1 and Lo are
isomorphic, then 77 and 75 are homeomorphic.

(6) Let S, T be non empty topological spaces. If S is injective and S and T'
are homeomorphic, then 7' is injective.

(7) Let L1, Ly be complete lattices, T} be a Scott topological augmentation
of L1, and T5 be a Scott topological augmentation of Lo. If L1 and Lo are
isomorphic and 77 is injective, then 75 is injective.

Let X, Y be non empty topological spaces. Let us observe that X is a
topological retract of Y if and only if:

(Def. 1) There exists a continuous map ¢ from X into Y and there exists a con-
tinuous map r from Y into X such that r - ¢ = idx.

One can prove the following propositions:

(8) Let S, T, X,Y be non empty topological spaces. Suppose that
(i)  the topological structure of S = the topological structure of T,
(ii)  the topological structure of X = the topological structure of Y, and
(ili) S is a topological retract of X.
Then T is a topological retract of Y.

(9) Let T, S1, S2 be non empty topological structures. Suppose S; and So
are homeomorphic and S7 is a topological retract of T. Then Sy is a
topological retract of T.

(10) Let S, T be non empty topological spaces. Suppose T is injective and S
is a topological retract of 7. Then S is injective.

(11) Let J be an injective non empty topological space and Y be a non empty
topological space. If J is a subspace of Y, then J is a topological retract
of Y.

(12) For every complete continuous lattice L holds every Scott topological
augmentation of L is injective.

Let L be a complete continuous lattice. Observe that every topological au-
gmentation of L which is Scott is also injective.

Let T be an injective non empty topological space. Note that the topological
structure of T is injective.
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2. SPECIALIZATION ORDER

Let T be a topological structure. The functor Q7T yielding a strict FR-
structure is defined by the conditions (Def. 2).

(Def. 2)(i)  The topological structure of Q7" = the topological structure of 7', and
(ii)  for all elements z, y of QT holds = < y iff there exists a subset Y of T'
such that Y = {y} and x € Y.
Let T be an empty topological structure. Observe that Q7 is empty.
Let T be a non empty topological structure. Note that Q7" is non empty.
Let T be a topological space. Note that QT is topological space-like.
Let T be a topological structure. One can verify that QT is reflexive.
Let T be a topological structure. One can verify that Q7T is transitive.
Let T be a Tp-space. One can verify that Q7" is antisymmetric.
One can prove the following propositions:

(13) Let S, T be topological spaces. Suppose the topological structure of
S = the topological structure of 7. Then Q.5 = QT.

(14) Let M be a non empty set and 7" be a non empty topological space.
Then the relational structure of Q [[(M —— T') = the relational structure
of [[(M — QT).

(15) For every Scott complete top-lattice S holds S = the FR-structure of
S.

(16) Let L be a complete lattice and S be a Scott topological augmentation
of L. Then the relational structure of 2.5 = the relational structure of L.

Let S be a Scott complete top-lattice. Note that 0.5 is complete.
We now state four propositions:

(17) Let T be a non empty topological space and S be a non empty subspace
of T. Then Q.S is a full relational substructure of QT.

(18) Let S, T be topological spaces, h be a map from S into T, and g be
a map from .S into Q7. If h = g and h is a homeomorphism, then g is
isomorphic.

(19) For all topological spaces S, T such that S and T are homeomorphic
holds 2.5 and QT are isomorphic.

(20) For every injective Ty-space T holds Q7T is a complete continuous lattice.

Let T be an injective Ty-space. One can verify that Q7 is complete and
continuous.
We now state the proposition

(21) For all non empty topological spaces X, Y holds every continuous map

from QX into QY is monotone.
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Let X, Y be non empty topological spaces. Note that every map from QX
into QY which is continuous is also monotone.
Next we state the proposition

(22) For every non empty topological space T" and for every element z of the
carrier of QT holds {z} = |z.

Let T be a non empty topological space and let x be an element of the carrier

of QT. One can verify that m is non empty lower and directed and |z is closed.
Next we state the proposition

(23) For every topological space X holds every open subset of QX is upper.

Let T be a topological space. One can verify that every subset of QT which
is open is also upper.
Let I be a non empty set, let S, T' be non empty relational structures, let
N be anet in T, and let 7 be an element of I. Let us assume that the carrier of
T C the carrier of ST. The functor commute(N, 4, S) yielding a strict net in S
is defined by the conditions (Def. 3).
(Def. 3)(i)  The relational structure of commute(N,i,S) = the relational struc-
ture of N, and
(ii)  the mapping of commute(N,,.S) = (commute(the mapping of N))(7).
Next we state two propositions:

(24) Let X, Y be non empty topological spaces, N be a net in [X — QY],
i be an element of the carrier of N, and x be a point of X. Then (the
mapping of commute(N, z,Q2Y))(i) = (the mapping of N)(i)(z).

(25) Let X, Y be non empty topological spaces, N be an eventually-directed
net in [X — QY], and x be a point of X. Then commute(N,z,QY") is
eventually-directed.

Let X, Y be non empty topological spaces, let N be an eventually-directed
net in [X — QY7], and let z be a point of X. One can verify that commute(N, z, QY")
is eventually-directed.

Let X, Y be non empty topological spaces. Observe that every net in [X —
QY] is function yielding.

Next we state the proposition

(26) Let X be a non empty topological space, Y be a Ty-space, and N be
a net in [X — QY]. Suppose that for every point = of X holds sup

commute(N, z,QY) exists. Then sup rng (the mapping of N) exists in
(Qy)the carrier of X‘
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3. MONOTONE CONVERGENCE TOPOLOGICAL SPACES

Let T be a non empty topological space. We say that 7' is monotone conver-
gence if and only if the condition (Def. 4) is satisfied.
(Def. 4) Let D be a non empty directed subset of Q7. Then sup D exists in QT
and for every open subset V of T such that sup D € V holds D meets V.
One can prove the following proposition
(27) Let S, T be non empty topological spaces. Suppose the topological struc-
ture of S = the topological structure of T" and S is monotone convergence.
Then T is monotone convergence.
Let us observe that every Ty-space which is trivial is also monotone conver-
gence.
Let us observe that there exists a topological space which is strict, trivial,
and non empty.
One can prove the following two propositions:

(28) Let S be a monotone convergence Tp-space and T' be a Tp-space. If S
and T" are homeomorphic, then 7' is monotone convergence.

(29) Every Scott complete top-lattice is monotone convergence.
Let L be a complete lattice. One can check that every Scott topological
augmentation of L is monotone convergence.
Let L be a complete lattice and let S be a Scott topological augmentation of
L. One can check that the topological structure of .S is monotone convergence.
We now state the proposition

(30) For every monotone convergence Tp-space X holds QX is up-complete.
Let X be a monotone convergence Ty-space. Observe that 2.X is up-complete.
One can prove the following three propositions:

(31) Let X be a monotone convergence non empty topological space and N

be an eventually-directed prenet over 2X. Then sup N exists.

(32) Let X be a monotone convergence non empty topological space and N

be an eventually-directed net in QX. Then sup N € Lim N.

(33) For every monotone convergence non empty topological space X holds

every eventually-directed net in X is convergent.

Let X be a monotone convergence non empty topological space. Observe
that every eventually-directed net in 2X is convergent.
We now state two propositions:

(34) Let X be a non empty topological space. Suppose that for every
eventually-directed net N in X holds sup N exists and sup N € Lim N.
Then X is monotone convergence.
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(35) Let X be a monotone convergence non empty topological space and Y
be a Ty-space. Then every continuous map from QX into QY is directed-
sups-preserving.

Let X be a monotone convergence non empty topological space and let Y be
a Tp-space. One can check that every map from €2.X into QY which is continuous
is also directed-sups-preserving.

Next we state four propositions:

(36) Let T be a monotone convergence Ty-space and R be a Ty-space. If R is
a topological retract of T, then R is monotone convergence.

(37) Let T be an injective Tp-space and S be a Scott topological augmentation
of QT. Then the topological structure of S = the topological structure of
T.

(38) Every injective Ty-space is compact, locally-compact, and sober.
(39) Every injective Ty-space is monotone convergence.

One can verify that every Tp-space which is injective is also monotone co-
nvergence.
One can prove the following propositions:

(40) Let X be a non empty topological space, Y be a monotone convergence
To-space, N be a net in [X — QY], and f, g be maps from X into QY.
Suppose that

(i) f =Uqqyyme carsier o xy g (the mapping of N),
(ii)  sup rng (the mapping of N) exists in (QY")the carrier of X "5y
(iii) g € rng (the mapping of N).
Then g < f.

(41) Let X be a non empty topological space, Y be a monotone convergence
To-space, N be a net in [X — QY], x be a point of X, and f be a map
from X into QY. Suppose for every point a of X holds commute(V, a, 2Y")
is eventually-directed and f = I_l((QY)the carrier of X) TG (the mapping of N).
Then f(x) = sup commute(N, z, QY).

(42) Let X be a non empty topological space, Y be a monotone conver-
gence Tp-space, and N be a net in [X — QY]. Suppose that for
every point z of X holds commute(N, z, QY) is eventually-directed. Then
!_l((ﬂ)}//)the carrier of Xy TIG (the mapping of N) is a continuous map from X
mto Y.

(43) Let X be a non empty topological space and Y be a monotone conver-
gence Tp-space. Then [X — QY] is a directed-sups-inheriting relational
substructure of (QY")the carrier of X
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Summary. In this paper, we proved some elementary propositional calcu-
lus formulae for Boolean valued functions.

MML Identifier: BVFUNC10.

The articles [1] and [2] provide the notation and terminology for this paper.
In this paper Y is a non empty set.
The following propositions are true:
(1) For all elements a, b, c of BVF(Y) holds a AbVbAcVecAa=(aVb)A
(bVe)A(eVa).
(2) For all elements a, b, ¢ of BVF(Y') holds a A =bV bA —=cVecA—a =
bA=aVcA-bVaA-c.
(3) For all elements a, b, c of BVF(Y') holds (aV =b) A (bV —¢) A (cV —a) =
(bV —a) A (eV=b)A(aV —c).
(4) For all elements a, b, ¢ of BVF(Y) such that ¢ = a = true(Y) and
c=b=true(Y) holds ¢ = a Vb= true(Y).
(5) For all elements a, b, ¢ of BVF(Y) such that a = ¢ = true(Y) and
b= c=true(Y) holds a A b = ¢ = true(Y).
(6) For all elements a1, ag, by, be, c1, ca of BVF(Y') holds (a1 = a2) A (by =
bg) /\(Cl =>CQ)/\(CL1 V b \/Cl) € as V by V co.
(7) For all elements a1, a2, b1, ba of BVF(Y) holds (a1 = b1) A (a2 =
bg) VAN (a1 V (Ig) VAN —|(b1 VAN bg) = (b1 = al) A (bg = CLQ) A (bl vV bg) VAN —\(al VAN ag).
(8) For all elements a, b, ¢, d of BVF(Y') holds (aVb)A(cVd)=aAcVaA
dVbAcVbOAd.
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(9) For all elements a1, as, b1, ba, bg of BVF(Y) holds a1 Aas Vby Aby Abg =

(a1 vV bl) AN (a1 V b2) VAN (a1 V bg) VAN (a2 V bl) VAN (CLQ V bz) VAN ((ZQ V bg)

(10) For all elements a, b, ¢, d of BVF(Y') holds (a = b) A (b = ¢) A (¢ =
d)=(a=bANcAd)AN(Db=cANd)A(c=d).

(11) For all elements a, b, ¢, d of BVF(Y) holds (a = ¢) A (b= d)A(aVb) €
cVd.

(12) For all elements a, b, ¢ of BVF(Y') holds (a Ab = —¢c) Aa Ac & —b.

(13) For all elements a1, ao, ag, b1, ba, bg of BVF(Y) holds a; A as A ag =
b1 V by Vb3 =-by A=by Aag = —ay V —ag V bs.

(14) For all elements a, b, ¢ of BVF(Y') holds (a = b)) A(b=¢) A (c=a) =
aNbAcV-aA-bA—c.

(15) For all elements a, b, ¢ of BVF(Y') holds (a = b) A (b = ¢) A (c =
a)\N(aVbVe)=aAbAec.

(16) For all elements a, b, ¢ of BVF(Y') holds (a Vb) A (bVe)A(cVa)A=(aA

bAc)=—-aANbAcVaAN-bAcVaNbA-c.

(17) For all elements a, b, ¢ of BVF(Y) holds (a = b) A (b=¢) Ea=bAc.

(18) For all elements a, b, c of BVF(Y') holds (a = b)A(b=¢c) EaVb=c.

(19) For all elements a, b, c of BVF(Y') holds (a = b) A (b=¢) €Ea=bVec.

(20) For all elements a, b, c of BVF(Y') holds (a = b)A (b= ¢) Ea = bV —ec.

(21) For all elements a, b, ¢ of BVF(Y') holds (a = b) A (b=¢) €b= ¢V a.

(22) For all elements a, b, ¢ of BVF(Y) holds (a = b)A (b= ¢) Eb= ¢V —a.

(23) For all elements a, b, ¢ of BVF(Y) holds (a = b)) A (b = ¢) € (a =

b) A (b= cVa).

(24) For all elements a, b, ¢ of BVF(Y) holds (a = b) A (b = ¢) € (a =
bV —c)A (b= c).

(25) For all elements a, b, ¢ of BVF(Y) holds (a = b)) A (b = ¢) € (a =
bVe)A(b=cVa).

(26) For all elements a, b, ¢ of BVF(Y) holds (a = b) A (b = ¢) € (a =
bV -c)A (b= cVa).

(27) For all elements a, b, ¢ of BVF(Y) holds (a = b)) A (b = ¢) € (a =
bV —c)A (b= cV —a).
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC11.

The papers [8], [1], [3], [5], [2], [4], [7], and [6] provide the notation and termi-
nology for this paper.

1. PRELIMINARIES

In this paper Y is a non empty set.
We now state several propositions:
(1) For every element z of Y and for all partitions P, P» of Y such that
P, € P, holds EqClass(z, P1) C EqClass(z, P,).
(2) For every element z of Y and for all partitions P;, P, of Y holds
EqClass(z, P1) C EqClass(z, Py V P).
(3) For every element z of Y and for all partitions P;, P, of Y holds
EqClass(z, Py A Py) C EqClass(z, Py).
(4) For every element z of Y and for every partition P, of Y
holds EqClass(z, P1) C EqClass(z,0(Y)) and EqClass(z,Z(Y)) C
EqClass(z, Pp).
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(5) Let G be a subset of PARTITIONS(Y') and A, B be partitions of Y.
Suppose G is an independent family of partitions and G = {4, B} and
A+# B.Let a,bbesets. Ifa € Aand b€ B, then anb # (.

(6) Let G be a subset of PARTITIONS(Y') and A, B be partitions of Y. If
G is a coordinate and G = {A, B} and A # B, then NG = AN B.

(7) Let G be a subset of PARTITIONS(Y') and A, B be partitions of Y. If
G is a coordinate and G = {A, B} and A # B, then CompF(A,G) = B
and CompF(B,G) = A.

2. PREDICATE CALCULUS

One can prove the following propositions:

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then ElvayAG,BG & Vga,BgyAG.

(9) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and A, B be partitions of Y. If G is a coordinate and G = {A, B}, then
W, 4G,BG =Wy, 56,4G.

(10) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and A, B be partitions of Y. If G is a coordinate and G = {A, B}, then
33, 46,8G = 33, 36.4G.

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then vVa,AG,BG & Eva,BGyAG'

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VV,LAG,BG & HHQBG,AG'

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then vVa,AG,BG & VEIG,BG,AG-

(14) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds V3,.46.8G €
Elﬁa,BGAG'

(15) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIV,LAG’,BG & Elaﬁa,BGAG'

(16) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Hﬂva’AgﬁBG S Elﬂﬁa,BG,AG'
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(17) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘vvayAG,BG c HﬁvaG’AG.

(18) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬂva’AqBG & Elﬂﬁa,BG,AG'

(19) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then _‘VVQ,AG,BG c aﬂﬂa,BG,AG-

(20) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘VV(LAG’,BG c HElmyAG,BG-
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Summary. In this article we continue the formalization of concept lattices
following [4]. We give necessary and sufficient conditions for a complete lattice
to be isomorphic to a given formal context. As a by-product we get that a lattice
is complete if and only if it is isomorphic to a concept lattice. In addition we
introduce dual formal concepts and dual concept lattices and prove that the dual
of a concept lattice over a formal context is isomorphic to the concept lattice
over the dual formal context.

MML Identifier: CONLAT_2.

The notation and terminology used in this paper have been introduced in the
following articles: (8], [10], (2], (3], (11], (1], [5], [9], [15], (7], [14], [6], [13], [12],
and [16].

1. PRELIMINARIES

Let C be a FormalContext and let C be a strict FormalConcept of C. The
functor ®C} yielding an element of ConceptLattice C' is defined as follows:

(Def. 1) @Cl = Cl.
Next we state four propositions:
(1)  For every FormalContext C holds L conceptLatticec = Concept — with — all
—Attributes C' and T conceptLatticec = Concept — with — all — Objects C.
(2) Let C be a FormalContext and D be a non empty subset of
gthe objects of ¢ Then (ObjectDerivation C)(|J D) = N{(ObjectDerivation C)
(0); O ranges over subsets of the objects of C: O € D}.

@ 2001 University of Bialystok
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(3) Let C be a FormalContext and D be a non empty subset of
gthe Attributes of €' " Then (AttributeDerivation C)(|J D) =
N{ (AttributeDerivation C')(A); A ranges over subsets of the Attributes of
C: Ae D}.

(4) Let C be a FormalContext and D be a subset of the carrier of
ConceptLattice C. Then [ |conceptLatticecD is a FormalConcept of C' and
Uconceptrattice ¢ D 18 a FormalConcept of C.

Let C be a FormalContext and let D be a subset of the carrier
of ConceptLattice C. The functor [ | D yields a FormalConcept of C' and is
defined as follows:

(Def 2) ﬂC’D == ’_‘ConceptLattice CD-
The functor | |~ D yields a FormalConcept of C' and is defined by:

(Def 3) UC D= UConceptLatticeC D.
Next we state several propositions:

(5) For every FormalContext C holds | | (DconceptLattice ) = Concept — with
—all — Attributes C' and [ |o(@conceptLattice ¢) =
Concept — with — all — Objects C.

(6) For every FormalContext C holds UC(che carrier of ConceptLatticeC’) =
Concept — with —all — ObjeCtS C and HC(che carrier of ConceptLattice C) =
Concept — with — all — Attributes C.

(7) Let C be a FormalContext and D be a non empty subset of
ConceptLattice C. Then

(i)  the Extent of | |, D = (AttributeDerivation C')((ObjectDerivation C)
(U{the Extent of (E,I); E ranges over subsets of the objects of C, I
ranges over subsets of the Attributes of C: (E,I) € D})), and

(ii)  the Intent of | | D = ({the Intent of (£, I); E ranges over subsets of
the objects of C, I ranges over subsets of the Attributes of C: (E,I) € D}.

(8) Let C be a FormalContext and D be a non empty subset of
ConceptLattice C. Then

(i)  the Extent of [ |oD = ({the Extent of (E, I); E ranges over subsets of
the objects of C, I ranges over subsets of the Attributes of C: (E,I) € D},
and

(ii)  the Intent of [ |oD = (ObjectDerivation C')((AttributeDerivation C)
(U{the Intent of (E, I'); E ranges over subsets of the objects of C, I ranges
over subsets of the Attributes of C: (E,I) € D})).

(9) Let C be a FormalContext and C; be a strict FormalConcept of C.
Then | |copeeptrattice ¢ 1(O5 A); O ranges over subsets of the objects of C, A
ranges over subsets of the Attributes of C: \/, jpicct of ¢ (0 € the Extent
of C1 A O = (AttributeDerivation C)((ObjectDerivation C)({o})) A A =
(ObjectDerivation C)({o}))} = Ci.
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(10) Let C be a FormalContext and C; be a strict FormalConcept of C.
Then [ lconceptLatticec{(O, A); O ranges over subsets of the objects of
C, A ranges over subsets of the Attributes of C: /.. attribute of ¢ (@ €
the Intent of C; A O = (AttributeDerivationC)({a}) A A =
(ObjectDerivation C')((AttributeDerivation C)({a})))} = Ci.

Let C be a FormalContext. The functor «(C) yields a function from the
objects of C into the carrier of ConceptLattice C' and is defined by the condition
(Def. 4).

(Def. 4) Let o be an element of the objects of C. Then there exi-
sts a subset O of the objects of C and there exists a sub-
set A of the Attributes of C such that (y(C))(o) = (O, A) and
O = (AttributeDerivation C')((ObjectDerivation C')({0})) and A =
(ObjectDerivation C)({o}).

Let C' be a FormalContext. The functor d¢ yielding a function from the
Attributes of C' into the carrier of ConceptLattice C' is defined by the condition
(Def. 5).

(Def. 5) Let a be an element of the Attributes of C. Then there exists a subset
O of the objects of C' and there exists a subset A of the Attributes of
C such that d¢(a) = (O, A) and O = (AttributeDerivation C')({a}) and
A = (ObjectDerivation C')((AttributeDerivation C')({a})).

The following propositions are true:

(11) Let C be a FormalContext, o be an object of C, and a be a Attribute of
C'. Then (y(C))(0) is a FormalConcept of C and dc(a) is a FormalConcept
of C.

(12) For every FormalContext C' holds rng~(C) is supremum-dense and
rng(d¢) is infimum-dense.

(13) Let C be a FormalContext, o be an object of C', and a be a Attribute of
C'. Then o is connected with a if and only if (v(C))(0) C dc(a).

2. THE CHARACTERIZATION

We now state the proposition

(14) Let L be a complete lattice and C be a FormalContext. Then
ConceptLattice C' and L are isomorphic if and only if there exists a func-
tion g from the objects of C' into the carrier of L and there exists a func-
tion d from the Attributes of C' into the carrier of L such that rngg is
supremum-dense and rngd is infimum-dense and for every object o of C
and for every Attribute a of C holds o is connected with a iff g(o) C d(a).
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Let L be a lattice. The functor Context L yields a strict non quasi-empty
ContextStr and is defined as follows:

(Def. 6) Context L = (the carrier of L, the carrier of L, LattRel(L)).
One can prove the following proposition
(15) For every complete lattice L holds ConceptLattice Context L and L are
isomorphic.
Let L1, Lo be lattices. Let us note that the predicate L1 and L9 are isomor-
phic is symmetric.
Next we state the proposition
(16) For every lattice L holds L is complete iff there exists a FormalContext
C such that ConceptLattice C' and L are isomorphic.

3. DuAL CONCEPT LATTICES

Let L be a complete lattice. Observe that L° is complete.
Let C be a FormalContext. The functor C° yielding a strict non quasi-empty
ContextStr is defined as follows:
(Def. 7) C° = (the Attributes of C, the objects of C, (the Information of C')™).
We now state three propositions:
(17) For every strict FormalContext C' holds (C°)° = C.

(18) For every FormalContext C' and for every subset O of the objects of C
holds (ObjectDerivation C)(O) = (AttributeDerivation C°)(O).

(19) For every FormalContext C' and for every subset A of the Attributes of
C holds (AttributeDerivation C')(A) = (ObjectDerivation C°)(A).

Let C be a FormalContext and let C; be a ConceptStr over C'. The functor
C1° yields a strict ConceptStr over C° and is defined as follows:

(Def. 8) The Extent of C1° = the Intent of C and the Intent of C1° = the Extent
of Cl.

Let C be a FormalContext and let C; be a FormalConcept of C. Then C°
is a strict FormalConcept of C°.

We now state the proposition

(20) For every FormalContext C' and for every strict FormalConcept C; of C
holds (C1°)° = Ch.

Let C' be a FormalContext. The functor DualHomomorphism C' yielding a
homomorphism from (ConceptLattice C')° to ConceptLattice C° is defined as
follows:

(Def. 9) For every strict FormalConcept C; of C holds
(DualHomomorphism C')(C}) = C°.
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We now state two propositions:

(21) For every FormalContext C' holds DualHomomorphism C' is isomor-

phism.

(22) For every FormalContext C holds ConceptLattice C° and

(ConceptLattice C')° are isomorphic.
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Summary. In this paper, we proved some elementary predicate calculus

formulae containing the quantifiers of Boolean valued functions with respect to

partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC12.

The terminology and notation used in this paper are introduced in the following

papers: [1], [2], [3], [5], and [4].

In this paper Y is a non empty set.
The following propositions are true:

(1) For every element a
PARTITIONS(Y) and for
E|_.va7 4G, BG.

(2) For every element a
PARTITIONS(Y) and for
Vﬁv% 4G, BG.

(3) For every element a
PARTITIONS(Y) and for
Vgﬁay AG,BG-

(4) For every element a
PARTITIONS(Y) and for
Vvﬁa’ AG,BG-

(5) For every element a
PARTITIONS(Y) and for
Hvﬂa, AG,BG‘

of BVF(Y) and for every
all partitions A, B of Y holds
of BVF(Y)
of BVF(Y)

of BVF(Y)

of BVF(Y) and for every
all partitions A, B of Y holds

61

and for every
all partitions A, B of Y holds

and for every
all partitions A, B of Y holds

and for every
all partitions A, B of Y holds

subset G of
W, 46,BG =

subset G of
=3y, 468G =

subset G of
v—“V’ayAG,BG( =

subset G of
V3,.6,8G =

subset G of
V3, 46,8G =
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(6) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds =3y, 46,8G =
VElmyAG’,BG-

(7) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds Wy, 46,BG =
Haﬂa,AngG.

(8) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds v, 46,8G =
Elﬂﬁa,AG,BG-

(9) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of ¥ holds 3-3, ,¢,8G =
va,AG,BG-

(10) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y') and for all partitions A, B of Y holds —33, ,¢,5G =
V-3,.46,BG.

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then EleAG,BG c 33@73G7AG.

(12) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds Vv, 468G €
Vga’AngG.

(13) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds W, 46,BG €
HVQ,AG,BG-

(14) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds Wy, ,¢,8G €
33,..6,8G-

(15) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y') and for all partitions A, B of Y holds V3, ,¢ G €
EIHGYAG,BG-

(16) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds 3y, ,a,8G €
33, 46,8G.
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.
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The papers [1], [2], [3], [5], and [4] provide the terminology and notation for this
paper.

In this paper Y denotes a non empty set.

One can prove the following propositions:

(1) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬂva’AG,BG & _‘VV‘LBG,AG-

(2) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds W_,46,BG €
_‘VVQ’BG,AG-

(3) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds V-3, ,c,8G &
_‘VVG?BG,AG-

(4) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then vﬂﬁa,AG,BG & ﬁvva,BG,AG-

(5) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Hﬂva’AG,BG & —\VvuyBgvAG.
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(6) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Hvﬁa,AGBG c _‘VVQ,BG,AG-

(7) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Hﬂga’AgﬁBG & _‘VV(LYBG,AG-

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Elﬂﬁa’AG,BG c _‘VV,LBG,AG~

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then _‘VHQ,AG,BG & —ava’BG’AG.

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIH,LAG’,BG & _‘HVG,BG,AG‘

(11) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B of Y holds =33, ,6,8G €
V3, 56,4G.

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘HHG’AG,BG S _Elﬂa,BG,AG‘

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘V‘v’a,AG’,BG c _‘Vva,BG,AG-

(14) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIVG,AG’,BG & _‘vVa,BG,AG‘

(15) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then ﬁVga,AgBG c _‘VVG,BG,AG-

(16) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘HHQ,AG,BG & _‘VVQ’BG,AG-

(17) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIV,LAG,BG & El—\Va7BG,AG~

(18) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then _‘VHQ,AG,BG c ElﬁVa,BG,AG'

(19) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
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A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then ﬁ33a7A07BG S El_\vaG’AG.

(20) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then ﬂVga’AQBG c VﬁvaﬁBgvAG.

(21) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then —ElgayAgyBG & V_\V‘LBG’AG.

(22) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then —aga,AG,BG S HﬁngG,AG.

(23) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘HHQ,AG,BG S V—\E(LBG,AG-

(24) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘VElayAG,BG c HElﬁayBG,AG-

(25) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIEIG,AG,BG c ElEIﬁa,BG,AG-

(26) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘\VIHCLAG’,BG c VﬂﬁayBG’,AG-

(27) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then _‘HHQ,AG,BG S ng’BG,AG.

(28) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then _‘EIH(LAG,BG & EIVﬁa,BG,AG'

(29) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then _‘HHG,AG,BG & VVW,BG,AG-

(30) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then HﬂgmAGBG & ﬁHV‘LBG’AG.

(31) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬁga,AG,BG c _‘Elvang,AG-

(32) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
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then VﬂgaYAGVBG S _‘VHQBG,AG-

(33) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Vﬁga’AngG S _‘HH%BG,AG-

(34) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then ElﬂVa,AG,BG & Elﬁva,BG,AG'

(35) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬁva’AGnBG <€ Hﬁva,BGPAG.

(36) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then El_EIa,AGvBG & Hﬁva’BQAG.

(37) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VﬂgaﬁAG,BG c ELV&’BG,AG.

(38) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Hﬂga’AQBG S V_.va’BgyAG.

(39) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VﬂgaYAGVBG S v—'Va,BG,AG'

(40) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Vﬁga’AngG <€ Hﬁga’ngAG.

(41) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VﬂgaYAQBG c V—HG,BG,AG-

(42) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Hﬁga’AGEBG S Elaﬁa,BG,AG'

(43) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VﬂgayAQBG c Elﬂﬁa,BG,AG'

(44) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then ElﬁEla,AG,BG c Vgﬁa,BGﬂqG.

(45) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬂga’ACﬂBG S Vﬂﬁa,BG,AG'
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(46) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Vﬁga,AQBG & Hvﬁa,BC{AG'

(47) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Vﬂga’AG,BG S Vvﬁa’BCﬂAG.

(48) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Elvﬁa,AG,BG S —ava’BG,AG.

(49) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Vvﬁa’AGnBG c _‘EVQ,BG,AG-

(50) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then vVﬁa,AGﬂBG & _‘VH(LBG,AG-

(51) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then vv_.a’AG,BG <€ _‘Eﬂang,AG-

(52) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Elﬂﬁa,AG,BG & ElﬂVa,BG,AG'

(53) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then vﬂﬁa7AG7BG c Hﬁva,BQAG.

(54) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then Hvﬂa‘AngG & Elﬂva,BCﬂAG'

(55) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VVWYAG,BG c Hﬂva,BGVAG.

(56) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Hvﬁa’AG,BG & Vﬂva’BQAG.

(57) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then vVﬁa,AGBG & Vﬂva,BGAG.

(58) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Vv_‘a’AG7BG S Hﬁga’ngAG.

(59) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
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A, B be partitions of Y. If G is a coordinate and G = {A, B} and A # B,
then VVWAQBG c Vﬂga,BGAG.

(61)! Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and A, B be partitions of Y. If G is a coordinate and G = {4, B} and
A # B, then VEIW,AG,BG & HgﬁmBg,AG.

(62) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B be partitions of Y. If G is a coordinate and G = {4, B} and A # B,
then Elv_.%AG,BG <€ Elaﬁa,BG,AG'
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Summary. In this article, a radix-2* signed-digit number (Radix-2¥ SD
number) is defined and based on it a high-speed adder algorithm is discussed.

The processes of coding and encoding for public-key cryptograms require a
great deal of addition operations of natural number of many figures. This results
in a long time for the encoding and decoding processes. It is possible to reduce
the processing time using the high-speed adder algorithm.

In the first section of this article, we prepared some useful theorems for
natural numbers and integers. In the second section, we defined the concept
of radix-2*, a set named k-SD and proved some properties about them. In the
third section, we provide some important functions for generating Radix-2* SD
numbers from natural numbers and natural numbers from Radix-2* SD numbers.
In the fourth section, we defined the carry and data components of addition with
Radix-2* SD numbers and some properties about them. In the fifth section, we
defined a theorem for checking whether or not a natural number can be expressed
as n digits Radix-2® SD number.

In the last section, a high-speed adder algorithm on Radix-2* SD numbers is
proposed and we provided some properties. In this algorithm, the carry of each
digit has an effect on only the next digit. Properties of the relationships of the
results of this algorithm to the operations of natural numbers are also given.

MML Identifier: RADIX_1.

The notation and terminology used here are introduced in the following papers:

(91, (6], [2], 3], [12], [4], (11], [1], 5], [7], [13], [10], and [8].
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1. SOME USEFUL THEOREMS

We adopt the following convention: i, k, m, n, x, y are natural numbers, i1,
12, i3 are integers, and e is a set.
The following propositions are true:
(1) If n # 0, then m+n = (m qua integer) +n qua integer and mmodn =
(m qua integer) mod n qua integer.

(2) Ifk#0and nmodk =%k —1, then (n+ 1) mod k = 0.

(3) Ifk#0and nmodk < k— 1, then (n+ 1) mod k = (n mod k) + 1.
(4) If m # 0 and n # 0, then £ mod m - n mod n = k mod n.

(5) If k#0, then (n+1)mod k=0 or (n+ 1) mod k = (n mod k) + 1.
(6) Ifi#0andk 0, then (nmodik) + i]&*/l <.

(7) If k < n, then mf | m&.

(8) If iz > 0, then i; mod iz - i3 mod i3 = i1 mod i3.

2. DEFINITION FOR RADIX-2%, K-SD

Let us consider n. The functor Radix n yields a natural number and is defined
by:
(Def. 1) Radixn = 2™.
Let us consider k. The functor £ —SD yields a set and is defined by:
(Def. 2) k—SD = {e; e ranges over integers: e < Radixk—1 A e > —Radixk+1}.

The following propositions are true:

(9) Radixn # 0.
(10) For every e holds e € 0 —SD iff e = 0.
(11) 0-SD = {0}.
(12) k-SDCk+1-SD.
(13) If e € k—SD, then e is an integer.
(14) k-SD C Z.
(15) If iy € k—SD, then i1y < Radixk — 1 and i; > —Radixk + 1.
(16) 0€k—SD.

Let us consider k. Note that kK —SD is non empty.
Let us consider k. Then k —SD is a non empty subset of Z.
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3. FUNCTIONS FOR GENERATING RADIX-2¥ SD NUMBERS FROM NATURAL
NUMBERS AND NATURAL NUMBERS FROM RADIX-2¥ SD NUMBERS

In the sequel a denotes a tuple of n and k —SD.
We now state the proposition

(18)! If i € Segn, then a(i) is an element of k —SD.

Let ¢, k, n be natural numbers and let x be a tuple of n and k—SD. The
functor DigA(z, i) yields an integer and is defined by:

(Def. 3)(i) DigA(z,i) = x(i) if i € Segn,
(i) DigA(x,i)=0ifi=0.
Let ¢, k, n be natural numbers and let x be a tuple of n and £ —SD. The
functor DigB(z,7) yielding an element of Z is defined as follows:
(Def. 4) DigB(z,i) = DigA(z,1).
One can prove the following propositions:
(19) If i € Segn, then DigA(a,i) is an element of k —SD.
(20) For every tuple = of 1 and Z such that mjx = m holds z = (m).

Let 7, k, n be natural numbers and let x be a tuple of n and £ —SD. The
functor SubDigit(x,, k) yielding an element of Z is defined by:
(Def. 5) SubDigit(z, 7, k) = ((Radix k)i *) - DigB(z, ).
Let n, k£ be natural numbers and let z be a tuple of n and & —SD. The
functor DigitSD x yielding a tuple of n and Z is defined as follows:

(Def. 6) For every natural number i such that ¢ € Segn holds m; DigitSDz =
SubDigit(z, i, k).
Let n, k£ be natural numbers and let x be a tuple of n and & —SD. The
functor SDDec x yields an integer and is defined as follows:
(Def. 7) SDDecx = ) DigitSD z.
Let i, k, = be natural numbers. The functor DigitDC(z, 1, k) yielding an
element of k —SD is defined as follows:
(Def. 8) DigitDC(z,4, k) = (z mod (Radix k)§;) + (Radix k)f\fll.
Let k, n, z be natural numbers. The functor DecSD(xz, n, k) yields a tuple
of n and k —SD and is defined as follows:

(Def. 9) For every natural number ¢ such that ¢ € Segn holds
DigA (DecSD(x, n, k), i) = DigitDC(z, 7, k).

!The proposition (17) has been removed.



74 YOSHINORI FUJISAWA AND YASUSHI FUWA

4. DEFINITION FOR CARRY AND DATA COMPONENTS OF ADDITION

Let x be an integer. The functor SD_Add_Carry x yielding an integer is
defined as follows:
1, if z > 2,
(Def. 10) SD_Add Carryz =< —1, if x < =2,
0, otherwise.

One can prove the following proposition
(21) SD_Add_Carry 0 = 0.
Let = be an integer and let k£ be a natural number.
The functor SD_Add_Data(x, k) yields an integer and is defined by:
(Def. 11) SD_Add_Data(z, k) = z — SD_Add_Carry = - Radix k.
Next we state two propositions:
(22) SD_Add Data(0,k) = 0.

(23) If £ > 2 and i1 € k—SD and iy € k—SD, then —Radixk + 2 <
SD_Add Data(i1 4 iz, k) and SD_Add_Data(i; + ie, k) < Radixk — 2.

5. DEFINITION FOR CHECKING WHETHER OR NOT A NATURAL NUMBER CAN
BE EXPRESSED AS N DIGITS RADIX-2F SD NUMBER

Let n, x, k be natural numbers. We say that x is represented by n, k if and
only if:
(Def. 12) < (Radix k)f.
Next we state four propositions:
(24) If m is represented by 1, k, then DigA(DecSD(m,1,k),1) = m.

(25) For every n such that n > 1 and for every m such that m is represented
by n, k holds m = SDDec DecSD(m, n, k).

(26) If £k > 2 and m is represented by 1, k and n is represented by 1, k,
then SD_Add_Carry DigA(DecSD(m, 1, k), 1) + DigA(DecSD(n, 1,k),1) =
SD_Add_Carry m + n.

(27) If m is represented by n + 1, k, then DigA(DecSD(m,n+1,k),n+1) =
m + (Radix k).
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6. DEFINITION FOR ADDITION OPERATION FOR A HIGH-SPEED ADDER
ALGORITHM ON RADIX-2¥ SD NUMBER

Let k, i, n be natural numbers and let z, y be tuples of n and k& —SD. Let us
assume that ¢ € Segn and k > 2. The functor Add(z,y, i, k) yields an element
of kK —SD and is defined as follows:
(Def. 13) Add(z,y,i,k) = SD_Add Data(DigA(z,i)+DigA(y, 1), k)+SD_Add_Carry
DigA(z,i —'1) + DigA(y,i —'"1).
Let n, k be natural numbers and let z, y be tuples of n and k—SD. The
functor 2’ +' y yielding a tuple of n and k —SD is defined by:

(Def. 14) For every i such that i € Segn holds DigA (2’ +' y,4) = Add(x,y, 1, k).
One can prove the following two propositions:

(28) If k > 2 and m is represented by 1, k and n is represented by 1, k, then
SDDec DecSD(m, 1, k)" +' DecSD(n, 1, k) = SD_Add_Data(m + n, k).

(29) Let given n. Suppose n > 1. Let given k, x, y. Suppose k >
2 and =z is represented by n, k and y is represented by n, k.
Then z + y = SDDecDecSD(z, n, k)" +' DecSD(y, n, k) + ((Radix k)g) -
SD_Add_Carry DigA(DecSD(z, n, k), n) + DigA(DecSD(y, n, k), n).
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1. POSET RETRACTS

The following three propositions are true:

(1) For all binary relations a, b holds a - b = ab.

(2) Let X be aset, L be a non empty relational structure, S be a non empty
relational substructure of L, f, g be functions from X into the carrier of
S, and f’, ¢’ be functions from X into the carrier of L. If f' = fand ¢’ = ¢
and f < g, then ' < ¢’

(3) Let X be a set, L be a non empty relational structure, S be a full non
empty relational substructure of L, f, g be functions from X into the
carrier of S, and f’, ¢’ be functions from X into the carrier of L. If f' = f
and ¢’ = g and f' < ¢/, then f < g.

Let S be a non empty relational structure and let T" be a non empty reflexive
antisymmetric relational structure. Note that there exists a map from S into T'
which is directed-sups-preserving and monotone.

The following proposition is true

(4) For all functions f, g such that f is idempotent and rngg C rng f and
mgg C dom f holds f-g=g.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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Let S be a 1-sorted structure. Note that there exists a map from .S into S
which is idempotent.
One can prove the following propositions:

(5) For every up-complete non empty poset L holds every directed-sups-
inheriting full non empty relational substructure of L is up-complete.

(6) Let L be an up-complete non empty poset and f be a map from L into
L. Suppose f is idempotent and directed-sups-preserving. Then Im f is
directed-sups-inheriting.

(7) Let T be an up-complete non empty poset and S be a directed-sups-
inheriting full non empty relational substructure of 7'. Then incl(S,T) is
directed-sups-preserving.

(8) Let S, T be non empty relational structures, f be a map from T into S,
and g be a map from S into T'. If f - g = idg, then rng f = the carrier of
S.

(9) Let T be a non empty relational structure, S be a non empty relational
substructure of 7', and f be a map from 7T into S. If f - incl(S,T) = idg,
then f is an idempotent map from 7" into 7.

Let S, T be non empty posets and let f be a function. We say that f is a
retraction of 7" into S if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i)  f is a directed-sups-preserving map from 7" into S,
(ii)  f[the carrier of S =idg, and
(iii) S is a directed-sups-inheriting full relational substructure of 7.
We say that f is a UPS retraction of T into S if and only if the conditions
(Def. 2) are satisfied.
(Def. 2)(i)  f is a directed-sups-preserving map from 7" into S, and
(ii)  there exists a directed-sups-preserving map ¢ from S into 7" such that
f-g=idg.
Let S, T be non empty posets. We say that S is a retract of T if and only if:
(Def. 3) There exists a map f from 7T into S such that f is a retraction of T into
S.
We say that S is a UPS retract of T if and only if:
(Def. 4) There exists a map f from T into S such that f is a UPS retraction of
T into S.
The following propositions are true:
(10) For all non empty posets S, T and for every function f such that f is a
retraction of 7" into S holds f - incl(S,7T) = ids.

(11) Let S be a non empty poset, T' be an up-complete non empty poset, and
f be a function. Suppose f is a retraction of T into S. Then f is a UPS
retraction of T into S.



RETRACTS AND INHERITANCE 79

(12) Let S, T be non empty posets and f be a function. If f is a retraction
of T into S, then rng f = the carrier of S.

(13) Let S, T benon empty posets and f be a function. If f is a UPS retraction
of T into S, then rng f = the carrier of S.

(14) Let S, T be non empty posets and f be a function. Suppose f is a
retraction of 7" into S. Then f is an idempotent map from 7" into T'.

(15) Let T, S be non empty posets and f be a map from 7T into T'. Suppose
f is a retraction of T into S. Then Im f = the relational structure of S.

(16) Let T be an up-complete non empty poset, S be a non empty poset, and
f be a map from T into T. Suppose f is a retraction of T into S. Then f
is directed-sups-preserving and projection.

(17) Let S, T be non empty reflexive transitive relational structures and f
be a map from S into T. Then f is isomorphic if and only if the following
conditions are satisfied:

(i)  f is monotone, and
(ii)  there exists a monotone map ¢ from 7" into S such that f-¢ = idy and
g-f=ids.

(18) Let S, T be non empty posets. Then S and T are isomorphic if and
only if there exists a monotone map f from S into T" and there exists a
monotone map ¢ from 7T into S such that f-¢g =idr and g - f = idg.

(19) Let S, T be up-complete non empty posets. Suppose S and 1" are iso-
morphic. Then S is a UPS retract of T and T is a UPS retract of S.

(20) Let T, S be non empty posets, f be a monotone map from 7' into S,
and ¢ be a monotone map from .S into T'. Suppose f - g = idg. Then there
exists a projection map h from T into T such that h = g - f and hfthe
carrier of Im A = idy,p, and S and Im A are isomorphic.

(21) Let T be an up-complete non empty poset, S be a non empty poset,
and f be a function. Suppose f is a UPS retraction of 7" into .S. Then
there exists a directed-sups-preserving projection map h from T into T
such that h is a retraction of T" into Im h and S and Im h are isomorphic.

(22) For every up-complete non empty poset L and for every non empty poset
S such that S is a retract of L holds S is up-complete.

(23) For every complete non empty poset L and for every non empty poset
S such that S is a retract of L holds S is complete.

(24) Let L be a continuous complete lattice and S be a non empty poset. If
S is a retract of L, then S is continuous.

(25) Let L be an up-complete non empty poset and S be a non empty poset.
If S is a UPS retract of L, then S is up-complete.

(26) Let L be a complete non empty poset and S be a non empty poset. If S
is a UPS retract of L, then S is complete.
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(27) Let L be a continuous complete lattice and S be a non empty poset. If
S is a UPS retract of L, then S is continuous.

(28) Let L be a relational structure, S be a full relational substructure of L,
and R be a relational substructure of S. Then R is full if and only if R is
a full relational substructure of L.

(29) Let L be a non empty transitive relational structure and S be a
directed-sups-inheriting non empty full relational substructure of L. Then
every directed-sups-inheriting non empty relational substructure of S is a
directed-sups-inheriting relational substructure of L.

(30) Let L be an up-complete non empty poset and Sy, Sy be directed-sups-
inheriting full non empty relational substructures of L. Suppose S is a
relational substructure of S;. Then S; is a directed-sups-inheriting full
relational substructure of Ss.

Let X, Y be non empty topological spaces. One can check that every conti-
nuous map from X into Y is continuous.

2. ProbucTs

Let R be a binary relation. We say that R is poset-yielding if and only if:
(Def. 5) For every set x such that = € rng R holds z is a poset.
Let us observe that every binary relation which is poset-yielding is also
relational structure yielding and reflexive-yielding.
Let X be a non empty set, let L be a non empty relational structure, let ¢
be an element of X, and let Y be a subset of LX. Then m;Y is a subset of L.
Let X be a set and let S be a poset. Note that X —— S is poset-yielding.
Let I be a set. Observe that there exists a many sorted set indexed by [
which is poset-yielding and nonempty.
Let I be a non empty set and let J be a poset-yielding nonempty many
sorted set indexed by I. Note that [].J is transitive and antisymmetric.
Let I be a non empty set, let J be a poset-yielding nonempty many sorted
set indexed by I, and let ¢ be an element of I. Then J(i) is a non empty poset.
Next we state a number of propositions:
(31) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, f be an element of [[J, and X be a subset of [[ J. Then
f > X if and only if for every element i of I holds f(i) > mX.
(32) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, f be an element of [[ J, and X be a subset of [[ J. Then
f < X if and only if for every element i of I holds f(i) < m;X.
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(33) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, and X be a subset of [[J. Then sup X exists in [ J if
and only if for every element ¢ of I holds sup m; X exists in J (7).

(34) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, and X be a subset of [[J. Then inf X exists in []J if
and only if for every element ¢ of I holds inf m; X exists in J(i).

(35) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, and X be a subset of [ J. If sup X exists in []J, then
for every element ¢ of I holds (sup X)(i) = sup m; X.

(36) Let I be a non empty set, J be a poset-yielding nonempty many sorted
set indexed by I, and X be a subset of [[J. If inf X exists in []J, then
for every element i of I holds (inf X)(7) = inf m; X.

(37) Let I be a non empty set, J be a relational structure yielding nonempty
reflexive-yielding many sorted set indexed by I, X be a directed subset of
[1J, and i be an element of I. Then m; X is directed.

(38) Let I be a non empty set and J, K be relational structure yielding
nonempty many sorted sets indexed by I. Suppose that for every element
i of I holds K(7) is a relational substructure of J(¢). Then [[K is a
relational substructure of [] J.

(39) Let I be a non empty set and J, K be relational structure yielding
nonempty many sorted sets indexed by I. Suppose that for every element
i of T holds K (i) is a full relational substructure of J(i). Then [[ K is a
full relational substructure of [].J.

(40) Let L be a non empty relational structure, S be a non empty relational
substructure of L, and X be a set. Then S¥X is a relational substructure
of LX.

(41) Let L be a non empty relational structure, S be a full non empty re-
lational substructure of L, and X be a set. Then S¥ is a full relational
substructure of LX.

3. INHERITANCE

Let S, T be non empty relational structures and let X be a set. We say that
S inherits sup of X from T if and only if:

(Def. 6) If sup X exists in 7', then | | X € the carrier of S.
We say that S inherits inf of X from 7" if and only if:
(Def. 7) If inf X exists in T, then [ [pX € the carrier of S.

Next we state two propositions:
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(42) Let T be a non empty transitive relational structure, S be a full non
empty relational substructure of 7', and X be a subset of S. Then S
inherits sup of X from 7' if and only if if sup X exists in 7', then sup X
exists in S and sup X = | |, X.

(43) Let T be a non empty transitive relational structure, S be a full non
empty relational substructure of T, and X be a subset of S. Then S
inherits inf of X from T if and only if if inf X exists in 7', then inf X
exists in S and inf X = [ |pX.

In this article we present several logical schemes. The scheme ProductSup-
sInher deals with a non empty set A, poset-yielding nonempty many sorted sets
B, C indexed by A, and and states that:

For every subset X of [[C such that P[X, [[C] holds []C inherits
sup of X from [[B
provided the following conditions are satisfied:

e Let L be a non empty poset, .S be a non empty full relational sub-
structure of L, and X be a subset of S. If P[X, S], then P[X, L],

e For every subset X of [[C such that P[X,[[C] and for every
element 7 of A holds P[m; X, C(7)],

e For every element ¢ of A holds C(7) is a full relational substructure
of B(i), and

e For every element ¢ of A and for every subset X of C(i) such that
P[X,C(i)] holds C(7) inherits sup of X from B(i).

The scheme PowerSupsInherit deals with a non empty set A, a non empty
poset B, a non empty full relational substructure C of B, and and states that:
For every subset X of C* such that P[X,C*] holds CA inherits

sup of X from B4
provided the following requirements are met:

e Let L be a non empty poset, .S be a non empty full relational sub-
structure of L, and X be a subset of S. If P[X, S], then P[X, L],

e For every subset X of C* such that P[X,C*] and for every element
i of A holds P[m; X,C], and

e For every subset X of C such that P[X,C] holds C inherits sup of
X from B.

The scheme ProductInfsInher deals with a non empty set A, poset-yielding

nonempty many sorted sets B, C indexed by 4, and and states that:
For every subset X of [[ C such that P[X,[]C] holds [] C inherits
inf of X from [[B

provided the parameters meet the following conditions:

e Let L be a non empty poset, .S be a non empty full relational sub-
structure of L, and X be a subset of S. If P[X, S], then P[X, L],
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e For every subset X of [[C such that P[X,[[C] and for every
element i of A holds P[m; X, C(4)],

e For every element i of A holds C(7) is a full relational substructure
of B(i), and

e For every element ¢ of A and for every subset X of C(i) such that
P[X,C(i)] holds C(i) inherits inf of X from B(7).

The scheme PowerInfsInherit deals with a non empty set 4, a non empty
poset B, a non empty full relational substructure C of B, and and states that:
For every subset X of C* such that P[X,C*4] holds CA inherits

inf of X from BA
provided the following conditions are satisfied:
e Let L be a non empty poset, .S be a non empty full relational sub-
structure of L, and X be a subset of S. If P[X, S], then P[X, L],
e For every subset X of C* such that P[X,C] and for every element
i of A holds P[m; X, C], and
e For every subset X of C such that P[X,C] holds C inherits inf of
X from B.
Let I be a set, let L be a non empty relational structure, let X be a non
empty subset of L!, and let i be a set. Observe that 7; X is non empty.
The following proposition is true
(44) Let L be a non empty poset, S be a directed-sups-inheriting non empty

full relational substructure of L, and X be a non empty set. Then S¥X is
a directed-sups-inheriting relational substructure of LX.

Let I be a non empty set, let J be a relational structure yielding nonempty
many sorted set indexed by I, let X be a non empty subset of [ J, and let i be
a set. Observe that m; X is non empty.

One can prove the following proposition

(45) For every non empty set X and for every up-complete non empty poset
L holds LX is up-complete.

Let L be an up-complete non empty poset and let X be a non empty set.

Note that L¥X is up-complete.

4. TOPOLOGICAL RETRACTS

Let T be a topological space. Note that the topology of T' is non empty.
We now state a number of propositions:
(46) Let T be a non empty topological space, S be a non empty subspace of
T, and f be a continuous map from 7T into S. If f is a retraction, then
rng f = the carrier of S.
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(47) Let T be a non empty topological space, S be a non empty subspace of
T, and f be a continuous map from 7 into S. If f is a retraction, then f
is idempotent.

(48) Let T be a non empty topological space and V be an open subset of
T. Then Xy the carrier of T 15 @ continuous map from 7" into the Sierpinski
space.

(49) Let T be a non empty topological space and z, y be elements of T.
Suppose that for every open subset W of T" such that y € W holds z € W.
Then [0 — y,1 — z] is a continuous map from the Sierpinski space into
T.

(50) Let T be a non empty topological space, x, y be elements of T', and V'
be an open subset of T'. Suppose z € V and y ¢ V. Then Xv the carrier of T -
[O 1Y, 1r— ZL‘} = idthe Sierpinski space-

(51) Let T be a non empty 1-sorted structure, V, W be subsets of T, S be a
topological augmentation of 2L, and f, g be maps from T into S. Suppose
f = XV,the carrier of T and g = XVV,the carrier of 7- Then V' C W if and only
if f<g.

(52) Let L be a non empty relational structure, X be a non empty set, and R
be a full non empty relational substructure of LX. Suppose that for every
set a holds a is an element of R iff there exists an element x of L such
that a = X —— z. Then L and R are isomorphic.

(53) Let S, T' be non empty topological spaces. Then S and T are home-
omorphic if and only if there exists a continuous map f from S into 7" and
there exists a continuous map g from 7T into S such that f - g = idy and
g- f=idg.

(54) Let T, S, R be non empty topological spaces, f be a map from T into
S, g be a map from S into T, and h be a map from S into R. If f-g = idg
and h is a homeomorphism, then h- f - (g-h~!) =idg.

(55) Let T, S, R be non empty topological spaces. Suppose S is a topological
retract of T and S and R are homeomorphic. Then R is a topological
retract of T'.

(56) For every non empty topological space T and for every non empty sub-
space S of T holds incl(S, T) is continuous.

(57) Let T be a non empty topological space, S be a non empty subspace of
T, and f be a continuous map from 7T into S. If f is a retraction, then
f+incl(S,T) = ids.

(58) Let T be a non empty topological space and S be a non empty subspace
of T. If S is a retract of T', then S is a topological retract of T'.

(59) Let R, T be non empty topological spaces. Then R is a topological retract
of T if and only if there exists a non empty subspace S of T" such that S
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is a retract of T" and S and R are homeomorphic.
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1. PRELIMINARIES

One can prove the following propositions:
(1) For all functions f, g, h such that dom f N domg C domh holds
fHg+h=g+-f+h
(2) For all functions f, g, h such that f C g and rngh Ndomg C dom f
holds g-h = f - h.
(3) For all functions f, g, h such that dom f C rng g and dom f misses rng h
and ¢g° dom h misses dom f holds f - (g+-h) = f - g.
(4) For all functions f1, fo, g1, g2 such that fi ~ fy and g1 ~ g2 holds
fi 1= f2- g
(5) Let Xy, Y1, Xo, Y5 be non empty sets, f be a function from X; into X,
and g be a function from Y] into Ys. If f C g, then f* C g*.
(6) Let Xj, Y1, Xo, Y5 be non empty sets, f be a function from X; into X,
and g be a function from Y; into Ys. If f ~ g, then f* =~ g*.
Let X be a set and let f be a function. The functor X -indexing f yielding
a many sorted set indexed by X is defined as follows:
(Def. 1) X -indexing f = idx+-f]X.
We now state a number of propositions:
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(7) For every set X and for every function f holds rng(X -indexing f) =
(X \dom f)U f°X.
(8) For every non empty set X and for every function f and for every element
x of X holds (X -indexing f)(z) = (idx+-f)(z).
(9) For all sets X, z and for every function f such that x € X holds
if x € dom f, then (X -indexing f)(z) = f(x) and if x ¢ dom f, then
(X -indexing f)(z) = =.
(10) For every set X and for every function f such that dom f = X holds
X -indexing f = f.
(11) For every set X and for every function f holds X -indexing(X -indexing f) =
X -indexing f.
(12) For every set X and for every function f holds X -indexing(idx+-f) =
X -indexing f.
(13) For every set X and for every function f such that f C idx holds
X -indexing f = idx.
(14) For every set X holds X -indexing ) = idx.
(15) For every set X and for every function f holds X -indexing f|X =
X -indexing f.
(16) For every set X and for every function f such that X C dom f holds
X -indexing f = f[X.
(17) For every function f holds @-indexing f = 0.
(18) For all sets X, Y and for every function f such that X C Y holds
(Y -indexing f)[X = X -indexing f.
(19) For all sets X, Y and for every function f holds (X UY)-indexing f =
(X -indexing f)+-(Y -indexing f).
(20) For all sets X, Y and for every function f holds X -indexing f =~
Y -indexing f.
(21) For all sets X, Y and for every function f holds (X UY)-indexing f =
(X -indexing f) U (Y -indexing f).
(22) For every non empty set X and for all functions f, g such that rngg C X
holds (X -indexing f) - g = (idx+-f) - g.
(23) For all functions f, g such that dom f misses dom g and rngg misses
dom f and for every set X holds f - (X -indexing g) = f[X.
Let f be a function. A function is called a rng-retraction of f if:
(Def. 2) domit =rng f and f -it = idypg ¢.
We now state several propositions:

(24) For every function f and for every rng-retraction g of f holds rngg C
dom f.
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(25) Let f be afunction, g be a rng-retraction of f, and x be a set. If z € rng f,
then g(x) € dom f and f(g(z)) = x.

(26) For every function f such that f is one-to-one holds f~! is a rng-
retraction of f.

(27) For every function f such that f is one-to-one and for every rng-
retraction g of f holds g = f~1.

(28) Let f1, f2 be functions. Suppose f1 ~ fa. Let g1 be a rng-retraction of f;
and g2 be a rng-retraction of fo. Then g1+-¢go is a rng-retraction of fi+-fo.

(29) Let f1, fo be functions. Suppose fi C fi. Let g1 be a rng-retraction of
f1. Then there exists a rng-retraction go of fo such that g; C go.

2. REPLACEMENT IN SIGNATURE

Let S be a non empty non void many sorted signature and let f, g be
functions. We say that f and g form a replacement in S if and only if the
condition (Def. 3) is satisfied.

(Def. 3) Let o1, 02 be operation symbols of S. Suppose (idthe operation symbols of S+-9)
(01) = (idthe operation symbols of S+'g)(02)- Then
(1) (idtne carrier of s+ f) - Arity(01) = (idthe carrier of s+ f) - Arity(02), and
(11) (idthe carrier of S+f) (the result sort of 01) = (idthe carrier of S+'f)(the
result sort of 03).
One can prove the following propositions:

(30) Let S be a non empty non void many sorted signature and f, g be
functions. Then f and g form a replacement in S if and only if for
all operation symbols o1, 0o of S such that ((the operation symbols of
S) -indexing g)(01) = ((the operation symbols of S)-indexing ¢)(o2) holds
((the carrier of S) -indexing f)-Arity(o1) = ((the carrier of S) -indexing f)-
Arity(o2) and ((the carrier of S)-indexing f)(the result sort of 0;) = ((the
carrier of S)-indexing f)(the result sort of 03).

(31) Let S be a non empty non void many sorted signature and f, g be
functions. Then f and g form a replacement in S if and only if (the car-
rier of S)-indexing f and (the operation symbols of S)-indexing g form a
replacement in S.

In the sequel S, S’ denote non void signatures and f, g denote functions.
One can prove the following four propositions:

(32) If f and g form morphism between S and S’, then f and g form a

replacement in S.

(33) f and () form a replacement in S.
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(34) 1If g is one-to-one and (the operation symbols of S)Nrng g C dom g, then
f and ¢ form a replacement in S.

(35) If g is one-to-one and rng g misses the operation symbols of S, then f
and g form a replacement in S.

Let X be a set, let Y be a non empty set, let a be a function from Y into
X*, and let r be a function from Y into X. Observe that (X,Y, a,r) is non void.

Let S be a non empty non void many sorted signature and let f, g be
functions. Let us assume that f and g form a replacement in S. The functor
S with-replacement( f, g) yields a strict non empty non void many sorted signa-
ture and is defined by the conditions (Def. 4).

(Def. 4)(i)  (The carrier of S)-indexing f and (the operation symbols of
S) -indexing g form morphism between S and S with-replacement(f, g),
(ii)  the carrier of Swith-replacement(f,g) = rng((the carrier of
S)-indexing f), and
(ili)  the operation symbols of S with-replacement( f, g) = rng((the operation
symbols of 5)-indexing g).

The following propositions are true:

(36) Let S1, So be non void signatures, f be a function from the carrier of S;
into the carrier of Sy, and ¢ be a function. Suppose f and g form morphism
between S and Sa. Then f* - the arity of S; = (the arity of Ss) - g.

(37) Suppose f and g form a replacement in S. Then (the carrier of
S)-indexing f is a function from the carrier of S into the carrier of
S with-replacement( f, g).

(38) Suppose f and g form a replacement in S. Let f’ be a function from
the carrier of S into the carrier of S with-replacement(f, g). Suppose f' =
(the carrier of S)-indexing f. Let ¢’ be a rng-retraction of (the operation
symbols of S)-indexing g. Then the arity of S with-replacement(f,g) =
f"* - the arity of S - ¢'.

(39) Suppose f and g form a replacement in S. Let ¢’ be a rng-retraction
of (the operation symbols of S)-indexingg. Then the result sort of
S with-replacement(f, g) = ((the carrier of S)-indexing f) - the result sort
of S-¢.

(40) If f and g form morphism between S and S’, then S with-replacement( f, g)
is a subsignature of S’.

(41) f and g form a replacement in S if and only if (the carrier of
S) -indexing f and (the operation symbols of S) -indexing ¢ form morphism
between S and S with-replacement(f, g).

(42) Suppose dom f C the carrier of S and domg C the opera-
tion symbols of S and f and g form a replacement in S. Then
id‘che carrier of S+'f and idthe operation symbols of s+-g form morphism be-
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tween S and S with-replacement(f, g).

(43) Suppose dom f = the carrier of S and dom g = the operation symbols
of S and f and g form a replacement in S. Then f and g form morphism
between S and S with-replacement(f, g).

(44) 1If f and g form a replacement in S, then S with-replacement((the carrier
of S)-indexing f, g) = S with-replacement(f, g).

(45) If f and g form a replacement in S, then S with-replacement(f, (the
operation symbols of S)-indexing g) = S with-replacement(f, g).

3. SIGNATURE EXTENSIONS

Let S be a signature. A signature is called an extension of S if:
(Def. 5) S is a subsignature of it.
The following propositions are true:

(46) For all signatures S, E holds S is a subsignature of E iff F is an extension
of S.

(47) Every signature S is an extension of S.

(48) For every signature S; and for every extension Sy of Si holds every
extension of Sy is an extension of S7.

(49) For all non empty signatures Si, Se such that S; ~ Sy holds S;+-Ss is
an extension of Sj.

(50) For all non empty signatures Sp, So holds S1+-S5 is an extension of Ss.

(51) Let Sy, S, S be non empty many sorted signatures and fi, g1, f2, g2
be functions. Suppose fi =~ f2 and f; and g; form morphism between S}
and S and fo and go form morphism between So and S. Then f;+-fo and
g1+-go form morphism between S1+4-52 and S.

(52) Let Si, S2, E be non empty signatures. Then E is an extension of S;
and an extension of Sy if and only if S; ~ Se and E is an extension of
S1+-9.

Let S be a non empty signature. One can check that every extension of S is
non empty.

Let S be a non void signature. One can verify that every extension of S is
non void.

One can prove the following proposition

(53) For all signatures S, T' such that S is empty holds 7" is an extension of
S.

Let S be a signature. One can check that there exists an extension of S
which is non empty, non void, and strict.
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The following three propositions are true:

(54) Let S be a non void signature and E be an extension of S. Suppose f
and g form a replacement in . Then f and g form a replacement in S.

(55) Let S be a non void signature and E be an extension of S. Suppose f and
g form a replacement in E. Then E with-replacement(f, g) is an extension
of S with-replacement(f, g).

(56) Let S, Sz be non void signatures. Suppose S; =~ Si. Let f,
g be functions. If f and g¢g form a replacement in S;+-S9, then
(S1+-52) with-replacement(f, g) =
(S1 with-replacement( f, g))+-(S2 with-replacement(f, g)).

4. ALGEBRAS

Algebra is defined by:
(Def. 6) There exists a non void signature S such that it is a feasible algebra over
S.
Let S be a signature. An algebra is called an algebra of S if:
(Def. 7) There exists a non void extension E of S such that it is a feasible algebra
over F.
One can prove the following propositions:

(57) For every non void signature S holds every feasible algebra over S is an
algebra of S.

(58) For every signature S and for every extension E of S holds every algebra
of E is an algebra of S.

(59) Let S be a signature, F be a non empty signature, and A be an algebra
over E. Suppose A is an algebra of S. Then the carrier of S C the carrier
of E and the operation symbols of S C the operation symbols of E.

(60) Let S be a non void signature, E be a non empty signature, and A be
an algebra over E. Suppose A is an algebra of S. Let o be an operation
symbol of S. Then (the characteristics of A)(0) is a function from (the
sorts of A)#(Arity(o)) into (the sorts of A)(the result sort of o).

(61) Let S be a non empty signature, A be an algebra of S, and F be a non
empty many sorted signature. If A is an algebra over F, then A is an
algebra over E+-S.

(62) Let Sp, Sz be non empty signatures and A be an algebra over S;. Suppose
A is an algebra over S,. Then the carrier of S; = the carrier of Sy and the
operation symbols of S; = the operation symbols of Ss.

(63) For every non void signature S and for every non-empty disjoint algebra
A over S holds the sorts of A are one-to-one.
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(64) Let S be a non void signature, A be a disjoint algebra over S, and C1,
C5 be components of the sorts of A. Then C; = Cy or C misses Cs.

(65) Let S, S’ be non void signatures and A be a non-empty disjoint algebra
over S. Suppose A is an algebra over S’. Then the many sorted signature
of S = the many sorted signature of S’.

(66) Let S’ be a non void signature and A be a non-empty disjoint algebra
over S. If A is an algebra of S’, then S is an extension of S’
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[38], [29], [22], [5], 18], [2], [30], [33], [4], [28], [9], [36], [37], [32], [19], [26], [34],
[27], [16], [21], [20], [17], and [14].

1. BAsSICS

The following propositions are true:

(1) For all natural numbers i, j holds -n(, j) =i - j.

(2) Let X be a set, A be a non empty set, F' be a binary operation on
A, f be a function from X into A, and z be an element of A. Then
dom(F°(f,x)) = X.

(3) For all natural numbers a, b, ¢ holds a =" b —"c=a —' (b+ ¢).

(4) For every set X and for every binary relation R such that field R C X
holds R is a binary relation on X.

(5) Let K be a non empty loop structure and p;, p2 be finite sequences of
elements of the carrier of K. If domp; = dompy, then dom(p; + p3) =
dom p;.

(6) For every function f and for all sets x, y holds rng(f +- (z,y)) C rng f U
{y}-
Let A, B be sets, let f be a function from A into B, let x be a set, and let
y be an element of B. Then f +- (x,y) is a function from A into B.
Let X be a set, let f be a many sorted set indexed by X, and let x, y be
sets. Then f +- (z,y) is a many sorted set indexed by X.
Next we state the proposition

(7) For every one-to-one function f holds (f qua set) = rng f.

Let A be a non empty set, let F', G be binary operations on A, and let z, u
be elements of A. Observe that (A, F, G, z,u) is non empty.

Let A be a set, let X be a set, let D be a non empty set of finite sequences
of A, let p be a partial function from X to D, and let 7 be a set. Then 7;p is an
element of D.

Let X be a set and let S be a 1-sorted structure.

(Def. 1) A function from X into the carrier of S is said to be a function from X
into S.
Let X be a set. Note that there exists an order in X which is linear-order
and well-ordering.
The following propositions are true:

(8) Let X be a non empty set, A be a non empty finite subset of X, R be
an order in X, and x be an element of X. Suppose x € A and R linearly
orders A and for every element y of X such that y € A holds (z, y) € R.
Then m SgmX(R, A) = z.
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(9) Let X be a non empty set, A be a non empty finite subset of X, R be
an order in X, and x be an element of X. Suppose x € A and R linearly
orders A and for every element y of X such that y € A holds (y, z) € R.
Then Tien sgmx(r,4) SeMX(R, A) = 2.

Let X be a non empty set, let A be a non empty finite subset of X, and
let R be linear-order order in X. One can verify that SgmX(R, A) is non empty
and one-to-one.

Let us observe that () is finite sequence yielding.

Let us observe that there exists a finite sequence which is finite sequence
yielding.

Let F', G be finite sequence yielding finite sequences. Then F ™ G is a finite
sequence yielding finite sequence.

Let D be a set. Note that every finite sequence of elements of D* is finite
sequence yielding.

Let ¢ be a natural number and let f be a finite sequence. Note that i — f is
finite sequence yielding.

Let us observe that every function which is finite sequence yielding is also
function yielding.

Let F be a finite sequence yielding finite sequence and let x be a set. Note
that F'(z) is finite sequence-like.

Let F be a finite sequence. Observe that F is finite sequence-like.

Let us observe that there exists a finite sequence which is cardinal yielding.

We now state the proposition

(10) Let f be a function. Then f is cardinal yielding if and only if for every
set y such that y € rng f holds y is a cardinal number.

Let F', G be cardinal yielding finite sequences. Note that F' ~ G is cardinal
yielding.

Let us note that every finite sequence of elements of N is cardinal yielding.

Let us observe that there exists a finite sequence of elements of N which is
cardinal yielding. o

Let D be a set and let F be a finite sequence of elements of D*. Then F is
a cardinal yielding finite sequence of elements of N.

Let F' be a finite sequence of elements of N and let ¢ be a natural number.
Observe that F'[i is cardinal yielding.

We now state the proposition

(11) For every function F' and for every set X holds F[X = ?[X .

Let F' be an empty function. One can verify that T is empty.
Next we state two propositions:

(12) For every set p holds (p) = (p).
(13) For all finite sequences F', G holds FF ~ G = FG.

97
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Let X be a set. Note that ex is finite sequence yielding.
Let f be a finite sequence. Observe that (f) is finite sequence yielding.
One can prove the following proposition
(14) Let f be a function. Then f is finite sequence yielding if and only if for
every set y such that y € rng f holds y is a finite sequence.
Let F, G be finite sequence yielding finite sequences. One can verify that
F 7 @ is finite sequence yielding.
Next we state four propositions:
(15) Let L be a non empty loop structure and F' be a finite sequence of
elements of (the carrier of L)*. Then dom ) F' = dom F.
(16) Let L be a non empty loop structure and F' be a finite sequence of ele-
ments of (the carrier of L)*. Then ) (€(the carrier of £)*) = €(the carrier of L)-
(17) For every non empty loop structure L and for every element p of
(the carrier of L)* holds (> p) = > (p).

(18) Let L be a non empty loop structure and F, G be finite sequences of
elements of (the carrier of L)*. Then Y (F~G)=(>_F)">.G.

Let L be a non empty groupoid, let a be an element of the carrier of L,
and let p be a finite sequence of elements of the carrier of L. The functor a - p
yielding a finite sequence of elements of the carrier of L is defined by:

(Def. 2) dom(a-p) = dom p and for every set 7 such that i € dom p holds m;(a-p) =
a - mp.
The functor p - a yielding a finite sequence of elements of the carrier of L is
defined as follows:
(Def. 3) dom(p-a) = dom p and for every set i such that ¢ € dom p holds m;(p-a) =
P - a.

The following propositions are true:

(19) Let L be a non empty groupoid and a be an element of the carrier of L.
Then a - €(the carrier of L) = €(the carrier of L)-

(20) Let L be a non empty groupoid and a be an element of the carrier of L.
Then €(the carrier of L) * @ = &(the carrier of L)-

(21) For every non empty groupoid L and for all elements a, b of the carrier
of L holds a - (b) = (a - b).

(22) For every non empty groupoid L and for all elements a, b of the carrier
of L holds (b) - a = (b- a).

(23) Let L be a non empty groupoid, a be an element of the carrier of L, and
p, q be finite sequences of elements of the carrier of L. Then a - (p ™ ¢q) =
(a-p)~ (a-q).

(24) Let L be a non empty groupoid, a be an element of the carrier of L, and
p, q be finite sequences of elements of the carrier of L. Then (p ~¢q)-a =
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(p-a)”(q-a)
We now state two propositions:
(25) Let L be an add-associative right zeroed right complementable left-
distributive non empty double loop structure and x be an element of the
carrier of L. Then 07, - x = 0.

(26) Let L be an add-associative right zeroed right complementable right-
distributive non empty double loop structure and x be an element of the
carrier of L. Then x - 0, = 0.

One can verify that every non empty multiplicative loop with zero structure
which is non degenerated is also non trivial.

Let us mention that there exists a non empty strict multiplicative loop with
zero structure which is unital.

Let us observe that there exists a non empty strict double loop structure
which is Abelian, add-associative, right zeroed, right complementable, associa-
tive, commutative, distributive, unital, and non trivial.

Next we state three propositions:

(27) Let L be an add-associative right zeroed right complementable unital
right-distributive non empty double loop structure. If O, = 17, then L is
trivial.

(28) Let L be an add-associative right zeroed right complementable unital
distributive non empty double loop structure, a be an element of the carrier
of L, and p be a finite sequence of elements of the carrier of L. Then
>(a-p)=a->p

(29) Let L be an add-associative right zeroed right complementable unital
distributive non empty double loop structure, a be an element of the carrier
of L, and p be a finite sequence of elements of the carrier of L. Then

2(p-a)=21p-a

2. SEQUENCE FLATTENING

Let D be a set and let F' be an empty finite sequence of elements of D*.
Observe that Flat(F') is empty.
One can prove the following propositions:
(30) For every set D and for every finite sequence F' of elements of D* holds
len Flat(F') = Z?
(31) Let D, E be sets, F' be a finite sequence of elements of D*, and G

be a finite sequence of elements of E*. If F = E, then lenFlat(F') =
len Flat(G).
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(32) Let D be a set, F' be a finite sequence of elements of D*, and k be
a set. Suppose k € domFlat(F'). Then there exist natural numbers i, j
such that ¢ € dom F' and j € dom F(i) and k = ) F[(i—'1) + j and
F(i)(j) = Flat(F)(k).

(33) Let D be a set, F be a finite sequence of elements of D*, and i, j be
natural numbers. If i € dom F' and j € dom F (i), then > F[(i—'1)+j €
dom Flat(F) and F(i)(j) = Flat(F)(>_ F[(i —' 1) + 7).

(34) Let L be an add-associative right zeroed right complementable non
empty loop structure and F be a finite sequence of elements of
(the carrier of L)*. Then > Flat(F) = > > F.

(35) Let X, Y be non empty sets, f be a finite sequence of elements of X*,
and v be a function from X into Y. Then (dom f —— wv) o f is a finite
sequence of elements of Y*.

(36) Let X, Y be non empty sets, f be a finite sequence of elements of X*,

and v be a function from X into Y. Then there exists a finite sequence F' of
elements of Y* such that F' = (dom f — v)o f and v-Flat(f) = Flat(F).

3. FUNCTIONS YIELDING NATURAL NUMBERS

Let us note that ) is natural-yielding.

One can check that there exists a function which is natural-yielding.

Let f be a natural-yielding function and let = be a set. Then f(x) is a natural
number.

Let f be a natural-yielding function, let x be a set, and let n be a natural
number. Observe that f +- (z,n) is natural-yielding.

Let X be a set. One can check that every function from X into N is natural-
yielding.

Let X be a set. Observe that there exists a many sorted set indexed by X
which is natural-yielding.

Let X be a set and let by, bs be natural-yielding many sorted sets indexed
by X. The functor b; 4 by yields a many sorted set indexed by X and is defined
as follows:

(Def. 5)2 For every set = holds (by + b2)(x) = by () + ba(z).

Let us note that the functor by + by is commutative. The functor by —' by yields
a many sorted set indexed by X and is defined by:

(Def. 6) For every set x holds (by — ba)(z) = b1 (z) —' ba(x).

Next we state two propositions:

2The definition (Def. 4) has been removed.
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(37) Let X be aset and b, by, bs be natural-yielding many sorted sets indexed
by X. If for every set z such that z € X holds b(z) = b1(x) + ba(z), then
b= b1+ ba.

(38) Let X be a set and b, by, by be natural-yielding many sorted sets indexed
by X. If for every set x such that € X holds b(z) = b1 (z) —' ba(z), then
b=by —' bo.

Let X be a set and let b1, b be natural-yielding many sorted sets indexed
by X. Observe that by + by is natural-yielding and b; —’ by is natural-yielding.
The following two propositions are true:

(39) For every set X and for all natural-yielding many sorted sets by, by, b3
indexed by X holds (b; + ba) + b = by + (ba + b3).

(40) For every set X and for all natural-yielding many sorted sets b, ¢, d
indexed by X holds b —"¢c—"d=0b—'(c+d).

4. THE SUPPORT OF A FUNCTION

Let f be a function. The functor support f is defined as follows:
(Def. 7) For every set x holds x € support f iff f(x) # 0.
One can prove the following proposition
(41) For every function f holds support f C dom f.
Let f be a function. We say that f is finite-support if and only if:
(Def. 8) support f is finite.
We introduce f has finite-support as a synonym of f is finite-support.
Let us mention that ) is finite-support.
Let us note that every function which is finite is also finite-support.
Let us observe that there exists a function which is natural-yielding, finite-
support, and non empty.
Let f be a finite-support function. Observe that support f is finite.
Let X be a set. Note that there exists a function from X into N which is
finite-support.
Let f be a finite-support function and let x, y be sets. Observe that f+-(z,y)
is finite-support.
Let X be a set. One can verify that there exists a many sorted set indexed
by X which is natural-yielding and finite-support.
One can prove the following propositions:

(42) For every set X and for all natural-yielding many sorted sets by, b
indexed by X holds support(b; + be) = support by U support bs.

(43) For every set X and for all natural-yielding many sorted sets by, bo
indexed by X holds support(b; —' bg) C support by .
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Let X be a non empty set, let S be a zero structure, and let f be a function
from X into S. The functor Support f yielding a subset of X is defined by:
(Def. 9) For every element x of X holds « € Support f iff f(x) # Og.
Let X be a non empty set, let .S be a zero structure, and let p be a function
from X into S. We say that p is finite-Support if and only if:
(Def. 10) Support p is finite.
We introduce p has finite-Support as a synonym of p is finite-Support.

5. BAGS

Let X be a set. A bag of X is a natural-yielding finite-support many sorted
set indexed by X.

Let X be a finite set. Observe that every many sorted set indexed by X is
finite-support.

Let X be a set and let by, b be bag of X. Note that by + bs is finite-support
and by —' by is finite-support.

The following proposition is true

(44) For every set X holds X —— 0 is a bag of X.

Let n be an ordinal number and let p, ¢ be bag of n. The predicate p < ¢ is
defined as follows:
(Def. 11) There exists an ordinal number k such that p(k) < ¢(k) and for every
ordinal number [ such that [ € k holds p(I) = q(1).

Let us note that the predicate p < ¢ is antisymmetric.
Next we state the proposition

(45) For every ordinal number n and for all bag p, ¢, r of n such that p < ¢
and ¢ < r holds p < r.
Let n be an ordinal number and let p, ¢ be bag of n. The predicate p < ¢ is
defined as follows:
(Def. 12) p<qorp=gq.
Let us note that the predicate p < ¢ is reflexive.
The following propositions are true:
(46) For every ordinal number n and for all bag p, ¢, r of n such that p < ¢
and ¢ < 7 holds p < r.
(47) For every ordinal number n and for all bag p, ¢, r of n such that p < ¢
and ¢ < 7 holds p < r.

(48) For every ordinal number n and for all bag p, ¢, r of n such that p < ¢
and g < 7 holds p < r.

(49) For every ordinal number n and for all bag p, ¢ of n holds p < g or ¢ < p.
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Let X be a set and let d, b be bag of X. We say that d divides b if and only
if:
(Def. 13) For every set k holds d(k) < b(k).

Let us note that the predicate d divides b is reflexive.
One can prove the following propositions:

(50) For every set n and for all bag d, b of n such that for every set k such
that k& € n holds d(k) < b(k) holds d divides b.

(51) For every ordinal number n and for all bag by, bs of n such that by divides
by holds (bg —! bl) + b1 = bs.
(52) For every set X and for all bag by, ba of X holds (by + b1) —' by = bo.
(53) For every ordinal number n and for all bag d, b of n such that d divides
b holds d < b.
(54) For every set n and for all bag b, by, by of n such that b = b; + by holds
by divides b.
Let X be a set. The functor Bags X is defined as follows:
(Def. 14) For every set x holds = € Bags X iff x is a bag of X.
Let X be a set. Then Bags X is a subset of Bags X.
One can prove the following proposition
(55) Bags( = {0}.
Let X be a set. Note that Bags X is non empty.
Let X be a set and let B be a non empty subset of Bags X. We see that the
element of B is a bag of X.
Let n be a set, let L be a non empty 1-sorted structure, let p be a function
from Bagsn into L, and let = be a bag of n. Then p(x) is an element of L.

Let X be a set. The functor EmptyBag X yielding an element of Bags X is
defined by:

(Def. 15) EmptyBag X = X — 0.

The following propositions are true:
(56) For all sets X, x holds (EmptyBag X)(z) = 0.
(57) For every set X and for every bag b of X holds b + EmptyBag X = b.
(58) For every set X and for every bag b of X holds b —' EmptyBag X = b.
(59)

59) For every set X and for every bag b of X holds EmptyBag X —' b =

EmptyBag X.

(60) For every set X and for every bag b of X holds b —' b = EmptyBag X.

(61) For every set n and for all bag by, bs of n such that b; divides by and
by —' by = EmptyBagn holds by = by.

(62) For every set n and for every bag b of n such that b divides EmptyBagn
holds EmptyBagn = b.

(63) For every set n and for every bag b of n holds EmptyBagn divides b.
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(64) For every ordinal number n and for every bag b of n holds EmptyBagn <
b.

Let n be an ordinal number. The functor BagOrdern yields an order in
Bagsn and is defined as follows:

(Def. 16) For all bag p, g of n holds (p, ¢) € BagOrdern iff p < q.
Let n be an ordinal number. Note that BagOrder n is linear-order.
Let X be aset and let f be a function from X into N. The functor NatMinor f
yielding a subset of NX is defined by the condition (Def. 17).
(Def. 17) Let g be a natural-yielding many sorted set indexed by X. Then g €
NatMinor f if and only if for every set = such that x € X holds g(z) <
f(x).
Next we state the proposition
(65) For every set X and for every function f from X into N holds f €
NatMinor f.

Let X be a set and let f be a function from X into N. Observe that
NatMinor f is non empty and functional.

Let X be a set and let f be a function from X into N. One can verify that
every element of NatMinor f is natural-yielding.

The following proposition is true

(66) For every set X and for every finite-support function f from X into N
holds NatMinor f C Bags X.

Let X be a set and let f be a finite-support function from X into N. Then
support f is an element of Fin X.
The following proposition is true

(67) For every non empty set X and for every finite-support function f from
X into N holds NatMinor f = - > oo (1) (£, 1)
Let X be a set and let f be a finite-support function from X into N. One
can verify that NatMinor f is finite.
Let n be an ordinal number and let b be a bag of n. The functor divisorsb

yields a finite sequence of elements of Bagsn and is defined by the condition
(Def. 18).

(Def. 18) There exists a non empty finite subset S of Bagsn such that divisorsb =
SgmX (BagOrder n, S) and for every bag p of n holds p € S iff p divides b.
Let n be an ordinal number and let b be a bag of n. One can check that
divisors b is non empty and one-to-one.
The following four propositions are true:

(68) Let n be an ordinal number, i be a natural number, and b be a bag of n.
If ¢+ € dom divisors b, then 7; divisorsb qua element of Bagsn divides b.
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(69) For every ordinal number n and for every bag b of n holds 7 divisors b =
EmptyBagn and mien divisors » divisors b = b.

(70) Let n be an ordinal number, i be a natural number, and b, b1, bs be bag
of n. If i > 1 and ¢ < lendivisors b, then 7; divisors b # EmptyBagn and
m; divisors b # b.

(71) For every ordinal number n holds divisors EmptyBagn = (EmptyBagn).

Let n be an ordinal number and let b be a bag of n. The functor decomp b
yields a finite sequence of elements of (Bagsn)? and is defined as follows:

(Def. 19) domdecompb = domdivisorsb and for every natural number 7 and for
every bag p of n such that ¢ € domdecompb and p = m; divisors b holds
m; decomp b = (p, b —' p).
One can prove the following propositions:

(72) Let n be an ordinal number, ¢ be a natural number, and b be a bag
of n. If ¢ € domdecompbd, then there exist bag by, by of n such that
m; decomp b = <b1, b2> and b = by + bs.

(73) Let n be an ordinal number and b, by, be be bag of n. If b = by + bo,
then there exists a natural number ¢ such that ¢ € domdecompb and
m; decomp b = (by, ba).

(74) Let n be an ordinal number, i be a natural number, and b, b1, b be bag of
n. If i € domdecomp b and 7; decomp b = (b1, be), then b; = m; divisors b.

Let n be an ordinal number and let b be a bag of n. Note that decomp b is
non empty one-to-one and finite sequence yielding.
Let n be an ordinal number and let b be an element of Bags n. One can verify
that decomp b is non empty one-to-one and finite sequence yielding.
Next we state four propositions:
(75) For every ordinal number n and for every bag b of n holds 7 decomp b =
(EmptyBagn, b) and Tien decomp s decomp b = (b, EmptyBagn).
(76) Let n be an ordinal number, ¢ be a natural number, and b, by, bs be
bag of n. If i > 1 and i < lendecompb and 7; decompb = (b1, be), then
b1 # EmptyBagn and bs # EmptyBag n.
(77) For every ordinal number n holds decomp EmptyBagn = ((EmptyBagn,
EmptyBagn)).
(78) Let n be an ordinal number, b be a bag of n, and f, g be finite sequences
of elements of ((Bagsn)®)*. Suppose that
(i) dom f = domdecomp b,
(ii) dom g = domdecomp b,
(iii)  for every natural number k such that k¥ € dom f holds f(k) =
(decomp (77, decomp b qua element of Bagsn)) ™ (len decomp (77, decomp
b qua element of Bagsn) — (mam decomp b)), and



106 PIOTR RUDNICKI AND ANDRZEJ TRYBULEC

(iv)  for every natural number k such that & € domg holds g(k) =
(len decomp (w7, decomp b qua element of Bagsn) +— (w7 decomp b)) =
decomp(mam, decomp b qua element of Bagsn).

Then there exists a permutation p of dom Flat(f) such that Flat(g) =

Flat(f) - p.

6. FORMAL POWER SERIES

Let X be a set and let S be a 1-sorted structure.
(Def. 20) A function from Bags X into S is said to be a Series of X, S.
Let n be a set, let L be a right zeroed non empty loop structure, and let
p, q be Series of n, L. The functor p + ¢ yielding a Series of n, L is defined as
follows:
(Def. 21) For every bag x of n holds (p + q)(z) = p(x) + q(z).
One can prove the following proposition
(79) Let n be a set, L be a right zeroed non empty loop structure, and p, ¢
be Series of n, L. Then Support p + ¢ C Support p U Support q.
Let n be a set, let L be an Abelian right zeroed non empty loop structure,
and let p, g be Series of n, L. Let us notice that the functor p+¢ is commutative.
Next we state the proposition
(80) Let n be a set, L be an add-associative right zeroed non empty double
loop structure, and p, g, r be Series of n, L. Then (p+q)+7r =p+ (¢+7).
Let n be a set, let L be an add-associative right zeroed right complementable
non empty loop structure, and let p be a Series of n, L. The functor —p yields
a Series of n, L and is defined by:
(Def. 22) For every bag x of n holds (—p)(z) = —p(z).
Let n be a set, let L be an add-associative right zeroed right complementable
non empty loop structure, and let p, ¢ be Series of n, L. The functor p — q yields
a Series of n, L and is defined by:
(Def. 23) p—qg=p+ —q.
Let n be a set and let S be a non empty zero structure. The functor 0_(n, S)
yields a Series of n, S and is defined by:
(Def. 24) 0_(n,S) = Bagsn +—— 0g.
One can prove the following propositions:
(81) For every set n and for every non empty zero structure S and for every
bag b of n holds (0_(n, S))(b) = Os.
(82) For every set n and for every right zeroed non empty loop structure L
and for every Series p of n, L holds p+ 0_(n, L) = p.
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Let n be a set and let L be a unital non empty multiplicative loop with zero
structure. The functor 1_(n, L) yielding a Series of n, L is defined as follows:

(Def. 25) 1.(n,L)=0-n,L)+- (EmptyBagn, 1z).
We now state two propositions:

(83) Let n be aset, L be an add-associative right zeroed right complementable
non empty loop structure, and p be a Series of n, L. Then p—p = 0_(n, L).

(84) Let n be a set and L be a unital non empty multiplicative loop with
zero structure. Then (1_(n, L))(EmptyBagn) = 11, and for every bag b of
n such that b # EmptyBagn holds (1_(n,L))(b) = 0f.

Let n be an ordinal number, let L be an add-associative right complemen-
table right zeroed non empty double loop structure, and let p, g be Series of
n, L. The functor p x ¢ yields a Series of n, L and is defined by the condition
(Def. 26).

(Def. 26) Let b be a bag of n. Then there exists a finite sequence s of elements of
the carrier of L such that
i) (pxq))=>s,
(i) lens = lendecomp b, and
(iii)  for every natural number k such that k& € dom s there exist bag b1, ba
of n such that 7y decomp b = (b1, bo) and mrs = p(b1) - q(b2).
One can prove the following two propositions:

(85) Let n be an ordinal number, L be an Abelian add-associative right ze-
roed right complementable distributive associative non empty double loop
structure, and p, ¢, r be Series of n, L. Then p* (¢ +7r) =p*q+px*r.

(86) Let n be an ordinal number, L be an Abelian add-associative right zeroed
right complementable unital distributive associative non empty double
loop structure, and p, g, r be Series of n, L. Then (p*q) *r =px* (q*1).

Let n be an ordinal number, let L be an Abelian add-associative right zeroed
right complementable commutative non empty double loop structure, and let p,
q be Series of n, L. Let us note that the functor p * ¢ is commutative.

One can prove the following three propositions:

(87) Let n be an ordinal number, L be an add-associative right complementa-
ble right zeroed unital distributive non empty double loop structure, and
p be a Series of n, L. Then p* 0_(n,L) = 0_(n, L).

(88) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed distributive unital non trivial non empty double loop
structure, and p be a Series of n, L. Then p* 1_(n, L) = p.

(89) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed distributive unital non trivial non empty double loop
structure, and p be a Series of n, L. Then 1_(n,L) *xp = p.
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7. POLYNOMIALS

Let n be a set and let S be a non empty zero structure. Note that there
exists a Series of n, S which is finite-Support.

Let n be an ordinal number and let S be a non empty zero structure. A
Polynomial of n, S is a finite-Support Series of n, S.

Let n be an ordinal number, let L be a right zeroed non empty loop structure,
and let p, ¢ be Polynomial of n, L. Observe that p + ¢ is finite-Support.

Let n be an ordinal number, let L be an add-associative right zeroed right
complementable non empty loop structure, and let p be a Polynomial of n, L.
Note that —p is finite-Support.

Let n be a natural number, let L be an add-associative right zeroed right
complementable non empty loop structure, and let p, ¢ be Polynomial of n, L.
Note that p — ¢ is finite-Support.

Let n be an ordinal number and let .S be a non empty zero structure. Observe
that 0_(n, S) is finite-Support.

Let n be an ordinal number and let L be an add-associative right zeroed
right complementable unital right-distributive non trivial non empty double
loop structure. Observe that 1_(n, L) is finite-Support.

Let n be an ordinal number, let L be an add-associative right complemen-
table right zeroed unital distributive non empty double loop structure, and let
p, q be Polynomial of n, L. One can check that p * ¢ is finite-Support.

8. THE RING OF POLYNOMIALS

Let n be an ordinal number and let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure.
The functor Polynom-Ring(n, L) yields a strict non empty double loop structure
and is defined by the conditions (Def. 27).

(Def. 27)(1)  For every set x holds = € the carrier of Polynom-Ring(n, L) iff x is a
Polynomial of n, L,
(ii)  for all elements x, y of Polynom-Ring(n, L) and for all Polynomial p, ¢
of n, L such that x = p and y = ¢ holds x +y = p + q,
(iii)  for all elements z, y of Polynom-Ring(n, L) and for all Polynomial p, ¢
of n, L such that xt =p and y = q holds x - y = p * g,
(1V) OPolynom-Ring(n,L) = O,(n, L)v and
(V) 1Polynom-Ring(n,L) = 17(’”’ L)
Let n be an ordinal number and let L be an Abelian right zeroed add-
associative right complementable unital distributive non trivial non empty do-
uble loop structure. One can check that Polynom-Ring(n, L) is Abelian.
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Let n be an ordinal number and let L be an add-associative right zeroed right
complementable unital distributive non trivial non empty double loop structure.
Observe that Polynom-Ring(n, L) is add-associative.

Let n be an ordinal number and let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure.
Note that Polynom-Ring(n, L) is right zeroed.

Let n be an ordinal number and let L be a right complementable right zeroed
add-associative unital distributive non trivial non empty double loop structure.
Observe that Polynom-Ring(n, L) is right complementable.

Let n be an ordinal number and let L be an Abelian add-associative right
zeroed right complementable commutative unital distributive non trivial non
empty double loop structure. Note that Polynom-Ring(n, L) is commutative.

Let n be an ordinal number and let L be an Abelian add-associative right ze-
roed right complementable unital distributive associative non trivial non empty
double loop structure. Note that Polynom-Ring(n, L) is associative.

Let n be an ordinal number and let L be a right zeroed Abelian add-
associative right complementable unital distributive associative non trivial non
empty double loop structure. One can check that Polynom-Ring(n, L) is unital
and right-distributive.
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The terminology and notation used in this paper have been introduced in the
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Let I be a set and let J be a relational structure yielding many sorted set
indexed by I. We introduce I -prodppgJ as a synonym of [ J.

Let I be a set and let J be a relational structure yielding nonempty many
sorted set indexed by I. One can check that I-prodpggJ is constituted func-
tions.

Let I be a set and let J be a topological space yielding nonempty many
sorted set indexed by I. We introduce I -prodpop J as a synonym of [].J.

Let X, Y be non empty topological spaces. The functor [X — Y] yields a
non empty strict relational structure and is defined as follows:

(Def. 1) [X = Y] =[X — QY].

Let X, Y be non empty topological spaces. Observe that [X — Y] is reflexive
transitive and constituted functions.

Let X be a non empty topological space and let Y be a non empty T
topological space. Observe that [X — Y] is antisymmetric.

We now state three propositions:

(1) Let X, Y be non empty topological spaces and a be a set. Then a is an
element of [X — Y] if and only if a is a continuous map from X into QY.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(2) Let X, Y be non empty topological spaces and a be a set. Then a is an
element of [X — Y] if and only if @ is a continuous map from X into Y.

(3) Let X,Y be non empty topological spaces, a, b be elements of [X — Y],
and f, g be maps from X into QY. If a = f and b = ¢, then a < b iff
f<ag.

Let X, Y be non empty topological spaces, let = be a point of X, and let A
be a subset of the carrier of ([X — Y]). Then 7, A is a subset of QY.

Let X, Y be non empty topological spaces, let x be a set, and let A be a
non empty subset of the carrier of ([X — Y7]). Observe that 7, A is non empty.

We now state three propositions:

(4) Q(the Sierpifiski space) is a topological augmentation of 2%.

(5) Let X be a non empty topological space. Then there exists a map f from
(the topology of X, C) into [X — the Sierpinski space| such that f is iso-
morphic and for every open subset V of X holds f(V') = Xv.the carrier of X-

(6) Let X be a non empty topological space. Then (the topology of X, C)
and [X — the Sierpinski space| are isomorphic.

Let X, Y, Z be non empty topological spaces and let f be a continuous map
from Y into Z. The functor [X — f] yields a map from [X — Y] into [X — Z]
and is defined by:

(Def. 2) For every continuous map ¢ from X into Y holds ([X — f])(g) = f - g.
The functor [f — X]| yields a map from [Z — X] into [Y — X] and is defined
by:

(Def. 3) For every continuous map ¢ from Z into X holds ([f — X])(9) =g f.

The following propositions are true:

(7) Let X be a non empty topological space and Y be a monotone conver-
gence Ty-space. Then [X — Y] is a directed-sups-inheriting relational
substructure of (QY")the carrier of X

(8) For every non empty topological space X and for every monotone co-
nvergence Tp-space Y holds [X — Y] is up-complete.
(9) For all non empty topological spaces X, Y, Z and for every continuous
map f from Y into Z holds [X — f] is monotone.
(10) Let X, Y be non empty topological spaces and f be a continuous map
from Y into Y. If f is idempotent, then [X — f] is idempotent.
(11) For all non empty topological spaces X, Y, Z and for every continuous
map f from Y into Z holds [f — X] is monotone.
(12) Let X, Y be non empty topological spaces and f be a continuous map
from Y into Y. If f is idempotent, then [f — X] is idempotent.
(13) Let X, Y, Z be non empty topological spaces, f be a continuous map
from Y into Z, = be an element of X, and A be a subset of [X — Y].
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Then 7, ([X — f])°A = f°m, A.

(14) Let X be a non empty topological space, Y, Z be monotone convergence
To-spaces, and f be a continuous map from Y into Z. Then [X — f] is
directed-sups-preserving.

(15) Let X, Y, Z be non empty topological spaces, f be a continuous map
from Y into Z, x be an element of Y, and A be a subset of [Z — X]|. Then
e ([f — X])°A = g A

(16) Let Y, Z be non empty topological spaces, X be a monotone convergence
To-space, and f be a continuous map from Y into Z. Then [f — X] is
directed-sups-preserving.

(17) Let X, Z be non empty topological spaces and Y be a non empty sub-
space of Z. Then [X — Y] is a full relational substructure of [X — Z].

(18) Let Z be a monotone convergence Ty-space, Y be a non empty subspace
of Z, and f be a continuous map from Z into Y. Suppose f is a retraction.
Then QY is a directed-sups-inheriting relational substructure of QZ.

(19) Let X be a non empty topological space, Z be a monotone convergence
To-space, Y be a non empty subspace of Z, and f be a continuous map
from Z into Y. If f is a retraction, then [X — f] is a retraction of [X — Z]
into [X — Y.

(20) Let X be a non empty topological space, Z be a monotone convergence

Ty-space, and Y be a non empty subspace of Z. If Y is a retract of Z, then
[X — Y] is a retract of [X — Z].

(21) Let X, Y, Z be non empty topological spaces and f be a continuous map
from Y into Z. If f is a homeomorphism, then [X — f] is isomorphic.

(22) Let X, Y, Z be non empty topological spaces. If Y and Z are home-
omorphic, then [X — Y] and [X — Z] are isomorphic.

(23) Let X be a non empty topological space, Z be a monotone convergence
To-space, and Y be a non empty subspace of Z. Suppose Y is a retract of
Z and [X — Z] is complete and continuous. Then [X — Y] is complete
and continuous.

(24) Let X be a non empty topological space and Y, Z be monotone conver-
gence Tp-spaces. Suppose Y is a topological retract of Z and [X — Z] is
complete and continuous. Then [X — Y] is complete and continuous.

(25) Let Y be a non trivial Ty-space. Suppose Y is not a 77 space. Then the
Sierpinski space is a topological retract of Y.

(26) Let X be a non empty topological space and Y be a non trivial Ty-space.
If [X — Y] has Lu.b.’s, then Y is not a T space.

One can check that the Sierpinski space is non trivial and monotone conver-
gence.
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One can verify that there exists a Ty-space which is injective, monotone
convergence, and non trivial.
The following propositions are true:

(27) Let X be a non empty topological space and Y be a monotone conver-
gence non trivial Typ-space. If [X — Y] is complete and continuous, then
(the topology of X, C) is continuous.

(28) Let X be a non empty topological space, = be a point of X, and Y
be a monotone convergence Ty-space. Then there exists a directed-sups-
preserving projection map F' from [X — Y] into [X — Y] such that

(i)  for every continuous map f from X into Y holds F(f) = X — f(x),
and

(ii)  there exists a continuous map h from X into X such that h = X —— =
and F'=[h — Y].

(29) Let X be a non empty topological space and Y be a monotone co-
nvergence Tp-space. If [X — Y] is complete and continuous, then QY is
complete and continuous.

(30) Let X be a non empty l-sorted structure, I be a non empty set, J
be a topological space yielding nonempty many sorted set indexed by I,
f be a map from X into I-prodpgp J, and 7 be an element of I. Then
(commute(f))(i) = proj(J,i) - f.

(31) For every 1-sorted structure S and for every set M holds the support of
M +—— S = M —— the carrier of S.

(32) Let X, Y be non empty topological spaces, M be a non empty set,
and f be a continuous map from X into M -prodpop(M —— Y'). Then
commute(f) is a function from M into the carrier of ([X — Y]).

(33) For all non empty topological spaces X, Y holds the carrier of ([X —
Y]) - (the carrier of Y)the carrier of X.

(34) Let X, Y be non empty topological spaces, M be a non empty set, and
f be a function from M into the carrier of ([X — Y]). Then commute( f)
is a continuous map from X into M -prodpop(M — Y).

(35) Let X be a non empty topological space and M be a non empty set.
Then there exists a map F from [X — M -prodtop(M +—— the Sier-
pinski space)] into M -prodpog(M +—— ([X — the Sierpinski space]))
such that F' is isomorphic and for every continuous map f from X into
M -prodrop (M —— the Sierpinski space) holds F'(f) = commute(f).

(36) Let X be anon empty topological space and M be a non empty set. Then
[X — M -prodrop(M — the Sierpinski space)] and M -prodpog(M +—
([X — the Sierpinski space])) are isomorphic.

(37) Let X be a non empty topological space. Suppose (the topology of X, C)
is continuous. Let Y be an injective Tp-space. Then [X — Y] is complete
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and continuous.

Let us observe that there exists a top-lattice which is non trivial, complete,
and Scott.
Next we state the proposition
(38) Let X be a non empty topological space and L be a non trivial complete
Scott top-lattice. Then [X — L] is complete and continuous if and only if
(the topology of X, C) is continuous and L is continuous.

Let f be a function. Observe that Union disjoint f is relation-like.
Let f be a function. The functor G yields a binary relation and is defined
as follows:

(Def. 4) Gy = (Uniondisjoint f)~.
In the sequel z, y are sets and f is a function.
We now state three propositions:
(39) (z,y) € Gyiff x € dom f and y € f(x).
(40) For every finite set X holds 71 (X) is finite and m(X) is finite.
(41) Let X, Y be non empty topological spaces, S be a Scott topological

augmentation of (the topology of Y, C), and f be a map from X into S.
If Gy is an open subset of | X, Y |, then f is continuous.

Let W be a binary relation and let X be a set. The functor © x (W) yielding
a function is defined by:

(Def. 5) dom©x (W) = X and for every x such that x € X holds (©x(W))(z) =
We{z}.
One can prove the following proposition

(42) For every binary relation W and for every set X such that dom W C X
holds GGX(W) =W.

Let X, Y be topological spaces. Observe that every subset of the carrier of
X, Y] is relation-like and every element of the topology of [ X, Y ] is relation-
like.

Next we state four propositions:

(43) Let X, Y be non empty topological spaces, W be an open subset of | X,
Y ], and z be a point of X. Then W°{z} is an open subset of Y.

(44) Let X, Y be non empty topological spaces, S be a Scott topological
augmentation of (the topology of Y, C), and W be an open subset of [ X,
Y ]. Then Oihe carrier of x (W) is a continuous map from X into S.

(45) Let X, Y be non empty topological spaces, S be a Scott topological
augmentation of (the topology of Y, C), and Wy, Wy be open subsets
of [ X, Y ]. Suppose Wi C Ws. Let fi, fo be elements of [X — S]. If
fl = ®the carrier of X(Wl) and f2 = ethe carrier of X(W2)7 then fl < f2-
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(46) Let X, Y be non empty topological spaces and S be a Scott topological
augmentation of (the topology of Y, C). Then there exists a map F' from
(the topology of [ X, Y ], C) into [X — S] such that F' is monotone and
for every open subset W of [ X, Y ] holds F(W) = Othe carrier of x(W).
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC14.

The articles [4], [6], [1], [8], [7], [2], [3], [5], [11], [10], and [9] provide the termi-
nology and notation for this paper.

1. PRELIMINARIES

In this paper Y denotes a non empty set.
We now state several propositions:

(1) For every element z of Y and for all partitions P;, P» of Y holds
EqClass(z, Py A P») = EqClass(z, P1) N EqClass(z, P).

(2) Let G be a subset of PARTITIONS(Y) and A, B be partitions of Y. If
G is a coordinate and G = {4, B} and A # B, then NG = AN B.

(3) Let G be a subset of PARTITIONS(Y') and B, C, D be partitions of Y.
Suppose G is a coordinate and G = {B,C,D} and B # C and C # D
and D # B. Then AG=BACAD.

(4) Let G be a subset of PARTITIONS(Y) and A, B, C be partitions of Y.
Suppose G is a coordinate and G = {A,B,C} and A # B and B # C
and C # A. Then CompF(A,G) = BAC and CompF(B,G) = C A A and
CompF(C,G) = AN B.
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(5) Let G be a subset of PARTITIONS(Y) and A, B, C, D be partitions
of Y. Suppose G = {A,B,C,D} and A # B and A # C and A # D and
B # C and B # D and C # D. Then CompF(A,G) = BACAD.

(6) Let G be a subset of PARTITIONS(Y) and A, B, C, D be partitions
of Y. Suppose G = {A,B,C,D} and A # B and A # C and A # D and
B # C and B # D and C # D. Then CompF(B,G) = AANC A D.

(7) Let G be a subset of PARTITIONS(Y) and A, B, C, D be partitions
of Y. Suppose G = {A,B,C,D} and A # B and A # C and A # D and
B # C and B # D and C # D. Then CompF(C,G) = AANB A D.

(8) Let G be a subset of PARTITIONS(Y) and A, B, C, D be partitions
of Y. Suppose G = {A,B,C,D} and A # B and A # C and A # D and
B # C and B # D and C # D. Then CompF(D,G) = ANC A B.

2. PREDICATE CALCULUS

We adopt the following rules: a is an element of BVF(Y'), G is a subset of
PARTITIONS(Y), and A, B, C' are partitions of Y.
One can prove the following propositions:

(9) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then vvayAG’,BG = \v/va,BG7AG'
(10) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then VVVG’CG,AGvBG = VVVG’CG,BGAG'

(11) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then vVEa,cGw‘\GvBG = VVHGYCG,BGaAG'

(12) Let G be a subset of PARTITIONS(Y), B, C, D be partitions of Y, h
be a function, and b, ¢, d be sets. Suppose B # C and C # D and D # B
and h = (B——b)+:(C——c)+:(D——d). Then domh = {B,C,D} and
h(B) =band h(C) = c and h(D) = d and rng h = {h(B), h(C),h(D)}.
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The articles [6], [1], [2], [4], [3], and [5] provide the terminology and notation for
this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

(1) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
A, B, C be partitions of Y, and z, u be elements of Y. Suppose G is
a coordinate and G = {A,B,C} and A # B and B # C and C # A
and EqClass(z,C) = EqClass(u,C). Then EqClass(u, CompF(A,G)) N
EqClass(z, CompF (B, G)) # (.

(2) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then 3y, ,¢ G € V3, z6,4G.

(3) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A # B and B # C and C # A. Then 33,.46,8G = 33, 564G

(4) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then Wy, ,¢ G € v, 36,4G.
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(5) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A# B and B # C and C # A. Then Wy, ,¢ G € 33, 36,4G.

(6) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then Wy, ,¢ G € V3, 56,4G.

(7) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C'}
and A 75 Band B # C and C 75 A. Then VHE,AG,BG S HHGYBG,AG-

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A # B and B # C and C # A. Then 3y, ,¢ G € 33, 36,4G.

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C' # A. Then HVvaﬂcc,AGﬁBG S VEVG,CG,BGAG'

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C' # A. Then El\faa CG,AGvBG S Vgaa CG,BG7AG'

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then Elﬂva CG,AGvBG = Elgva CG,BG7AG'

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C 7& A. Then Hgaa CG,AG7BG = 333a CG,BG7AG'

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then Vvva CG,AGBG E vaa CG,BGAG'

(14) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C # A. Then Vvaa CG,AGBG S ElVaa CG,BGAG'

(15) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C # A. Then Vvva CG,AGBG S Elﬂva CG,BGVAG'

(16) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C}
and A # B and B # C and C # A. Then Vvaa CG,AGBG & Elﬂaa CG,BGAG'

(17) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C'}
and A # B and B # C and C # A. Then Vvva CG,AGvBG & nga CG,BGvAG'
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(18) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C'}
and A 7'5 B and B 75 C and C 75 A. Then Vvaa CG,AGuBG & Vgaa CG,BG,AG'

(19) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 7é B and B 7é C and C ;é A. Then nga CG,AG:BG S Hgva CG,BG:AG'

(20) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C 75 A. Then Vgaa CG,AG7BG < Elﬂaa CG,BG7AG'

(21) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C'}
and A # B and B # C and C # A. Then Elea CG,AG,BG S Elﬂva CG,BGaAG'

(22) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C' # A. Then Jvs, CG,AG:BG € J3;, CG,BG:AG'
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The terminology and notation used here are introduced in the following articles:
1], [2], [3], [4], and [5].

In this paper Y is a non empty set.

We now state a number of propositions:

(1) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y') and for all partitions A, B of Y holds -3y, ,a,BG €
ElElﬂa,BG,AG-

(2) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 7é B and B 7é C and C 7é A. Then aﬁva,AG,BG (& Elﬂ_.aﬁG,AG-

(3) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 7A B and B 75 C and C 75 A. Then _‘VVQ,AG,BG (& Hﬂva,BGAG.

(4) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 75 Band B # C and C 75 A. Then v—‘Va,AG,BG S Elﬂﬁa,BG,AG‘

(5) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then -V, ,¢ G € 33, ;6,4G.
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(6) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A# B and B # C and C # A. Then V., ,¢, G € =Wy, ;,6,.4G.

(7) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B, C' of Y holds W_,46,BG €
_‘VVQ’BG,AG-

(8) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y) and for all partitions A, B, C of Y holds Vo3,.46,8G €
_‘VVQ’BG,AG-

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then VEIW,AG,BG S _‘Vva,BG,AG-

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 75 Band B# C and C 75 A. Then EI—\VG’AG,BG S ﬁVVE,BG,AG~

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A # B and B # C and C # A. Then 3y, ,¢,BG € ~Vy, ;6. AG.

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A# B and B # C and C # A. Then 33, ,¢, G € =Wy, ;6.4G.

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then 33 , ,¢,BG € ~Vy, ;6,4G.

(14) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then —V3, ,¢,8G € 3y, z¢,4G.

(15) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 Band B # C and C 75 A. Then ﬁElEGVAG,BG S ﬁava!BQAG.

(16) For every element a of BVF(Y) and for every subset G of
PARTITIONS(Y') and for all partitions A, B, C of Y holds —33, ,¢,BG €
ﬁVga’BQAG.
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.
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The terminology and notation used in this paper are introduced in the following
papers: [1], [2], [3], [4], and [5].

In this paper Y is a non empty set.

The following propositions are true:

(1) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then ﬂElgayAQBG S _‘HHE,BG,AG-

(2) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then -V, ,¢,BG € Wy, ;¢,4G.

(3) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A # B and B # C and C # A. Then —3y, ,¢ G € Wy, ;6.4G.

(4) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 75 Band B # C and C 75 A. Then ﬁvﬂa,AG,BG S ﬁvva,BG,AG-

(5) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C'}
and A # B and B # C and C # A. Then —~33, ,¢,8G € Wy, 56,4G.
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(6) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A 7'5 B and B 7& C and C 75 A. Then —ava’A(;BG & Hﬁva,BGﬂqG.

(7) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 7& B and B 7& C and C 7& A. Then _‘VHQ’AG,BG <€ Hﬁva’BGAG.

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then 33, ,¢, G € v, 36,4G.

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then _‘VEQVAG,BG S VﬂvayBGAG.

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 75 B and B 75 C and C 75 A. Then _‘Elﬂa,AG,BG S VﬂvaﬁBGAG.

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A # B and B # C and C # A. Then 33, ,¢ G € 3-3, 56,4G.

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A 7& B and B 75 C and C 75 A. Then _‘HH,LAG,BG S Vﬁga,BqAG.

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A ;é B and B 7& C and C 7& A. Then _‘VHQ’AG,BG S Elaﬁa,BG,AG'

(14) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then 33, ,¢ G € 33, ;¢,4G.

(15) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C 75 A. Then ﬁvﬂa,AG,BG S vﬂﬁa,BG,AG'

(16) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A # B and B # C and C # A. Then —33, ,6,8G € V3_, ;¢,4G.
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Summary. The widely used textbook by Brassard and Bratley [2] inclu-
des a chapter devoted to asymptotic notation (Chapter 3, pp. 79-97). We have
attempted to test how suitable the current version of Mizar is for recording this
type of material in its entirety. A more detailed report on this experiment will
be available separately. This article presents the development of notions and a
follow-up article [9] includes examples and solutions to problems. The prelimina-
ries introduce a number of properties of real sequences, some operations on real
sequences, and a characterization of convergence. The remaining sections in this
article correspond to sections of Chapter 3 of [2]. Section 2 defines the O notation
and proves the threshold, maximum, and limit rules. Section 3 introduces the 2
and © notations and their analogous rules. Conditional asymptotic notation is
defined in Section 4 where smooth functions are also discussed. Section 5 defines
some operations on asymptotic notation (we have decided not to introduce the
asymptotic notation for functions of several variables as it is a straightforward
generalization of notions for unary functions).
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1. PRELIMINARIES

In this paper ¢, d denote real numbers and n, N denote natural numbers.

In this article we present several logical schemes. The scheme FinSegRng1
deals with natural numbers A, B, a non empty set C, and a unary functor F
yielding an element of C, and states that:

{F(i); 1 ranges over natural numbers: A < i A i < B} is a finite
non empty subset of C
provided the parameters meet the following requirement:
o ALB.

The scheme FinlmiInitl deals with a natural number A, a non empty set B,
and a unary functor F yielding an element of B, and states that:

{F(n);n ranges over natural numbers: n < A} is a finite non
empty subset of B
for all values of the parameters.

The scheme FinImlinit2 deals with a natural number A, a non empty set B,

and a unary functor F yielding an element of B, and states that:
{F(n);n ranges over natural numbers: n < A} is a finite non
empty subset of B
provided the parameters meet the following requirement:
o A>0.
Let ¢ be a real number. We say that c is positive if and only if:

(Def. 1) ¢>0.
We say that c¢ is negative if and only if:
(Def. 2) ¢< 0.
We say that c is logbase if and only if:
(Def. 3) ¢>0and c# 1.
One can check the following observations:
% there exists a real number which is positive,
* there exists a real number which is negative,
% there exists a real number which is logbase,
* there exists a real number which is non negative,
% there exists a real number which is non positive, and
% there exists a real number which is non logbase.

Let f be a sequence of real numbers. We say that f is eventually-nonnegative
if and only if:

(Def. 4) There exists N such that for every n such that n > N holds f(n) > 0.
We say that f is positive if and only if:
(Def. 5) For every n holds f(n) > 0.
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We say that f is eventually-positive if and only if:
(Def. 6) There exists N such that for every n such that n > N holds f(n) > 0.
We say that f is eventually-nonzero if and only if:
(Def. 7) There exists N such that for every n such that n > N holds f(n) # 0.
We say that f is eventually-nondecreasing if and only if:
(Def. 8) There exists N such that for every n such that n > N holds f(n) <
fln+1).

Let us mention that there exists a sequence of real numbers which is eventually-
nonnegative, eventually-nonzero, positive, eventually-positive, and eventually-
nondecreasing.

One can verify the following observations:

* every sequence of real numbers which is positive is also eventually-

positive,

x every sequence of real numbers which is eventually-positive is also eventually-

nonnegative and eventually-nonzero, and

* every sequence of real numbers which is eventually-nonnegative and
eventually-nonzero is also eventually-positive.

Let f, g be eventually-nonnegative sequences of real numbers. Note that
f + g is eventually-nonnegative.

Let f be a sequence of real numbers and let ¢ be a real number. The functor
c+ f yields a sequence of real numbers and is defined by:

(Def. 9) For every n holds (¢ + f)(n) = c+ f(n).

We introduce f + ¢ as a synonym of ¢ + f.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
positive real number. One can check that ¢ f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
non negative real number. Note that ¢ + f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
positive real number. One can check that ¢ + f is eventually-positive.

Let f, g be sequences of real numbers. The functor max(f,g) yielding a
sequence of real numbers is defined as follows:

(Def. 10) For every n holds (max(f, g))(n) = max(f(n),g(n)).

Let us notice that the functor max(f, g) is commutative.
Let f be a sequence of real numbers and let g be an eventually-nonnegative
sequence of real numbers. One can check that max(f, g) is eventually-nonnegative.
Let f be a sequence of real numbers and let g be an eventually-positive
sequence of real numbers. One can verify that max(f, g) is eventually-positive.
Let f, g be sequences of real numbers. We say that g majorizes f if and only
if:
(Def. 11) There exists N such that for every n such that n > N holds f(n) < g(n).
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The following propositions are true:

(1) Let f be a sequence of real numbers and N be a natural number. Suppose
that for every m such that n > N holds f(n) < f(n +1). Let n, m be
natural numbers. If N <n and n < m, then f(n) < f(m).

(2) Let f, g be eventually-positive sequences of real numbers. If f/g is
convergent and lim(f/g) # 0, then ¢/f is convergent and lim(g/f) =
(lim(f/g))~".

(3) For every eventually-nonnegative sequence f of real numbers such that
f is convergent holds 0 < lim f.

(4) Let f, g be sequences of real numbers. If f is convergent and g is conver-
gent and g majorizes f, then lim f < lim g.

(5) Let f be a sequence of real numbers and g be an eventually-nonzero
sequence of real numbers. If f/g is divergent to 400, then g/ f is convergent

and lim(g/f) = 0.

2. A NOTATION FOR ”THE ORDER OF”

Let f be an eventually-nonnegative sequence of real numbers. The functor O(f)
yielding a non empty set of functions from N to R is defined by:

(Def. 12)  O(f) = {t;t ranges over elements of R": Ven (>0 A A, (n>2N =
t(n) <c-f(n) A t(n)>0))}.
The following propositions are true:

(6) Let z be a set and f be an eventually-nonnegative sequence of real
numbers. Suppose z € O(f). Then z is an eventually-nonnegative sequence
of real numbers.

(7) Let f be a positive sequence of real numbers and ¢ be an eventually-
nonnegative sequence of real numbers. Then t € O(f) if and only if there
exists ¢ such that ¢ > 0 and for every n holds t(n) < c¢- f(n).

(8) Let f be an eventually-positive sequence of real numbers, ¢ be an
eventually-nonnegative sequence of real numbers, and N be a natural num-
ber. Suppose t € O(f) and for every n such that n > N holds f(n) > 0.
Then there exists ¢ such that ¢ > 0 and for every n such that n > N holds
t(n) <c- f(n).

(9) For all eventually-nonnegative sequences f, g of real numbers holds
O(f + g) = O(max(f,g)).

(10) For every eventually-nonnegative sequence f of real numbers holds f €
o(f).
(11) For all eventually-nonnegative sequences f, g of real numbers such that

f € O(g) holds O(f) € O(yg).
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(12) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € O(g) and g € O(h) holds f € O(h).

(13) Let f be an eventually-nonnegative sequence of real numbers and ¢ be a
positive real number. Then O(f) = O(c f).

(14) Let ¢ be a non negative real number and z, f be eventually-nonnegative
sequences of real numbers. If z € O(f), then x € O(c+ f).

(15) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds O(f) = O(g).

(16) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then f € O(g) and g ¢ O(f).

(17) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to o0, then f ¢ O(g) and g € O(f).

3. OTHER ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers. The functor Q(f)
yielding a non empty set of functions from N to R is defined by:
(Def. 13)  Q(f) = {t;t ranges over elements of RY: Van @>0 A A, (n>2N =
t(n) >d- f(n) A t(n)>0))}.
The following propositions are true:

(18) Let = be a set and f be an eventually-nonnegative sequence of real
numbers. Suppose x € Q(f). Then x is an eventually-nonnegative sequence
of real numbers.

(19) For all eventually-nonnegative sequences f, g of real numbers holds f €
Q(g) iff g € O(f).

(20) For every eventually-nonnegative sequence f of real numbers holds f €
Q(f).

(21) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € Q(g) and g € Q(h) holds f € Q(h).

(22) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds Q(f) = Q(g).

(23) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then g € Q(f) and f ¢ Q(g).

(24) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to 400, then g ¢ Q(f) and f € Q(g).

(25) Let f, t be positive sequences of real numbers. Then t € Q(f) if and only
if there exists d such that d > 0 and for every n holds d - f(n) < t(n).

(26) For all eventually-nonnegative sequences f, g of real numbers holds Q( f+

9) = Q(max(f, g)).
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Let f be an eventually-nonnegative sequence of real numbers. The functor
O(f) yielding a non empty set of functions from N to R is defined as follows:
(Def. 14) O(f) = O(f) N Q).
Next we state several propositions:

(27) Let f be an eventually-nonnegative sequence of real numbers. Then
O(f) = {t;t ranges over elements of R: Vean (€>0Ad>0AA, (n>
N = d- f(n) <t(n) A t(n) <c-f(n))}

(28) For every eventually-nonnegative sequence f of real numbers holds f €
o(f).

(29) For all eventually-nonnegative sequences f, g of real numbers such that
f € ©O(g) holds g € ©(f).

(30) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € ©(g) and g € ©(h) holds f € ©(h).

(31) Let f, t be positive sequences of real numbers. Then t € O(f) if and
only if there exist ¢, d such that ¢ > 0 and d > 0 and for every n holds
d- f(n) <t(n)and t(n) <c- f(n).

(32) For all eventually-nonnegative sequences f, g of real numbers holds ©( f+
g) = O(max(f,g)).

(33) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds f € O(g).

(34) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then f € O(g) and f ¢ O(g).

(35) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to oo, then f € Q(g) and f ¢ O(g).

4. CONDITIONAL ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers and let X be a
set. The functor O(f|X) yields a non empty set of functions from N to R and
is defined as follows:

(Def. 15)  O(f|X) = {t;t ranges over elements of R\: Ven (e>0 A A, (n >
N AneX = tn)<c-f(n) A tln)>0))}.
Let f be an eventually-nonnegative sequence of real numbers and let X be
a set. The functor Q(f|X) yields a non empty set of functions from N to R and
is defined by:
(Def. 16) Q(f|X) = {t;t ranges over elements of R\: Van (@>0 A A, (n >
N AneX = tn)=d-f(n) AN tin)>0))}.
Let f be an eventually-nonnegative sequence of real numbers and let X be

a set. The functor O(f|X) yielding a non empty set of functions from N to R is
defined by the condition (Def. 17).
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(Def. 17) ©O(f|X) = {t;t ranges over elements of R": Vean (€>0 A d>0 A
AN, (>N AneX = d-f(n)<t(n) A tin)<c-f(n)))}
Next we state the proposition
(36) For every eventually-nonnegative sequence f of real numbers and for
every set X holds O(f|X) = O(f|X) N Q(f|X).

Let f be a sequence of real numbers and let b be a natural number. The
functor f yielding a sequence of real numbers is defined by:

(Def. 18) For every n holds fy(n) = f(b-n).

Let f be an eventually-nonnegative sequence of real numbers and let b be a
natural number. We say that f is smooth w.r.t. b if and only if:

(Def. 19) f is eventually-nondecreasing and f, € O(f).

Let f be an eventually-nonnegative sequence of real numbers. We say that
f is smooth if and only if:

(Def. 20) For every natural number b such that b > 2 holds f is smooth w.r.t. b.
We now state four propositions:

(37) Let f be an eventually-nonnegative sequence of real numbers. Given a
natural number b such that b > 2 and f is smooth w.r.t. b. Then f is
smooth.

(38) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € O(f|{b"™ : n ranges over natural numbers}). Then ¢t € O(f).

(39) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € Q(f|{b™ : n ranges over natural numbers}). Then ¢t € Q(f).

(40) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € ©O(f|{b™ : n ranges over natural numbers}). Then ¢t € O(f).

5. OPERATIONS ON ASYMPTOTIC NOTATION

Let X be a non empty set and let ', G be non empty sets of functions from X
to R. The functor F' 4 G yields a non empty set of functions from X to R and
is defined by the condition (Def. 21).
(Def. 21) F+G = {t;t ranges over elements of RX: Vg clement of kX (f €A g€
G A /\n:element of X t(n) - f(n) + g(n))}
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Let X be a non empty set and let F';, G be non empty sets of functions from
X to R. The functor max(F, @) yields a non empty set of functions from X to
R and is defined by the condition (Def. 22).

(Def. 22) max(F,G) = {t;t ranges over elements of R¥: V.o element of X (f €

F oA g e G A /\n:element of X t(n) = max(f(n)ag(n)))}
Next we state two propositions:

(41) For all eventually-nonnegative sequences f, g of real numbers holds
O(f) +0(g) = O(f + g)-
(42) For all eventually-nonnegative sequences f, g of real numbers holds

max(O(f),0(g)) = O(max(f,g)).
Let F, G be non empty sets of functions from N to R. The functor F¢
yielding a non empty set of functions from N to R is defined by the condition
(Def. 23).

(Def. 23) F¢ = {t; t ranges over elements of R\: \/f,g:element of B VN - cloment of N
(feEF NgeG NN (n>N = t(n)= f(n)9™)}

n:element of N
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Summary. The widely used textbook by Brassard and Bratley [2] inclu-
des a chapter devoted to asymptotic notation (Chapter 3, pp. 79-97). We have
attempted to test how suitable the current version of Mizar is for recording this
type of material in its entirety. This article is a follow-up to [11] in which we
introduced the basic notions and general theory. This article presents a Mizar
formalization of examples and solutions to problems from Chapter 3 of [2] (some
of the examples and solved problems are also in [11]). Not all problems have been
solved as some required solutions not amenable for formalization.

MML Identifier: ASYMPT_1.

The articles [11], [10], [14], [15], [3], [4], [17], [1], [12], [13], [6], [19], [8], [9], [7],
[16], [18], and [5] provide the terminology and notation for this paper.

1. EXAMPLES FROM THE TEXT

We adopt the following rules: ¢, e denote real numbers, k, n, m, N, ny, M
denote natural numbers, and x denotes a set.
One can prove the following two propositions:
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(1) Let t, t; be sequences of real numbers. Suppose that
(i)  ¢0)=0,

(ii)  for every n such that n > 0 holds t(n) = (12-n3 -logyn — 5 - n?) +
(logy m)2 + 36,

(iii)  t1(0) =0, and

(iv)  for every n such that n > 0 holds t;(n) = n? - logy n.

Then there exist eventually-positive sequences s, s; of real numbers such
that s =t and s; = t; and s € O(s1).

(2) Let a, b be logbase real numbers and f, g be sequences of real numbers.
Suppose a > 1 and b > 1 and f(0) = 0 and for every n such that n > 0
holds f(n) = log,n and ¢g(0) = 0 and for every n such that n > 0 holds
g(n) = logy n. Then there exist eventually-positive sequences s, s; of real
numbers such that s = f and s; = ¢ and O(s) = O(s1).

Let a, b, ¢ be real numbers. The functor {ab'”+c)}neN yields a sequence of
real numbers and is defined by:
(Def. 1) ({a"™9},en)(n) = aP"te.
Let a be a positive real number and let b, ¢ be real numbers. One can verify
that {a®"t%)},cn is eventually-positive.
The following proposition is true
(3) For all positive real numbers a, b such that a < b holds {0}, oy ¢

O({al-nJrO) }neN)-
The sequence {logy n},en of real numbers is defined as follows:
(Def. 2) {loggn}nen(0) = 0 and for every n such that n > 0 holds

{logy n}nen(n) = logy n.
Let a be a real number. The functor {n®},cn yielding a sequence of real
numbers is defined as follows:
(Def. 3) {n%},en(0) = 0 and for every n such that n > 0 holds {n®},en(n) = n®.
Let us mention that {logy n},en is eventually-positive.
Let a be a real number. Observe that {n®},cn is eventually-positive.

We now state several propositions:

(4) Let f, g be eventually-nonnegative sequences of real numbers. Then
O(f) C O(g) and O(f) # O(g) if and only if f € O(g) and f ¢ Q(g).

(5) O({logy n}nen) € O({n3)}en) and O({logy n}nen) # O({n(3)}pen).
(6) {n(%)}nEN € Q({logQ n}neN) and {logQ n}neN gé Q({n(%)}neN)

(7) For every sequence f of real numbers and for every natural num-
ber k such that for every n holds f(n) = S_I_ ({n*}.en)(x) holds

f e o({n* M} uen).
(8) Let f be a sequence of real numbers. Suppose f(0) = 0 and for every
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n such that n > 0 holds f(n) = n'°®2™. Then there exists an eventually-
positive sequence s of real numbers such that s = f and s is not smooth.

Let b be a real number. The functor {b},cn yields a sequence of real numbers
and is defined as follows:

(Def. 4) {b}nen =N+ 0.
Let us note that {1},en is eventually-nonnegative.
One can prove the following proposition

(9) Let f be an eventually-nonnegative sequence of real numbers. Then there
exists a non empty set F of functions from N to R such that F' = {{n'},en}
and f € FO{tnen) iff there exist N, ¢, k such that ¢ > 0 and for every n
such that n > N holds 1 < f(n) and f(n) < ¢- {n*},en(n).

2. PROBLEM 3.1

One can prove the following proposition

(10) For every sequence f of real numbers such that for every n holds f(n) =
(3-10%—18-10%-n) +27-n2 holds f € O({n?} en)-

3. PROBLEM 3.5

We now state three propositions:
(11) {n*}nen € O({n’}nen).
(12) {n*}nen ¢ Q({n’}nen).
(13) There exists an eventually-positive sequence s of real numbers such that

s ={21tD}, cy and {28710}, oy € O(s).
Let a be a natural number. The functor {(n + a)!},en yielding a sequence
of real numbers is defined by:
(Def. 5) {(n+ a)!}nen(n) = (n+a)!.
Let a be a natural number. Observe that {(n+a)!},cy is eventually-positive.

We now state the proposition

(14) {(n+0)!}nen € O{(n+ 1)!}nen).
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4. PROBLEM 3.6

The following proposition is true
(15) For every sequence f of real numbers such that f € O({n'},en) holds
f f € O({n*}nen).

5. PROBLEM 3.7

We now state the proposition

(16) There exists an eventually-positive sequence s of real numbers such that
s ={2"""}en and 2 {n'}nen € O({n'}nen) and {227+ },en ¢ O(s).

6. PROBLEM 3.8

One can prove the following proposition
(17) Iflogy 3 < %, then {n(1°g2 3)}n€N € O({n(%)}neN) and {n(1°g2 3)}n€N ¢

159

Q({n(m)}nEN) and {n(log2 3)}n€N ¢ 9({71(%)}7161\1)-

7. PROBLEM 3.11

We now state the proposition

(18) Let f, g be sequences of real numbers. Suppose for every n holds f(n) =
n mod 2 and for every n holds g(n) = (n + 1) mod 2. Then there exist
eventually-nonnegative sequences s, s; of real numbers such that s = f
and s1 =g and s ¢ O(s1) and s1 ¢ O(s).

8. PROBLEM 3.19

We now state two propositions:
(19) For all eventually-nonnegative sequences f, g of real numbers holds
O(f) = O(g) iff f € ©(g).
(20) For all eventually-nonnegative sequences f, g of real numbers holds f €

O(g) iff ©(f) = 6(g).
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9. PROBLEM 3.21

The following propositions are true:

(21) Let e be a real number and f be a sequence of real numbers. Suppose
0 < eand f(0) = 0 and for every n such that n > 0 holds f(n) = n-logy n.
Then there exists an eventually-positive sequence s of real numbers such
that s = f and O(s) € O({n1+9)},cn) and O(s) # O({n1+9)},cn).

(22) Let e be a real number and g be a sequence of real numbers. Suppose
0 < eand e < 1 and ¢g(0) = 0 and g(1) = 0 and for every n such
that n > 1 holds g(n) = %. Then there exists an eventually-positive
sequence s of real numbers such that s = g and O({n(*9},cy) C O(s)
and O({n+9)},cn) # O(s).

(23) Let f be a sequence of real numbers. Suppose f(0) = 0 and f(1) =0
and for every n such that n > 1 holds f(n) = %> Then there exists

logy 1
an eventually-positive sequence s of real numbers such that s = f and

O(s) € O({n*}nen) and O(s) # O({n®}nen).

(24) Let g be a sequence of real numbers. Suppose that for every n holds
g(n) = ((n® —n) 4+ 1)*. Then there exists an eventually-positive sequence
s of real numbers such that s = g and O({n®},en) = O(s).

(25) Let e be a real number. Suppose 0 < e and e < 1. Then there exi-
sts an eventually-positive sequence s of real numbers such that s =

{1+ e't0}, ey and O({n®}nen) C O(s) and O({n®}en) # O(s).

10. PROBLEM 3.22

One can prove the following propositions:

(26) Let f, g be sequences of real numbers. Suppose f(0) = 0 and for every n
such that n > 0 holds f(n) = n'°®2™ and g(0) = 0 and for every n such that
n > 0 holds g(n) = nV™. Then there exist eventually-positive sequences
s, s1 of real numbers such that s = f and s; = g and O(s) C O(s;) and
O(s) # O(s1).

(27) Let f be a sequence of real numbers. Suppose f(0) = 0 and for every n
such that n > 0 holds f(n) = nV™. Then there exist eventually-positive
sequences s, 51 of real numbers such that s = f and s; = {210}, oy
and O(s) C O(s1) and O(s) # O(s1).

(28) There exist eventually-positive sequences s, s of real numbers such that
s = {2110}y and s; = {2}, oy and O(s) = O(sy).

147
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(29) There exist eventually-positive sequences s, s; of real numbers such that
s = {2110} oy and 51 = {22710}, .y and O(s) C O(s1) and O(s) #
0(81).

(30) There exists an eventually-positive sequence s of real numbers such that
s = {22701 oy and O(s) € O({(n + 0)!}nen) and O(s) # O({(n +
0)!}nen)-

1) O({(n+0)}nen) € O({(n + D!}tnen) and O({(n + 0)!}nen) # O({(n +
1)!}n€N)’

(32) Let g be a sequence of real numbers. Suppose ¢g(0) = 0 and for every n
such that n > 0 holds g(n) = n™. Then there exists an eventually-positive
sequence s of real numbers such that s = g and O({(n + 1)!},en) C O(s)

and O({(n + D'}nen) # O(s).

11. PROBLEM 3.23

One can prove the following proposition

(33) Let given n. Suppose n > 1. Let f be a sequence of real numbers and &
be a natural number. If for every n holds f(n) = >-"_,({n*}nen)(k), then

k+1
fn) 2 5t

12. PROBLEM 3.24

One can prove the following proposition

(34) Let f, g be sequences of real numbers. Suppose ¢g(0) = 0 and for every
n such that n > 0 holds g(n) = n - logyn and for every n holds f(n) =
logy(n!). Then there exists an eventually-nonnegative sequence s of real
numbers such that s = g and f € O(s).

13. PROBLEM 3.26

The following proposition is true

(35) Let f be an eventually-nondecreasing eventually-nonnegative sequence
of real numbers and t be a sequence of real numbers. Suppose that for
every n holds if n mod 2 = 0, then #(n) = 1 and if n mod 2 = 1, then
t(n) =n. Then t ¢ O(f).
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14. PROBLEM 3.28

Let f be a function from N into R* and let n be a natural number. Then
f(n) is a finite sequence of elements of R.
Let n be a natural number and let a, b be positive real numbers. The functor
Prob28(n, a, b) yields a real number and is defined by:
(Def. 6)(i) Prob28(n,a,b) =0if n =0,
(ii)  there exists a natural number [ and there exists a function pog from N
into R* such that [+1 = n and Prob28(n, a,b) = m,p2s(l) and pag(0) = (a)
and for every natural number n there exists a natural number n; such that
ny = (%Hl} and pog(n + 1) = pag(n) = (4 - mp,pas(n) +b- (n+ 1+ 1)),
otherwise.
Let a, b be positive real numbers. The functor {Prob28(n, a,b) }ren yields a
sequence of real numbers and is defined by:
(Def. 7)  ({Prob28(n,a,b)}nen)(n) = Prob28(n,a,b).
The following proposition is true
(36) For all positive real numbers a, b holds {Prob28(n,a,b)}nen is
eventually-nondecreasing.

15. PROBLEM 3.30

The non empty subset {2 : n € N} of N is defined by:
(Def. 8) {2":n € N} = {2" : n ranges over natural numbers}.
Next we state three propositions:
(37) Let f be a sequence of real numbers. Suppose that for every n holds if
n € {2" :n € N}, then f(n) =n and if n ¢ {2" : n € N}, then f(n) = 2".
Then f € ©({n'}pen|{2" : n € N}) and f ¢ O({n'}nen) and {n'}en is
smooth and f is not eventually-nondecreasing.
(38) Let f, g be sequences of real numbers. Suppose f(0) = 0 and for every
n such that n > 0 holds f(n) = n2"#2™ and g(0) = 0 and for every n
such that n > 0 holds g(n) = n™. Then there exists an eventually-positive
sequence s of real numbers such that
) s=g,
) fe0O(s|{2" :n e N}),
) [ E06(s),
(iv)  f is eventually-nondecreasing,
) s is eventually-nondecreasing, and
) s is not smooth w.r.t. 2.
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(39) Let g be a sequence of real numbers. Suppose that for every n holds if
n € {2" :n € N}, then g(n) = n and if n ¢ {2" : n € N}, then g(n) = n?.
Then there exists an eventually-positive sequence s of real numbers such
that s = g and {n'},eny € O(s|{2" : n € N}) and {n'},en ¢ O(s) and
59 € O(s) and {n'},cn is eventually-nondecreasing and s is not eventually-
nondecreasing.

16. PROBLEM 3.31

Let x be a natural number. The functor zj yielding a natural number is
defined as follows:

(Def. 9)(i) There exists n such that n! < z and z < (n+1)! and xj = n! if  # 0,
(ii) xj=0, otherwise.
Next we state the proposition

(40) Let f be a sequence of real numbers. Suppose that for every n holds
f(n) = nj. Then there exists an eventually-positive sequence s of real
numbers such that s = f and f is eventually-nondecreasing and for every
n holds f(n) < {n'},en(n) and s is not smooth.

17. PROBLEM 3.34

Let us mention that {n'},en — {1}nen is eventually-positive.
One can prove the following proposition

(41) O({n'}tnen — {1}nen) + O({n'}nen) = O({n' }nen).

18. PROBLEM 3.35

One can prove the following proposition
(42) There exists a non empty set F' of functions from N to R such that
F = {{n"}en} and for every n holds {n"D},en(n) < {n'}nen(n) and
{nD} ey ¢ FOU1nen),
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19. ADDITION

The following proposition is true

(43) Let ¢ be a non negative real number and z, f be eventually-nonnegative
sequences of real numbers. Given e, N such that e > 0 and for every n

such that n > N holds f(n) > e. If z € O(c+ f), then z € O(f).

20. POTENTATIALLY USEFUL

The following propositions are true:

30 holds 2" > nS.
For every real number x such that x > 9 holds 2% > (2 - z)2.

There exists N such that for every n such that n > N holds \/n—logy n >
1.

(56) For all real numbers a, b, ¢ such that a > 0 and ¢ > 0 and ¢ # 1 holds

()]
w

For every n such that n

ot Ot
Ot

(44) 22 =4.

(45) 23 =8.

(46) 21 =16.

(47) 25 =32.

(48) 25 =64.

(49) 2'2 = 4096.

(50) For every n such that n > 3 holds n%2 > 2-n + 1.
(51) For every n such that n > 10 holds 2"~ > (2-n)2.
(52) For every n such that n > 9 holds (n +1)% < 2-nS.
(53) >

(54)

(55)

ab — blogea
(67) (44 1)!=120.
(58) 5% = 3125.
(59) 4% = 256.
(60) For every n holds (n? —n) +1 > 0.
(61) For every n such that n > 2 holds n! > 1.
(62) For all ny, n such that n < ny holds n! < nq!.
(63) For every k such that k& > 1 there exists n such that n! < k and k <

(n+1)! and for every m such that m! < k and k < (m + 1)! holds m = n.
(64) For every n such that n > 2 holds [§] < n.
(65) For every n such that n > 3 holds n! > n.
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(66) For all natural numbers m, n such that m > 0 holds m™ is a natural
number.

(67) For every n such that n > 2 holds 2" > n + 1.
(68) Let a be a logbase real number and f be a sequence of real numbers.

Suppose a > 1 and f(0) = 0 and for every n such that n > 0 holds
f(n) =log, n. Then f is eventually-positive.

(69) For all eventually-nonnegative sequences f, g of real numbers holds f €
O(g) and g € O(f) iff O(f) = O(yg).

(70) For all real numbers a, b, ¢ such that 0 < a and a < b and ¢ > 0 holds
a® < b°.

(71) For every n such that n >4 holds 2-n + 3 < 2.

(72) For every n such that n > 6 holds (n + 1)2 < 27,

(73) For every real number ¢ such that ¢ > 6 holds ¢? < 2°.

(74) Let e be a positive real number and f be a sequence of real numbers.

Suppose f(0) = 0 and for every n such that n > 0 holds f(n) = logy(n®).
Then f/{n®},en is convergent and lim(f/{n},en) = 0.

(75) For every real number e such that e > 0 holds {logyn}nen/{n°}nen is
convergent and lim({logy n}pen/{n°}nen) = 0.

(76) For every sequence f of real numbers and for every N such that for every
n such that n < N holds f(n) > 0 holds > f(x) > 0.

(77) For all sequences f, g of real numbers and for every N such that for every
n such that n < N holds f(n) < g(n) holds =N f(x) < SN, g(x).
(78) Let f be a sequence of real numbers and b be a real number. Suppose
f(0) = 0 and for every n such that n > 0 holds f(n) = b. Let N be a

natural number. Then Zivzo f(k)=b-N.

(79) For all sequences f, g of real numbers and for all natural numbers N,
M holds ZKM=N+1 f(k)+ f(N+1) = Zﬁ/lzNHH (k).

(80) Let f, g be sequences of real numbers, M be a natural number, and
given N. Suppose N > M + 1. If for every n such that M + 1 < n and
n < N holds f(n) < g(n), then S0 o f(k) < M 1 g(k).

(81) For every n holds [§] < n.

(82) Let f be a sequence of real numbers, b be a real number, and N be a
natural number. Suppose f(0) = 0 and for every n such that n > 0 holds
f(n) = b. Let M be a natural number. Then EKM:NH f(k)=b-(N—-M).

(83) Let f, g be sequences of real numbers, N be a natural number, and ¢
be a real number. Suppose f is convergent and lim f = ¢ and for every n
such that n > N holds f(n) = g(n). Then g is convergent and lim g = c.

(84) For every n such that n > 1 holds (n? —n) + 1 < n2.

(85) TFor every n such that n > 1 holds n2 < 2 ((n? —n) +1).
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(86) For every real number e such that 0 < e and e < 1 there exists N such

that for every n such that n > N holds n log2(1 +e)—8-logyn > 8-logy n.

< 1
on—=9"

(87)

(88) For every n such that n > 3 holds 2+ (n —2) > n — 1.
(89) For every real number ¢ such that ¢ > 0 holds c? = Ve.
(90)

There exists N such that for every n such that n > N holds n — /n -
logon > 5

For every n such that n > 10 holds 2 T

(91) For every sequence s of real numbers such that for every n holds s(n) =
1+ +1 )"*1 holds s is non-decreasing.

(92) For every n such that n > 1 holds (ZH)" < (Z—ﬁ)"“.

n+1
(93) For all k, n such that k < n holds (}) > (nil)

(94) For every sequence f of real numbers such that for every n holds f(n) =
logy(n!) and for every n holds f(n) = >""'_({logy n}nen) (k).
(95) For every n such that n > 4 holds n -logan > 2 - n.

(96) Let a, b be positive real numbers. Then Pr0b28(0 a,b) = 0 and
Prob28(1,a,b) = a and for every n such that n > 2 there exists n; such
that n; = [5] and Prob28(n, a,b) = 4 - Prob28(n1,a,b) +b - n.
) For every n such that n > 2 holds n? > n + 1.
) For every n such that n > 1 holds 2" — 27 > 1.
99) For every n such that n > 2 holds 2" — 1 ¢ {2" : n € N}.
) For all n, k such that k£ > 1 and n! < k and k£ < (n + 1)! holds kj = nl.
)

For all real numbers a, b, ¢ such that a > 1 and b > @ and ¢ > 1 holds
log, ¢ > log, c.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.

[3] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.

[4] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[5] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[7] Jarostaw Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273-275, 1990.
[8] Jarostaw Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471-475, 1990.
[9] Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.
[10] Elzbieta Kraszewska and Jan Popiotek. Series in Banach and Hilbert Spaces. Formalized
Mathematics, 2(5):695-699, 1991.



RICHARD KRUEGER et al.

Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I: Theory.
Formalized Mathematics, 9(1):135-142, 2001.
Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890,

1990.
Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized

Mathematics, 2(2):213-216, 1991.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Function domains and Fraenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

Andrzej Trybulec and Czestaw Bylinski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received November 4, 1999



FORMALIZED MATHEMATICS
Volume 9, Number 1, 2001
University of Bialystok

Predicate Calculus for Boolean Valued
Functions. Part X

Shunichi Kobayashi
Ueda Multimedia Information Center
Nagano

Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC18.

The notation and terminology used here are introduced in the following articles:
1), [2], 3], [4], and [3]

In this paper Y is a non empty set.

One can prove the following propositions:

(1) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then ﬂElgayAQBG S ElVﬂa,BG,AG'

(2) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A # B and B # C and C # A. Then —Elga’AqBG S va’BqAG.

(3) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A # B and B # C and C # A. Then 33, ,¢,8G € =3y, 56,4G.

(4) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A 75 Band B # C and C 75 A. Then v—\ﬂa,AG,BG S ﬁava,BG,AG-

(5) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A# B and B # C and C # A. Then V3, ,¢, G € —V3, ;,6,4G.
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(6) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A# B and B# C and C # A. Then V3, ,¢, G € =33, ;6,.4G.

(7) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B,C}
and A # B and B # C and C # A. Then 3y, ,6,BG € 3-v, 56,4G.

(8) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A ;é B and B 7& C and C 7& A. Then VﬁvaG’BG S Hﬁva’BGAG.

(9) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C'}
and A # B and B # C and C # A. Then 33, ,¢,8G € 3-v, 564G

(10) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C 75 A. Then V—EG’AG,BG S El—‘Va,BG,AG'

(11) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A# B and B # C and C # A. Then 33, ,¢,BG € Vv, 56,4G.

(12) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {A, B, C}
and A 75 B and B 75 C and C 75 A. Then V—Ea’AG,BG S \v/_‘va,BG7AG'

(13) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A 75 B and B 75 C and C 75 A. Then V—EIG’AG,BG S HﬁgayBG’AG.

(14) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y), and
A, B, C be partitions of Y. Suppose G is a coordinate and G = {4, B,C}
and A# B and B # C and C # A. Then V-3, ,¢ BG € V-3, 56,4G.
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC19.

The terminology and notation used in this paper have been introduced in the
following articles: [1], [2], [3], [4], and [5].

For simplicity, we adopt the following rules: Y is a non empty set, a is
an element of BVF(Y), G is a subset of PARTITIONS(Y), and A, B, C are
partitions of Y.

One can prove the following propositions:

(1) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then H—Sa,AGvBG c Elﬂﬁa,BG,AG-

(2) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C 7é A, then Vﬁaa’ACTgBG (& Elﬂﬁa,BG,AG'

(3) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then H—SGVAC{BG c vﬂﬁa,BG,AG-

(4) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then V—SQ’AG,BG c va—\a,BGvAG'

(5) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then v—\ﬂa,AGBG c EIVW,BGAG'

(6) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C 75 A, then V—BGVAG,BG S vVﬁa’BGyAG.

@ 2001 University of Bialystok
157 ISSN 1426-2630



158 SHUNICHI KOBAYASHI

(7) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C 75 A, then HvﬁmAG,BG c _‘Elva,BG7AG'
(8) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C 75 A, then V\yﬁa’Ac;’BG c _'EIVG,BG,AG'
(9) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C 75 A, then VVW,AG,BG c ﬂVga’BQAG.
(10) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C 75 A, then VvﬂmAG,BG (& _‘Elﬂa,BG,AG'
(11) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then aﬂﬂ%AG,BG c aﬁva’BGAG.
(12) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then VEL&AG,BG S HﬁvaG’AG.
(13) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C 75 A, then HvﬁmAG,BG c Hﬁva,BGAG.
(14) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C 75 A, then V\yﬁa’Ac;’BG c Hﬁva‘BG’AG.
(15) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then EIVWAG,BG & v—‘Va,BG,AG‘
(16) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then vayAG,BG S V—\VQ’BG,AG‘
(17) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C 7é A, then Vvﬂ%AG’BG S igmBG’AG.
(18) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then VvﬁmAG,BG C Vﬁga’BqAG.
(19) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then HﬂﬁmAG,BG c HﬂﬁmBG’,AG-
(21)! If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then Hvﬁa,AG,BG C Hﬂﬁa7BG,AG~
(22) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then VVW,AG,BG & E]Elﬁa7BG,AG~
(23) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C # A, then E]VWYAG,BG & vﬂm,BG,AG‘
(24) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then v\ta,AG,BG & ng7BG,AG.
(25) If G is a coordinate and G = {A4,B,C} and A # B and B # C and
C 7'5 A, then VvﬂmAG,BG & avﬂmBG,AG.
(26) If G is a coordinate and G = {A,B,C} and A # B and B # C and
C # A, then v‘dﬁmAG,BG C VvﬁmBG,AG.

!The proposition (20) has been removed.



PREDICATE CALCULUS FOR BOOLEAN VALUED ... 159

REFERENCES

Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and
quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
Konrad Raczkowski and Pawel Sadowski. Equivalence relations and classes of abstraction.
Formalized Mathematics, 1(3):441-444, 1990.

Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,
1(2):369-376, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received November 15, 1999



160 SHUNICHI KOBAYASHI



FORMALIZED MATHEMATICS

Volume 9, Number 1, 2001
University of Bialystok

Four Variable Predicate Calculus for
Boolean Valued Functions. Part 1

Shunichi Kobayashi
Ueda Multimedia Information Center
Nagano

Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC20.

The terminology and notation used here have been introduced in the following
articles: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. PRELIMINARIES

For simplicity, we follow the rules: Y is a non empty set, a is an element of
BVF(Y), G is a subset of PARTITIONS(Y), and A, B, C, D are partitions of
Y.

One can prove the following propositions:

(1) Let hbe a function and A’, B, C’, D' be sets. Suppose G = {A, B,C, D}
and A # Band A# C and A# D and B# C and B # D and C # D
and h = (B B')+(Cr=—C") (Do D)+ (A A’). Then h(A) = A’
and h(B) = B and h(C) = C" and h(D) = D'.

(2) Let A, B, C, D be sets, h be a function, and A, B’, C', D' be
sets. If h = (B——B')+-(C——C")+(D—=—D")+-(A——A’), then domh =
{A,B,C,D}.

(3) For every function h and for all sets A’, B’, C’, D' such that
G ={A,B,C,D} and h = (B—B')+:(C+—C")+-(D——D')+-(A——A')
holds rng h = {h(A), h(B),h(C),h(D)}.

@ 2001 University of Bialystok
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(4) Let z, u be elements of Y and h be a function. Suppose G is a coordinate
and G ={A,B,C,D} and A+# B and A# C and A # D and B # C and
B # D and C # D. Then EqClass(u, BA C A D) NEqClass(z, A) # 0.

(5) Let z, u be elements of Y. Suppose G is a coordinate and G =
{A,B,C,D} and A # B and A # C and A # D and B # C and
B # D and C # D and EqClass(z,C A D) = EqClass(u,C' A D). Then
EqClass(u, CompF(A, G)) N EqClass(z, CompF (B, G)) # 0.

2. FOUR VARIABLE PREDICATE CALCULUS

Next we state a number of propositions:
(6) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then Vy, ,¢,58G € Vy, ;6,4G.
(7) 1If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then Vv, ,6,8G = Vy, 6,4G.
(8) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then 3y, ,¢,8G € V3, z6,4G.
(9) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then 33, ;¢ 4G € 33, ,6,8G.

(10) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then 33, ;¢,4G = 33, ,6,8G.

(11) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A#Dand B# C and B# D and C # D, then VVG,AG,BG & ElVa,BGAG'

(12) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then Vv, ,¢,58G € 33, ;¢,4G.

(13) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B# C and B # D and C # D, then Yy, ,g,8G € V3, z6,4G.

(14) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y, ,¢.8G €
ElElﬂa,BG,AG-

(15) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then =V, ,¢ G €
HﬁvaG,AG.

(16) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V_y, ,c.BG €
Elﬂﬁa,BGAG'

(17) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then =V, ,c G €
Elﬂﬂa,BG,AG-
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(18) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V., ,6,8G €
_‘VVG’BG,AG-

(19) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Vaw,AG,BG S
_‘VVGVBG,AG‘

(20) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y, ,¢,8G €
ﬁvva,BG,AG-

(21) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y , ,¢ G €
—\Vva’BG’AG.

(22) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
ﬁvva,BG,AG-

(23) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,¢ G €
_‘VVQ’BG,AG-

(24) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then —V3,,68G €
ﬂElVa,BG,AG-

(25) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then —33 ,68G €
—ava’BG’AG.

(26) If G is a coordinate and G = {A,B,C,D} and A # C and A # D and
B #Cand B # D and C # D, then =33, ,¢, G € =33, ;4G

(27) If G is a coordinate and G = {A,B,C,D} and A # C and A # D and
B#Cand B# D and C # D, then ﬁvVa,AG,BG & ﬁvva,BG,AG-

(28) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then -3y, ,¢.8G €
_‘VVG’BG,AG-

(29) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then —V3,,6 G €
Y, pc,AG-

(30) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then —33, ,68G €
_‘VVG’BG,AG-

(31) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then =3y, ,¢,BG €
I, 56,4G.

163
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(32) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C

and A # D and B # C and B # D and C # D, then -V, ,g,58G
HﬁvaG,AG.

€

(33) If G is a coordinate and G = {A,B,C,D} and A # B and A # C

and A # D and B # C and B # D and C # D, then —33,,¢ 8G
v, pe.AG.

(34) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then =V3, ,¢ G
v_'va,BGyAG'

(35) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then —33, ,¢ G
VﬁvaG,AG.

(36) If G is a coordinate and G = {A4,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then —33,,6 8G
El—\H%BG,AG~

(37) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then -3, ,¢ G
V—EIEYBG,AG-

(38) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then =V3, ,¢ BG
Elﬂﬂa,BG,AG-

(39) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then —33,,6 8G
5...56,4G.

(40) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then =V3, ¢ G
Va., 564G

(41) If G is a coordinate and G = {A,B,C,D} and A # B and A #
and A # D and B # C and B # D and C # D, then -3, ,¢ 8G
VHW,BG,AG-
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC21.

The notation and terminology used here have been introduced in the following
papers: [1], [2], [4], [3], and [5].

For simplicity, we use the following convention: Y is a non empty set, a is
an element of BVF(Y'), G is a subset of PARTITIONS(Y), and A, B, C, D are
partitions of Y.

Next we state a number of propositions:

(1) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then —33, ,68G €
0 5G,AaG.

(2) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
VVW,BG,AG-

(3) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,¢,5G €
_'EIVaA,BGAG‘

(4) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
_Elva,BG,AG‘
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(5) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,¢,5G €
ﬁVga’BgyAG.

(6) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
_‘HSG’BG,AG‘

(7) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y, ,¢,8G €
3, 5G,AG-

(8) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V_y, ,¢8G €
HﬁVmBG,AG.

(9) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
3, 5G,4G-

(10) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,¢ G €
ElﬁVa,BG,AG'

(11) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
Vv, 56,AG.

(12) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,¢,5G €
VﬁvaG,AG.

(13) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
El‘E'a,BG,AG'

(14) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,¢,5G €
V—&LBG’,AG-

(15) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
Hﬂﬁa,BG,AG-

(16) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
El;lﬁa,BGvAG'

(17) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33, ,68G €
VHW,BG,AG-

(18) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
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and A # D and B # C and B # D and C # D, then V3, ,¢,5G €
VHWBG’,AG-

(19) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
HVﬂQ,BG,AG-

(20) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,68G €
VvﬁayBG,AG.

(21) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y , ,¢ G €
=3y, 56,4G.

(22) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,c G €
v, 5G,AG.

(23) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy_, ,g,8G €
V3, 56,4G.

(24) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,c G €
—33, 56,4G.

(25) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 33 , ,¢,8G €
3, 5G,4G-

(26) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then V3, ,¢ G €
F-vu,5G,AG.

(27) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y , ,c G €
3V, 5G,4G-

(28) If G is a coordinate and G = {4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,c G €
ELV%BG,AG-

(29) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then 3y , ,cBG €
Vv, 56,AG.

(30) If G is a coordinate and G = {A,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,g,8G €
Vv, 564G

(31) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,c G €
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ELQ(LBG?AG.

(32) If G is a coordinate and G = {A4,B,C,D} and A # B and A # C
and A # D and B # C and B # D and C # D, then Yy, ,c G €
V-3, 5G,AG.

(33) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # DandC # D,thend3 , ,¢,8G € 33, z6,4G.

(34) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # Dand C # D, thenV3 , ,¢ G € 33, ;6,4G.

(35) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # Dand C # D, then 3y , ,¢ 5G € 33, ;6,4G.

(36) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # D and C # D, then vvﬁa,AG,BG S ElEIﬁa,BG,AG-

(37) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # Dand C # D, then 3y , ,¢ 8G € V3_, z6,4G.

(38) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # D and C # D, then vVﬁa,AG,BG & VHWYBG,AG'

(39) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # Dand C # D, thenVy_, ,¢ 5G € Iv_, z6,4G.

(40) If G is a coordinate and G = {A,B,C,D} and A # B and A # C and
A# Dand B # Cand B # D and C # D, then vVﬁG,AG,BG & VVW,BG,AG'
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1. CURRYING, UNCURRYING AND COMMUTING FUNCTIONS

Let F be a function. We say that F' is uncurrying if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)(i)  For every set = such that € dom F holds z is a function yielding
function, and

(ii)  for every function f such that f € dom F holds F'(f) = uncurry f.
We say that F' is currying if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i)  For every set = such that € dom F' holds z is a function and 7 (x)
is a binary relation, and

(ii)  for every function f such that f € dom F holds F'(f) = curry f.
We say that F' is commuting if and only if the conditions (Def. 3) are satisfied.

1 This work has been supported by KBN Grant 8 T11C 018 12.
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(Def. 3)(i) For every set x such that x € dom F' holds x is a function yielding
function, and

(ii)  for every function f such that f € dom F holds F(f) = commute(f).

Let us note that every function which is empty is also uncurrying, currying,
and commuting.

Let us mention that there exists a function which is uncurrying, currying,
and commuting.

Let F' be an uncurrying function and let X be a set. Observe that F[X is
uncurrying.

Let F be a currying function and let X be a set. Note that F'[X is currying.

The following propositions are true:

(1) Let X, Y, Z, D be sets. Suppose D C (Z¥)X. Then there exists a many
sorted set F indexed by D such that F is uncurrying and rng F C ZE5Y 1,

(2) Let X,Y, Z, D be sets. Suppose D C ZiX:Y 1 Then there exists a many
sorted set F' indexed by D such that F' is currying and if if Y = (), then
X = (), then rng F' C (Z¥)X.

Let X, Y, Z be sets. Note that there exists a many sorted set indexed
by (Z¥)X which is uncurrying and there exists a many sorted set indexed by
ZEX Y which is currying.

Next we state several propositions:

(3) Let A, B be non empty sets, C be a set, and f, g be commuting functions.
If dom f C (CP)4 and rng f C dom g, then g - f = iddom f-

(4) Let B be a non empty set, A, C' be sets, f be an uncurrying function,
and g be a currying function. If dom f C (CP)4 and rng f C dom g, then
g+ f =1iddom I

(5) Let A, B, C be sets, f be a currying function, and g be an uncurrying
function. If dom f € Ct4 51 and rng f € dom g, then g - f = idgom f-

(6) For every function yielding function f and for all sets i, A such that
i € dom commute(f) holds (commute(f))(i)°A C m; f°A.

(7) Let f be a function yielding function and i, A be sets. If for every function
g such that g € f°A holds i € dom g, then 7; f°A C (commute(f))(7)°A.

(8) For all sets X, Y and for every function f such that rng f C YX and for
all sets i, A such that i € X holds (commute(f))(i)°A = m; f°A.

(9) For every function f and for all sets ¢, A such that [ A, {i}] C dom f
holds m;(curry f)°A = f°[ A, {i}].

Let X be a set and let Y be a non empty functional set. One can verify that
every function from X into Y is function yielding.

Let T be a constituted functions 1-sorted structure. Observe that the carrier
of T is functional.
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Let X be a set and let L be a non empty relational structure. One can check
that LX is constituted functions.

One can verify that there exists a lattice which is constituted functions,
complete, and strict and there exists a 1-sorted structure which is constituted
functions and non empty.

Let T be a constituted functions non empty relational structure. Note that
every non empty relational substructure of 71" is constituted functions.

Next we state four propositions:

(10) Let S, T be complete lattices, f be an idempotent map from 7" into T,
and h be a map from S into Im f. Then f-h = h.

(11) Let S be a non empty relational structure and 7', 77 be non empty
relational structures. Suppose T is a relational substructure of T7. Let f
be a map from S into T and f; be a map from S into T7. If f is monotone
and f = f1, then f; is monotone.

(12) Let S be a non empty relational structure and 7', 77 be non empty
relational structures. Suppose T' is a full relational substructure of 77.
Let f be a map from S into T and f; be a map from S into T7. If f; is
monotone and f = f;, then f is monotone.

(13) For every set X and for every subset V of X holds (Xy.x)~1({1}) =V
and (Xv.x) 1({0}) = X \ V.

2. MAPS OF POWER POSETS

Let X be a non empty set, let T' be a non empty relational structure, let f
be an element of 7%, and let 2 be an element of X. Then f(z) is an element of
T.

Next we state several propositions:

(14) Let X be a non empty set, T be a non empty relational structure, and
f, g be elements of TX. Then f < g if and only if for every element z of
X holds f(x) < g(x).
(15) Let X be aset and L, S be non empty relational structures. Suppose the
relational structure of L = the relational structure of S. Then LX = §X.
(16) Let Sy, Sa, T1, T» be non empty topological spaces. Suppose that
(i)  the topological structure of S; = the topological structure of Sy, and
(ii)  the topological structure of 77 = the topological structure of T5.
Then [Sl — Tl] = [SQ — TQ].
(17) Let X be a set. Then there exists a map f from 2& into (2L)* such that
f is isomorphic and for every subset Y of X holds f(Y) = iy, X-
(18) For every set X holds 2% and (2L)% are isomorphic.
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(19) Let X, Y be non empty sets, 7' be a non empty poset, S; be a full non
empty relational substructure of (7)Y, Sy be a full non empty relational
substructure of (TV)X, and F be a map from Sy into So. If F is commuting,
then F' is monotone.

(20) Let X, Y be non empty sets, 7' be a non empty poset, S; be a full non
empty relational substructure of (TY)X, Sy be a full non empty relatio-
nal substructure of T[:X’Y:]7 and F' be a map from S7 into So. If F' is
uncurrying, then F' is monotone.

(21) Let X, Y be non empty sets, T be a non empty poset, S; be a full non
empty relational substructure of (TY)%, Sy be a full non empty relational

EX,Y

substructure of T’ , and F' be a map from Sy into S;. If F' is currying,

then F' is monotone.

3. POSETS OF DIRECTED SUPREMA PRESERVING MAPS

Let S be a non empty relational structure and let T" be a non empty refle-
xive antisymmetric relational structure. The functor UPS(S,T') yielding a strict
relational structure is defined by the conditions (Def. 4).

(Def. 4)(i) UPS(S,T) is a full relational substructure of 7the carrier of S apq
(ii)  for every set x holds x € the carrier of UPS(S,T) iff x is a directed-
sups-preserving map from S into 7.

Let S be a non empty relational structure and let T" be a non empty refle-
xive antisymmetric relational structure. Observe that UPS(S,T) is non empty
reflexive antisymmetric and constituted functions.

Let S be a non empty relational structure and let T' be a non empty poset.
One can verify that UPS(S,T) is transitive.

We now state the proposition

(22) Let S be a non empty relational structure and 7" be a non empty reflexive
antisymmetric relational structure. Then the carrier of UPS(S,T") C (the

carrier of T)the carrier of S'

Let S be a non empty relational structure, let 7" be a non empty reflexive
antisymmetric relational structure, let f be an element of UPS(S,T'), and let s
be an element of S. Then f(s) is an element of T

Next we state three propositions:

(23) Let S be a non empty relational structure, 7" be a non empty reflexive
antisymmetric relational structure, and f, g be elements of UPS(S,T).
Then f < g if and only if for every element s of S holds f(s) < g(s).

(24) For all complete Scott top-lattices S, T holds UPS(S,T) =
SCMaps(S,T).
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(25) Let S, S" be non empty relational structures and 7', 7" be non empty
reflexive antisymmetric relational structures. Suppose that
(i)  the relational structure of S = the relational structure of S’, and
(ii)  the relational structure of T = the relational structure of 7.
Then UPS(S,T) = UPS(S’,T").
Let S, T' be complete lattices. Note that UPS(S,T) is complete.
The following propositions are true:
(26) Let S, T be complete lattices. Then UPS(S,T) is a sups-inheriting rela-
tional substructure of 7'the carrier of 5
(27) For all complete lattices S, T and for every subset A of UPS(S,T) holds
sup A = | e carsier of 5y A
Let S1, S, T1, T5 be non empty reflexive antisymmetric relational structu-
res and let f be a map from S into Sy. Let us assume that f is directed-
sups-preserving. Let g be a map from 7) into 7. Let us assume that g is
directed-sups-preserving. The functor UPS(f, g) yields a map from UPS(Ss, T7)
into UPS(S1,T%) and is defined by:

(Def. 5) For every directed-sups-preserving map h from Sy into 77 holds
(UPS(f,9))(h) =g-h- [
Next we state a number of propositions:

(28) Let Si, Sa, S3, Th, T, T3 be non empty posets, fi be a directed-sups-
preserving map from Ss into S3, fo be a directed-sups-preserving map from
S1 into Sa, g1 be a directed-sups-preserving map from 77 into Tb, and go
be a directed-sups-preserving map from 75 into 75. Then UPS(f2, g2) -
UPS(f1,91) = UPS(f1- f2,92 - g1)-

(29) For all non empty reflexive antisymmetric relational structures S, T
holds UPS(ldS, ldT) = idUPS(S,T)'

(30) Let Sy, So, T1, T> be complete lattices, f be a directed-sups-preserving
map from S; into So, and g be a directed-sups-preserving map from T3
into Ty. Then UPS(f, g) is directed-sups-preserving.

(31) Q(the Sierpinski space) is Scott.

(32) For every complete Scott top-lattice S holds [S — the Sierpinski space] =
UPS(S, 2%).

(33) Let S be a complete lattice. Then there exists a map F from UPS(S,2%)
into (0(S),C) such that F is isomorphic and for every directed-sups-
preserving map f from S into 2% holds F(f) = f~1({1}).

(34) For every complete lattice S holds UPS(S,2%) and ((S), C) are isomor-
phic. -

(35) Let Sy, Sa, T1, T» be complete lattices, f be a map from S; into Sa, and
g be a map from T3 into T5. If f is isomorphic and g is isomorphic, then
UPS(f, g) is isomorphic.
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(36) Let Sy, So, Th, T5 be complete lattices. Suppose S; and Sy are isomorphic
and 77 and Tb are isomorphic. Then UPS(S2,77) and UPS(S1,T») are
isomorphic.

(37) Let S, T be complete lattices and f be a directed-sups-preserving pro-
jection map from 7T into 7. Then Im UPS(idg, f) = UPS(S, Im f).

(38) Let X be a non empty set, S, T be non empty posets, f be a directed-
sups-preserving map from S into 7%, and i be an element of X. Then
(commute(f))(i) is a directed-sups-preserving map from S into 7.

(39) Let X be anon empty set, S, T be non empty posets, and f be a directed-
sups-preserving map from S into T’ X Then commute( f) is a function from
X into the carrier of UPS(S,T).

(40) Let X be a non empty set, S, T be non empty posets, and f be a
function from X into the carrier of UPS(S,T). Then commute(f) is a
directed-sups-preserving map from S into 7.

(41) For every non empty set X and for all non empty posets S, T holds there
exists a map from UPS(S,TX) into UPS(S, T')X which is commuting and
isomorphic.

(42) For every non empty set X and for all non empty posets S, T holds
UPS(S,T%) and (UPS(S,T))* are isomorphic.

(43) For all continuous complete lattices S, T holds UPS(S, T) is continuous.

(44) For all algebraic complete lattices S, T holds UPS(S,T) is algebraic.

(45) Let R, S, T be complete lattices and f be a directed-sups-preserving
map from R into UPS(S,T). Then uncurry f is a directed-sups-preserving
map from [ R, S{into 7.

(46) Let R, S, T be complete lattices and f be a directed-sups-preserving

map from [ R, S ] into 7. Then curry f is a directed-sups-preserving map
from R into UPS(S,T).

(47) For all complete lattices R, S, T holds there exists a map from
UPS(R,UPS(S,T)) into UPS( R, S ],T) which is uncurrying and isomor-
phic.
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The articles [11], [2], [1], [9], [3], [4], [5], [12], [6], [7], [10], and [8] provide the
terminology and notation for this paper.

1. DEFINITIONS OF COMPLEX FUNCTIONS

For simplicity, we adopt the following convention: X, Y are sets, C' is a non
empty set, ¢ is an element of C, f, fi, fo, f3, ¢, g1 are partial functions from C
to C, p is a real number, and r, g are elements of C.

A Complex is an element of C.

Let us consider C, f1, fo. The functor % yields a partial function from C to
C and is defined as follows:

(Def. 1) dom(%) = dom f; N (dom f2 \ f2=1({0c})) and for every c such that

ce dom(%) holds (%)c = (fi)e ((f2)e) "

Let us consider C, f. The functor % yields a partial function from C to C

and is defined by:

(Def. 2) dom(%) =dom f\ f71({0Oc}) and for every c such that ¢ € dom(%) holds
(%)c = (fc)_l'
Next we state a number of propositions:
@ 2001 University of Bialystok
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(3)! dom(f; + fo) = dom f; Ndom f5 and for every c such that ¢ € dom(f; +
f2) holds (f1 + f2)e = (f1)e + (f2)e-

(4) dom(f1—f2) = dom fyNdom fy and for every ¢ such that ¢ € dom(f1— f2)
holds (f1 — f2)e = (f1)e — (f2)e-

(5) dom(fi f2) = dom f; N'dom fo and for every ¢ such that ¢ € dom(f1 f2)
holds (fl f2)e = (fi)e- (f2)e-

(6) dom( *) = dom f1 N (dom f3 \ f2=1({0c})) and for every c such that
ce dom(fl) holds (£)e = (f1)e - ((f2)e) ™

(7) dom(r f) = dom f and for every ¢ such that ¢ € dom(r f) holds (r f). =
r- fe.

(9)2 dom(—f) = dom f and for every ¢ such that ¢ € dom(—f) holds (—f). =

*fc-
(10) dom(%) = dom f\ f~1({Oc}) and for every c such that c € dom(%) holds
(%)c = (fe)” .

(15)* dom(;) C domg and domgn (domg\ g~'({0c})) = domg\ g~ ({Oc}).

(16) dom(f1 f2) \ (fi 2)7'({0c}) = (domfi \ f1i'({Oc})) N (dom fo \
'({0c}))-
If ce dom(%), then f. # Oc.
)

(17)
(18) (3)'({0c}h) =

(19) 171 ({0}) = f~'({0c}) and (= f)~'({0c}) = f~1({0c}).
(20) dom(é) = dom(f[dom(%)).

(21)

It r # O, then (r f)~1({0¢}) = £~ ({0¢})-

2. BASIC PROPERTIES OF OPERATIONS

The following propositions are true:

(22) (fitfo)+fs=fi+(fatf3)
(23) (f1f2) fs=fi(f2 f3).

(24) (it fo)fs=frifs+ fafs
(25) fa(fi+fo)=fsfitf3fa
(26) 7 (f1f2)=(rf1)f2

(27) r(fif2) = fi(r f2).

(28) (fi—fa)fa=frifs— fafs

!The propositions (1) and (2) have been removed.
2The proposition (8) has been removed.
3The propositions (11)—(14) have been removed.
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3 f1— f3 fa = f3(f1 — fo).
r(fi+fo)=rfi+rfo
(r-q)f=r(qf)
r(fi—fo) =1 fi—1fo
fi = fa=(=1c) (fa — f1)-

fi—=(fe+f3)=fi—fo—fs

Icf=1/.

fi=(fe=f3)=(fi—f2) + fs.
fi+(fe—f3) = (fi + f2) — fs.

|f1 fal = [fal | fol-

Ir fI = Ir[f].
—f=(1)f
—f=1r
i—fe=fH+—f
fi——fe=fi+ fo
é:f[dom(%).
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L f(g1ldom(L))
(61) ?Zigfl 91
1
H o fig—af
(62) f g fg -
f 7|
(63) |5l =1

(64) (fi+f)IX = fil X+fol X and (fi+f2) [ X = fi] X+ foand (fi+f2)[X
fi+ folX

(65) (f1 fz)fX = ([11X) (f2IX) and (f1 fo)IX = (f11X) f2 and (f1 f2)[X =

f1(fal X).
(66) (—f)IX = —f1X and 31X = 7L and [f]X = |f]X].

(67) (L—f)IX = (I X=fal X and (fi—fo)[X = fil X—foand (fi—f2) [ X =

fi— fol X
(68) %[X:fXand X = LK and L1x = 4/

T2
(69) (r f)IX =r(fIX).

f2f

3. TOTAL PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX

We now state a number of propositions:
(70)(1)  f1 is total and fs is total iff f; + fo is total,
(ii)  fi is total and fo is total iff f; — fo is total, and
(iii)  fi is total and fo is total iff fi fo is total.

(71)  f is total iff r f is total.

(72) f is total iff —f is total.

(73) f is total iff | f] is total.

(74) % is total iff f~1({Oc}) = 0 and f is total.

(75) f1 is total and fo~'({Oc}) = 0 and f5 is total iff % is total.

(76) If f1 is total and f3 is total, then (f1+f2)c = (f1)c+(f2)c and (f1—f2)c =

(f1)e = (f2)e and (f1 f2)e = (f1)e - (f2)e-
If f is total, then (r f). =r- fe.

(77)
(78) If f is total, then (—f). = —f. and |f|(c) = | fc|-
(79) If 1 is total, then( Ye = (fo)~ L

(80)

If f1 is total and = 7 s total, then ( )C = (f1)e- ((f2)e)!
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4. BOUNDED AND CONSTANT PARTIAL FUNCTIONS FROM A DOMAIN, TO
COMPLEX

Let us consider C, f, Y. We say that f is bounded on Y if and only if:
(Def. 3) |f| is bounded on Y.
The following propositions are true:

(81) f is bounded on Y iff there exists a real number p such that for every ¢
such that ¢ € Y Ndom f holds |f.| < p.

If Y C X and f is bounded on X, then f is bounded on Y.
If X Ndom f = (), then f is bounded on X.
If f is bounded on Y, then r f is bounded on Y.

(82
(83
(84
(
(

~— — ~— ~— ~—

85) |f| is lower bounded on X.

86) If f is bounded on Y, then |f| is bounded on Y and —f is bounded on
Y.

(87) If f1 is bounded on X and fy is bounded on Y, then f; + fa is bounded
on X NY.

(88) If f1 is bounded on X and f5 is bounded on Y, then fi f5 is bounded on
XNY and f; — fo is bounded on X NY.

(89) 1If f is bounded on X and bounded on Y, then f is bounded on X UY.

(90) Suppose fi is a constant on X and f5 is a constant on Y. Then f; + fo
is a constant on X NY and f; — fy is a constant on X NY and f; fo is a
constant on X NY.

(91) If f is a constant on Y, then ¢ f is a constant on Y.

(92) If f is a constant on Y, then |f]| is a constant on Y and — f is a constant
onY.

(93) If f is a constant on Y, then f is bounded on Y.

(94) If f is a constant on Y, then for every r holds r f is bounded on Y and
—f is bounded on Y and |f| is bounded on Y.

(95) If f; is bounded on X and fs is a constant on Y, then f; + fo is bounded
on X NY.

(96) Suppose fi is bounded on X and f5 is a constant on Y. Then f; — fo is
bounded on X NY and fs — f; is bounded on X NY and f; f5 is bounded
on X NY.
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Summary. This article introduces properties of complex sequence and
continuity of complex function. The first section shows convergence of complex
sequence and constant complex sequence. In the next section, definition of con-
tinuity of complex function and properties of continuous complex function are
shown.

MML Identifier: CFCONT_1.

The papers [14]7 [8]a [3]7 [1}7 [9]7 [10]7 [12]7 [4]7 [5]7 [2]7 [6]7 [15]7 [16]7 [7]? [13]7 and
[11] provide the notation and terminology for this paper.

1. COMPLEX SEQUENCE

For simplicity, we adopt the following rules: n, m, k denote natural numbers,
x denotes a set, X, X denote sets, g, xg, x1, x2 denote elements of C, s1, s3,
s3, S84, S5, S¢ denote complex sequences, Y denotes a subset of C, f, f1, fo, h,
h1, he denote partial functions from C to C, r, s denote real numbers, and Ny
denotes an increasing sequence of naturals.

Let us consider h, s3. Let us assume that rng s3 C dom h. The functor A - s
yielding a complex sequence is defined by:

(Def. 1) h-s3 = (h qua function) -(s3).

Let us consider f, zg. We say that f is continuous in xzg if and only if:
(Def. 2) xg € dom f and for every s; such that rng s; C dom f and s; is conver-
gent and lim s; = xo holds f - s1 is convergent and f,, = lim(f - s1).
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One can prove the following propositions:

(2)} 54 = s5 — sg iff for every n holds s4(n) = s5(n) — s¢(n).

(3) mg(ssTn)C mgss.

(4) If rng s3 C dom f, then s3(n) € dom f.

(5) x € rng s3 iff there exists n such that = = s3(n).

(6) s3(n) € rng ss.

(7) If s4 is a subsequence of s3, then rng sy C rng ss.

(8) If s4 is a subsequence of s3 and s3 is non-zero, then s is non-zero.

(9) (s4+ s5) N1 = s4 N1 + s5 N1 and (s4 — s5) N1 = s4 N1 — s5 N7 and

(s4 85) N1 = 84 N1 (85 N7).
(9s3) N1 = g (s3 N1).
(—s3) Ny = —s3 N1 and |s3| - N1 = |s3 Nq|.
(s3 N1)~t = 5371 Ny,
(s4/s3) N1 = (s4 N1)/(s3 N1).
If for every n holds s3(n) € Y, then rngss C Y.

[ N =
w N = O

—
(@)

If rng s3 C dom h, then h - s3 = (h qua function) -(s3).

If rng s3 C dom f, then (f - s3)(n) = fs,(n)-

If rng s3 C dom f, then (f -s3) Tn=f-(s3Tn).

If rng s3 C dom hy N dom ha, then (hy + hg) - s3 = hy - s3 + hg - s3 and
(h1 — hg) - s3 = hy - s3 — hg - s3 and (hy he) - s3 = (hy - s3) (ha - $3).

[E——
N O

AA/_\A/_\/_\/_\/_\/_\
[ [
M~ N — ~— — ~— ~— ~—

(19) If rngss C domh, then (gh)-s3 =g (h- s3).

(20) If rng s3 C domh, then —h - s3 = (—h) - s3.

(21) If rgss C dom(3), then k- s3 is non-zero.

(22) If rngss C dom(4), then + - s3 = (h-s3)~".

(23) If rng s3 C dom h, then R((h - s3) N1) = R(h - (s3 N1)).

(24) If rng s3 C dom h, then S((h - s3) N1) = S(h - (s3 N1)).

(25) If rngss C domh, then (h - s3) Ny = h - (s3 Ny).

(26) Ifrngss C dom h and sj is a subsequence of s4, then h-s5 is a subsequence

of h - sy.

(27) If his total, then (h - s3)(n) = hgy(n)-

(28) If h is total, then h- (s3 Tn) = (h-s3) ] n.

(29) If hy is total and ho is total, then (hi + ha) - s3 = hy - S3 + ha - s3 and
(h1 — hg) - s3 = hy - s3 — ha - s3 and (hy ha) - s3 = (h1 - s3) (ha - s3).

(30) If h is total, then (gh)-s3 =g (h-s3).

(31) If rngss C dom(h|X), then (h[X)-s3=h-ss.

!The proposition (1) has been removed.
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(32) If rngssz C dom(h[X) and if rng s3 € dom(h[Y) or X C Y, then (h[X) -

S§3 = (h[Y) + 83.
(33) If rngss C dom(h|X) and h='({0c}) = 0, then (+]X) - s3 = ((h]X) -
53)_1.

Let f be a function. We say that f is constant if and only if:
(Def. 3) For all sets nj, ng such that ny € dom f and ny € dom f holds f(ny) =
f(n2).
Let us consider s3. Let us observe that s3 is constant if and only if:
(Def. 4) There exists g such that for every n holds s3(n) = g.

Next we state a number of propositions:

w
=~

s3 is constant iff there exists g such that rngss = {g}.

w
ot

sg is constant iff for every n holds s3(n) = s3(n + 1).

W
(=)

sg is constant iff for all n, k holds s3(n) = s3(n + k).

w
S|

sg is constant iff for all n, m holds s3(n) = s3(m).

w
co

s3 T k is a subsequence of s3.

w
=)

If s4 is a subsequence of s3 and s3 is convergent, then s4 is convergent.

N
o

If s4 is a subsequence of s3 and s3 is convergent, then lim s4 = lim s3.

o~ o~ o~ o~ o~ o~ o~ o~

—_
~— — ' N~ — — —

If s3 is convergent and there exists k such that for every n such that
k < n holds s4(n) = s3(n), then s4 is convergent.
(42) 1If s is convergent and there exists k such that for every n such that
k < mn holds s4(n) = s3(n), then lim s3 = lim s4.
(43) If s3 is convergent, then s3 T k is convergent and lim(sg T k) = lim s3.

(44) 1If s3 is convergent and there exists k such that s3 = s4 1 k, then sy is
convergent.

(45) If s3 is convergent and there exists k such that s3 = s4 Tk, then lim s4 =
lim s3.

(46) If s3 is convergent and lim s3 # Oc, then there exists k such that s3 T k
1S non-zero.

(47) 1If s3 is convergent and limss # Oc, then there exists s4 which is a
subsequence of s3 and non-zero.

(48) If s is constant, then s3 is convergent.

(49) 1If s3 is constant and g € rng s3 or s3 is constant and there exists n such
that s3(n) = g, then lim sg = g.

(50) If s3 is constant, then for every n holds lim s3 = s3(n).

(51) If s3 is convergent and lim sg # Oc, then for every s4 such that s4 is a
subsequence of s3 and non-zero holds lim(s;~!) = (lim s3) .

(52) If s3 is constant and s4 is convergent, then lim(ss + s4) = s3(0) + lim s4
and lim(sz — s4) = s3(0) — lims4 and lim(sg — s3) = limsy — s3(0) and
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lim(s3 s4) = s3(0) - lim s4.
The scheme CompSeqChoice concerns and states that:
There exists s; such that for every n holds P[n, s1(n)]
provided the following condition is satisfied:
e For every n there exists g such that P[n, g].

2. CONTINUITY OF COMPLEX SEQUENCE

We now state several propositions:
(53) f is continuous in xq if and only if the following conditions are satisfied:
(i) o € dom f, and
(ii)  for every s1 such that rng s; C dom f and s; is convergent and lim s1 =
xo and for every n holds s;(n) # o holds f - s; is convergent and f, =
Hm(f - s1).
(54) f is continuous in x¢ if and only if the following conditions are satisfied:
(i) o € dom f, and
(ii)  for every r such that 0 < r there exists s such that 0 < s and for every
x1 such that x1 € dom f and |z — 20| < s holds |fz, — faol < 7
(55) Suppose fi is continuous in zg and fy is continuous in zg. Then fi + fo
is continuous in zg and f; — fs is continuous in zg and f; fo is continuous
in xg.
(56) If f is continuous in xg, then g f is continuous in x.
(57) If f is continuous in xg, then —f is continuous in zg.
(58) If f is continuous in z¢ and fy, # Oc, then % is continuous in xg.
(59) If f1 is continuous in z¢ and (f1)s, 7 Oc and f3 is continuous in zp, then

% is continuous in xg.

Let us consider f, X. We say that f is continuous on X if and only if:
(Def. 5) X C dom f and for every zp such that zp € X holds f]X is continuous
in xg.
One can prove the following propositions:
(60) Let given X, f. Then f is continuous on X if and only if the following
conditions are satisfied:
(i) X Cdom f, and
(ii)  for every s; such that rngs; C X and s is convergent and lims; € X
holds f - s; is convergent and fiims, = im(f - s1).
(61) f is continuous on X if and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii) for all zg, r such that zp € X and 0 < r there exists s such that 0 < s
and for every x; such that 1 € X and |21 — x| < s holds | fo, — fa,| < 7.
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(62) f is continuous on X iff f[X is continuous on X.

(63) If f is continuous on X and X; C X, then f is continuous on Xj.
(64)

(65)

65

If o € dom f, then f is continuous on {xg}.

Let given X, f1, fo. Suppose fi is continuous on X and f> is continuous
on X. Then f; 4+ fo is continuous on X and f; — fo is continuous on X
and f1 fo is continuous on X.

(66) Let given X, X1, f1, fo. Suppose fi is continuous on X and fs is continu-
ous on Xi. Then f; + fs is continuous on X N X7 and f; — fs is continuous
on X N X7 and fy fo is continuous on X N Xj.

(67) For all g, X, f such that f is continuous on X holds ¢ f is continuous
on X.

(68) If f is continuous on X, then —f is continuous on X.
(69) If f is continuous on X and f~({0c}) = 0, then % is continuous on X.

(70) If f is continuous on X and (f[X)~'({0c}) = 0, then % is continuous
on X.

(71) If f1 is continuous on X and f1~1({Oc}) = 0 and f» is continuous on X,
then % is continuous on X.

(72) If f is total and for all z1, x2 holds fy, 4z, = fz, + fz, and there exists
xo such that f is continuous in g, then f is continuous on C.

Let us consider X. We say that X is compact if and only if:

(Def. 6) For every s; such that rngs; C X there exists sy such that s is a
subsequence of s; and convergent and lim sy € X.

One can prove the following propositions:

(73) For every f such that dom f is compact and f is continuous on dom f
holds rng f is compact.

(74) If Y C dom f and Y is compact and f is continuous on Y, then f°Y is
compact.
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Summary. The goal of this article is to prove a scalar multiplicity of
Riemann definite integral. Therefore, we defined a scalar product to the subset
of real space, and we proved some relating lemmas. At last, we proved a scalar
multiplicity of Riemann definite integral. As a result, a linearity of Riemann
definite integral was proven by unifying the previous article [7].

MML Identifier: INTEGRA2.

The papers [2], [6], 3], [7], [13], [1], [4], [14], [5], [8], [16], [12], [10], [11], [9], and
[15] provide the notation and terminology for this paper.

1. LEMMAS OF FINITE SEQUENCE

We adopt the following rules: r, x, y are real numbers, ¢, j are natural
numbers, and p is a finite sequence of elements of R.
The following proposition is true
(1) For every closed-interval subset A of R and for every z holds z € A iff
inf A<z and z < sup A.
Let I be a finite sequence of elements of R. We say that I; is non-decreasing
if and only if the condition (Def. 1) is satisfied.
(Def. 1) Let n be a natural number. Suppose n € dom I; and n+1 € dom ;. Let
r, s be real numbers. If r = I1(n) and s = I1(n + 1), then r < s.
One can verify that there exists a finite sequence of elements of R which is
non-decreasing.
The following three propositions are true:
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(2) Let p be a non-decreasing finite sequence of elements of R and given i,
j.If i € domp and j € domp and i < j, then p(i) < p(j).

(3) Let given p. Then there exists a non-decreasing finite sequence q of ele-
ments of R such that p and ¢ are fiberwise equipotent.

(4) Let D be a non empty set, f be a finite sequence of elements of D, and
k1, ko, k3 be natural numbers. If 1 < k1 and k3 < len f and k1 < ko and
ko < k3, then (mid(f, k1,k2)) ~ mid(f, k2 + 1, k3) = mid(f, k1, k3).

2. SCALAR PRODUCT OF REAL SUBSET

Let X be a subset of R and let r be a real number. The functor 7 - X yields
a subset of R and is defined as follows:

(Def. 2) r- X ={r-z:2zeX}.
The following propositions are true:

(5) Let X,Y be non empty sets and f be a partial function from X to R. If
f is upper bounded on X and Y C X, then f[Y is upper bounded on Y.

(6) Let X, Y be non empty sets and f be a partial function from X to R.
If f is lower bounded on X and Y C X, then f[Y is lower bounded on Y.

(7) For every non empty subset X of R holds r - X is non empty.
(8) For every subset X of Rholds - X = {r-z:2 € X}.

(9) For every non empty subset X of R such that X is upper bounded and
0 < 7 holds r - X is upper bounded.

(10) For every non empty subset X of R such that X is upper bounded and
r < 0 holds - X is lower bounded.

(11) For every non empty subset X of R such that X is lower bounded and
0 < r holds r - X is lower bounded.

(12) For every non empty subset X of R such that X is lower bounded and
r < 0 holds r - X is upper bounded.

(13) For every non empty subset X of R such that X is upper bounded and
0 < 7 holds sup(r - X) = r - sup X.

(14) For every non empty subset X of R such that X is upper bounded and
r < 0 holds inf(r - X) =r-sup X.

(15) For every non empty subset X of R such that X is lower bounded and
0 < r holds inf(r - X) = r - inf X.

(16) For every non empty subset X of R such that X is lower bounded and
r < 0 holds sup(r - X) = r - inf X.
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3. SCALAR MULTIPLE OF INTEGRAL

The following propositions are true:

(17) For every non empty set X and for every partial function f from X to
R such that f is total holds rng(r f) = r - rng f.

(18) For all non empty sets X, Z and for every partial function f from X to
R holds rng(r (f1Z)) = r - rng(f2).

(19) Let A be a closed-interval subset of R, f be a partial function from A
to R, and D be an element of divs A. If f is total and bounded on A and
r > 0, then (upper_sum_setr f)(D) > r - infrng f - vol(A).

(20) Let A be a closed-interval subset of R, f be a partial function from A
to R, and D be an element of divs A. If f is total and bounded on A and
r < 0, then (upper_sum setr f)(D) > r - suprng f - vol(A).

(21) Let A be a closed-interval subset of R, f be a partial function from A
to R, and D be an element of divs A. If f is total and bounded on A and
r > 0, then (lower_sum_setr f)(D) < r-suprng f - vol(A).

(22) Let A be a closed-interval subset of R, f be a partial function from A
to R, and D be an element of divs A. If f is total and bounded on A and
r < 0, then (lower_sum_setr f)(D) < r-infrng f - vol(A).

(23) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, D be an element of .S, and given i.
Suppose i € Seglen D and f is upper bounded on A and total and r > 0.
Then (upper_volume(r f, D))(i) = r - (upper_volume( f, D))(7).

(24) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, D be an element of S, and given 1.
Suppose i € Seglen D and f is upper bounded on A and total and r < 0.

Then (lower_volume(r f, D)) (i) = r - (upper_volume(f, D))(%).

(25) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, D be an element of S, and given 1.
Suppose i € Seglen D and f is lower bounded on A and total and r > 0.
Then (lower_volume(r f, D)) (i) = r - (lower_volume( f, D))(z).

(26) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, D be an element of .S, and given i.

Suppose i € Seglen D and f is lower bounded on A and total and r < 0.
Then (upper_volume(r f, D))(i) = r - (lower_volume(f, D))(%).

(27) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f
is upper bounded on A and total and r > 0, then upper_sum(r f, D) =
r - upper_sum( f, D).
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(28) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f
is upper bounded on A and total and r < 0, then lower_sum(r f, D) =
r - upper_sum(f, D).

(29) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f
is lower bounded on A and total and r > 0, then lower_sum(r f, D) =
r - lower_sum(f, D).

(30) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f
is lower bounded on A and total and r < 0, then upper_sum(r f, D) =
r - lower_sum(f, D).

(31) Let A be a closed-interval subset of R and f be a partial function from
A to R. Suppose f is total and bounded on A and f is integrable on A.
Then r f is integrable on A and integralr f = r - integral f.

4. MONOTONEITY OF INTEGRAL

One can prove the following propositions:

(32) Let A be a closed-interval subset of R and f be a partial function from
A to R. Suppose f is total and bounded on A and f is integrable on A
and for every z such that z € A holds f(x) > 0. Then integral f > 0.

(33) Let A be a closed-interval subset of R and f, g be partial functions from
A to R. Suppose that

(i)  f is total and bounded on A,
(ii)  f is integrable on A,
(iii) g is total and bounded on A, and

(iv) g is integrable on A.

Then f — g is integrable on A and integral f — g = integral f — integral g.

(34) Let A be a closed-interval subset of R and f, g be partial functions from

A to R. Suppose that

f is total and bounded on A,

f is integrable on A,

g is integrable on A, and
for every x such that x € A holds f(z) > g(z).
Then integral f > integral g.

)
)
(iii) g is total and bounded on A,
)
)
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5. DEFINITION OF DIVISION SEQUENCE

Next we state two propositions:

(35) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is total and bounded on A, then rng upper_sum_set f is lower
bounded.

(36) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is total and bounded on A, then rng lower_sum_set f is upper
bounded.

Let A be a closed-interval subset of R. A DivSequence of A is a function
from N into divs A.

Let A be a closed-interval subset of R and let T be a DivSequence of A. The
functor d7 yielding a sequence of real numbers is defined by:

(Def. 3) For every i holds 07 (i) = dp(-
Let A be a closed-interval subset of R, let f be a partial function from A

to R, and let T" be a DivSequence of A. The functor upper_sum(f,T) yields a
sequence of real numbers and is defined by:
(Def. 4) For every i holds (upper_sum(f,T"))(i) = upper_sum(f,7(7)).
The functor lower_sum(f, T) yields a sequence of real numbers and is defined as
follows:
(Def. 5) For every i holds (lower_sum(f,T))(i) = lower_sum(f, T(7)).
The following propositions are true:
(37) Let A be a closed-interval subset of R and Dj, Dy be elements of divs A.
If D1 < D, then for every j such that j € dom Dy there exists ¢ such that
i € dom D; and divset(Dag, 7) C divset(D1,1).
(38) For all finite non empty subsets X, Y of R such that X C Y holds
max X < maxY.
(39) For all finite non empty subsets X, Y of R such that there exists y such
that y € Y and max X < y holds max X < maxY.
(40) For all closed-interval subsets A, B of R such that A C B holds vol(A4) <
vol(B).
(41) For every closed-interval subset A of R and for all elements Dy, Da of
divs A such that Dy < D3 holds 6(p,) > d(p,)-
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Summary. In this article, we have proved the Darboux’s theorem. This
theorem is important to prove the Riemann integrability. We can replace an
upper bound and a lower bound of a function which is the definition of Riemann
integration with convergence of sequence by Darboux’s theorem.

MML Identifier: INTEGRAS.

The articles [18], [14], [1], [2], [3], [12], [7], [8], [13], [4], [6], [9], [19], [11], [5], [10],
[15], [17], and [16] provide the notation and terminology for this paper.

1. LEMMAS OF DIVISION

We adopt the following convention: z, y are real numbers, ¢, j, k are natural
numbers, and p, q are finite sequences of elements of R.
The following propositions are true:

(1) Let A be a closed-interval subset of R and D be an element of divs A. If
vol(A) # 0, then there exists ¢ such that ¢ € dom D and vol(divset(D, 1)) >
0.

(2) Let A be a closed-interval subset of R, D be an element of divs A, and
given z. If x € A, then there exists j such that j € dom D and = €
divset(D, 7).

(3) Let A be a closed-interval subset of R and D1, D2 be elements of divs A.
Then there exists an element D of divs A such that D; < D and Dy < D
and rng D = rng D1 Urng Ds.
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(4) Let A be a closed-interval subset of R and D, D; be elements of divs A.
Suppose 0(p,) < minrngupper_volume(X4, 4, D). Let given x, y, i. If i €
dom D; and z € rng D N divset(Dy,) and y € rng D N divset(Dy, 1), then
x=y.

(5) For all p, g such that rngp = rng ¢ and p is increasing and ¢ is increasing
holds p = gq.

(6) Let A be a closed-interval subset of R, D, D; be elements of divs A, and
given ¢, j. Suppose D < D; and i € dom D and j € dom D and ¢ < j.
Then indx(D;, D,i) < indx(D1, D, j) and indx(Dq, D,i) € dom D; and
indx(Dy, D, j) € dom Dj.

(7) Let A be a closed-interval subset of R, D, D; be elements of divs A, and
given ¢, j. Suppose D < D; and i € dom D and j € dom D and ¢ < j.
Then indx(Di, D,i) < indx(Di, D, j) and indx(D;,D,i) € dom Dy and
indx(Dy, D, j) € dom Dj.

(8) For every closed-interval subset A of R and for every element D of divs A
holds 6p > 0.

(9) Let A be a closed-interval subset of R, g be a partial function from A to R,
D1, Dy be elements of divs A, and given . Suppose x € divset(D;,len Dy)
and len D; > 2 and D; < D9 and rng Dy = rng D1 U{z} and g is total and
bounded on A. Then ) lower_volume(g, D2) — > lower_volume(g, D) <
(suprng g — infrngg) - d(p,)-

(10) Let A be a closed-interval subset of R, g be a partial function from A to R,
D1, Dy be elements of divs A, and given z. Suppose x € divset(D1,len Dy)
and len D; > 2 and D; < D9 and rng Dy = rng D1 U{z} and g is total and
bounded on A. Then ) upper_volume(g, D;) — > upper_volume(g, D2) <
(suprng g —infrngg) - §p,)-

(11) Let A be a closed-interval subset of R, D be an element of divs A, r
be a real number, and 7, 7 be natural numbers. Suppose ¢ € dom D
and j € domD and i < j and r < (mid(D,%,5))(1). Then there exi-
sts a closed-interval subset B of R such that r = inf B and supB =
(mid(D, i,7))(lenmid(D,i,5)) and lenmid(D,i,5) = (j — i) + 1 and
mid(D,,7) is a DivisionPoint of B.

(12) Let A be a closed-interval subset of R, f be a partial function
from A to R, Di, Dy be elements of divs A, and given z. Suppose
x € divset(Dy,len D) and vol(A) # 0 and Dy < Ds and rng Dy =
rng D1 U {z} and f is total and bounded on A and x > inf A. Then
> lower_volume( f, D) — > lower_volume( f, D) < (suprng f —inf rng f)-
O(Dy)-

(13) Let A be a closed-interval subset of R, f be a partial function
from A to R, Di, Dy be elements of divs A, and given z. Suppose
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x € divset(Di,len Dq) and vol(A) # 0 and D; < Dy and rng Dy =
rng D; U {z} and f is total and bounded on A and = > inf A. Then
> upper_volume( f, D;)—>  upper_volume( f, D2) < (suprng f—inf rng f)-
O(Dy)-

(14) Let A be a closed-interval subset of R, Dj;, Ds be elements of
divs A, r be a real number, and ¢, j be natural numbers. Suppose
i € domD; and j € domD; and ¢ < j and D; < Dy and
r < (mid(D2,indx(Ds2, D1,1),indx(D2, D1,7)))(1). Then there exists a
closed-interval subset B of R and there exist elements Mj, Ms of
divs B such that r = inf B and supB = Mjy(len Ms) and supB =
Mi(len M;) and M; < My and M; = mid(Di,4,j) and My =
mid(DQ, indX(DQ, Dl, i), indX(DQ, Dl, j))

(15) Let A be a closed-interval subset of R, D be an element of divs 4, and
given z. If x € rng D, then D(1) < z and < D(len D).

(16) Let p be a finite sequence of elements of R and given i, j, k. Suppose p
is increasing and ¢ € domp and j € domp and k € domp and p(i) < p(k)
and p(k) < p(j). Then p(k) € rngmid(p, i, j).

(17) Let A be a closed-interval subset of R, f be a partial function from A to
R, D be an element of divs A, and given ¢. If f is total and bounded on A
and i € dom D, then inf rng(f] divset(D,)) < suprng f.

(18) Let A be a closed-interval subset of R, f be a partial function from A to
R, D be an element of divs A, and given 4. If f is total and bounded on A
and i € dom D, then suprng(f[divset(D,)) > infrng f.

2. DARBOUX’S THEOREM

The following two propositions are true:

(19) Let A be a closed-interval subset of R, f be a partial function from A to
R, and T be a DivSequence of A. Suppose f is total and bounded on A and
d7 is convergent to 0 and vol(A) # 0. Then lower_sum(f,T') is convergent
and lim lower_sum( f, T') = lower_integral f.

(20) Let A be a closed-interval subset of R, f be a partial function from A
to R, and T be a DivSequence of A. Suppose f is total and bounded on
A and 67 is convergent to 0 and vol(A4) # 0. Then upper_sum(f,T) is
convergent and lim upper_sum(f,T) = upper_integral f.
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.
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The terminology and notation used here have been introduced in the following
articles: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. PRELIMINARIES

For simplicity, we follow the rules: Y denotes a non empty set, a denotes an
element of BVF(Y'), G denotes a subset of PARTITIONS(Y), and A, B, C, D,
FE denote partitions of Y.

One can prove the following propositions:

(1) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # E. Then CompF(A,G) = BANCADAE.

(2) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # E. Then CompF(B,G) =ANCANDANE.
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(3) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A#Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # E. Then CompF(C,G) = AANBADAE.

(4) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# FEand B# C and B# D and B # E and C # D and
C # FE and D # E. Then CompF(D,G) = AANBACAE.

(5) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # E. Then CompF(E,G) = AANBACAD.

(6) Let A, B, C, D, E be sets, h be a function, and A’, B', C', D', E' be
sets. Suppose A # B and A # C and A # D and A # F and B # C
and B# Dand B# Fand C # D and C # F and D # F and h =
(B——B')+-(C—C")+-(D——D')+-(E——E')+-(A——A’). Then h(A) =
A" and h(B) = B" and h(C) = C" and h(D) = D" and h(F) = FE'.

(7) Let A, B, C, D, E be sets, h be a function, and A’, B, C', D', E’
be sets. Suppose A # B and A # C and A # D and A # FE and
B#Cand B# Dand B# Fand C # D and C # F and D # FE
and h = (B—DB')+-(C——C")+-(D——D")+-(E——FE')+-(A——A"). Then
domh ={A,B,C,D, E}.

(8) Let A, B, C, D, E be sets, h be a function, and A’, B', C', D', E' be
sets. Suppose A # B and A # C and A # D and A # F and B # C
and B# Dand B# Fand C # D and C # FE and D # F and h =
(B—B")+-(C——C")+-(D——D")+-(E——FE'")+-(A——A’). Then rngh =
{h(A), h(B), h(C), (D), h(E)}.

(9) Let G be a subset of PARTITIONS(Y), A, B, C, D, E be partitions of
Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A#Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # E. Then EqClass(u, BAC A D A E)NEqClass(z, A) # 0.

(10) Let G be a subset of PARTITIONS(Y), A, B, C, D, E be partitions of
Y, and z, u be elements of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C # E and D # FE and EqClass(z,C A D A E) = EqClass(u,C A D A E).
Then EqClass(u, CompF (A4, G)) N EqClass(z, CompF(B, G)) # 0.
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2. PREDICATE CALCULUS

One can prove the following propositions:

(11) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then vVa,AGJBG < VvayBG’AG.

(12) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then VVG,AGvBG = VVG,BG,AG‘

(13) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then HVG,AG,BG S VHG’BG,AG-

(14) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C# Fand D # E. Then 33, ,¢.4G € 33, 46,8G.

(15) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C # F and D # E. Then Elga’AgyBG = HHQ,BG,AG-

(16) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A#ZDand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then vVa,AG7BG S ElVaVBG,AG‘

(17) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 E and D # E. Then VVG,AG,BG S Vﬂa,BG,AG‘

(18) vﬂayAG,BG & EHG,BG,AG-

(19) vaAG,BG & HHQBG’,AC{

(20) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C# FEand D # E. Then 3y, ,¢ G € 33, 36,4G.

(22)!  Suppose that

!The proposition (21) has been removed.
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G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C#Fand D # E. Then 3y, ,¢G € 33, ;6,4G.

(23) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then _‘VV‘LAG,BG = Hﬁva,BGﬂG‘

(24) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A#Dand A# Fand B# C and B# D and B # E and C # D and
C 75 F and D 75 E. Then _‘VVG,AG,BG = EIEIﬁa,BG,AG~

(25) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A#Dand A# Fand B# C and B# D and B # E and C # D and
C# FEand D # E. Then V., ,¢ BG € Wy, ;6.4G.

(26) Suppose that
G is a coordinate and G = {A,B,C,D,E} and A # B and A # C and
A# Dand A# Fand B# C and B# D and B # E and C # D and
C 75 FE and D 75 E. Then VﬁvayAG7BG S HEL(L,BG’,AG-
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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC23.

The terminology and notation used in this paper are introduced in the following
papers: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. PRELIMINARIES

For simplicity, we follow the rules: Y denotes a non empty set, a denotes an
element of BVF(Y'), G denotes a subset of PARTITIONS(Y), and A, B, C, D,
E, F denote partitions of Y.

We now state a number of propositions:

(1) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E # F. Then CompF(A,G) =BANCANDANENF.

(2) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E # F. Then CompF(B,G) = AANCANDANEAF.

@ 2001 University of Bialystok
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(3) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# F and A# F and B# C and B # D and B # E and
B#Fand C#Dand C# FEand C # F and D # E and D # F and
E # F. Then CompF(C,G) = AANBADAEAF.

(4) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A# F and A# F and B# C and B # D and B # E and
B#Fand C# Dand C # FE and C # F and D # E and D # F and
E # F. Then CompF(D,G)=AANBANCANENF.

(5) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # FE and C # F and D # E and D # F and
E # F. Then CompF(E,G) = AANBANCADAN\F.

(6) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A+# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # FE and C # F and D # E and D # F and
E # F. Then CompF(F,G)=AANBANCANDA\E.

(7) Let A, B, C, D, E, F be sets, h be a function, and A’, B, C', D', ',
F’' be sets. Suppose that
A # Band A # C and A # D and A # F and A # F and
B # Cand B # D and B # F and B # F and C # D and
C#FandC # Fand D # Eand D # F and E # F and h =
(B—B')+(C——C")+(D——D")+(E——E")+-(F——F")+-(A——A").
Then h(A) = A" and h(B) = B’ and h(C) = C’ and h(D) = D' and
h(E) = E' and h(F) = F".

(8) Let A, B, C, D, E, F be sets, h be a function, and A’, B, C', D', ',
F’ be sets. Suppose that
A # Band A # C and A # D and A # F and A # F and
B # Cand B # D and B # F and B # F and C # D and
C#Fand C # Fand D # Fand D # Fand F # F and h =
(B—B')+-(C——C")+(D——D")+-(E——E")+-(F——F")+-(A——A").
Then domh = {A,B,C,D,E, F}.

(9) Let A, B, C, D, E, F be sets, h be a function, and A’, B, C', D', F/,
F' be sets. Suppose that
A # Band A # C and A # D and A # F and A # F and
B # Cand B # D and B # F and B # F and C # D and
C#FandC # Fand D # Fand D # F and F # F and h =
(B——B")+-(C——C")+(D——D")+-(E—E")+-(F——F")+-(A——A").
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Then rngh = {h(A), h(B),h(C),h(D),h(E), h(F)}.

(10) Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F be partitions
of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E # F. Then EqClass(u, BAC ANDANE A F)NEqClass(z, A) # 0.

(11) Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F be partitions
of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A#Dand A# EFand A# F and B # C and B # D and B # E and
B#Fand C# Dand C # FEand C # F and D # E and D # F and
E # F and EqClass(z, CADANEANF) = EqClass(u, CANDANEAF). Then
EqClass(u, CompF (A4, G)) N EqClass(z, CompF(B, G)) # 0.

2. PREDICATE CALCULUS

The following propositions are true:

(12) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# F and A# F and B# C and B # D and B # E and
B#Fand C# Dand C # Fand C # F and D # E and D # F and
FE 7§ F. Then vva,AG,BG & vVa,BGAG'

(13) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A+# F and A# F and B# C and B # D and B # E and
B#Fand C#Dand C# FEand C # F and D # E and D # F and
E # F. Then Wy, ,¢ BG =V, 36,4G.

(14) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# FE and A# F and B# C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E #£ F. Then HV(LAG,BG c VHQ,BG,AG-

(15) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A# F and A# F and B# C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E 75 F. Then 33a,3G7AG S Elﬂa,AG,BG'

(16) Suppose that
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G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# E and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # FE and C # F and D # E and D # F and
E 75 F. Then aga,AG’BG = Hga,BG7AG.

(17) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# E and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # Fand C # F and D # E and D # F and
E # F. Then vVayAG’,BG S Hva,BG7AG'

(18) vva,AG,BG E HHQ,BG,AG-

(19) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# Dand A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # F and C # F and D # E and D # F and
E #£ F. Then VVQ,AG,BG S vﬂa,BGAG'

(20) VHCL,AG,BG < EIHa,BGvAG'

(21) Suppose that
G is a coordinate and G = {A,B,C,D,E,F} and A # B and A # C and
A# D and A# F and A# F and B # C and B # D and B # E and
B#Fand C# Dand C # FE and C # F and D # E and D # F and
E #£ F. Then EIVG,AG,BG S HgaquAG.
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Jing-Chao Chen Piotr Rudnicki
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Summary. This article defines two for-loop statements for SCMPDS. One
is called for-up, which corresponds to ”for (i=x; i<0; i+=n) S” in C language.
Another is called for-down, which corresponds to ”for (i=x; i>0; i-=n) S”. Here,
we do not present their unconditional halting (called parahalting) property, be-
cause we have not found that there exists a useful for-loop statement with un-
conditional halting, and the proof of unconditional halting is much simpler than
that of conditional halting. It is hard to formalize all halting conditions, but
some cases can be formalized. We choose loop invariants as halting conditions to
prove halting problem of for-up/down statements. When some variables (except
the loop control variable) keep undestroyed on a set for the loop invariant, and
the loop body is halting for this condition, the corresponding for-up/down is
halting and computable under this condition. The computation of for-loop state-
ments can be realized by evaluating its body. At the end of the article, we verify
for-down statements by two examples for summing.

MML Identifier: SCMPDS_7.

The papers [17], [18], [22], [19], [1], [3], [20], [4], [7], [8], [6], [23], [2], [15], [25],
[13], [9], [12], [10], [11], [14], [5], [24], [21], and [16] provide the notation and
terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention: x is a set, n is a natural
number, a is a Int position, 4, j, k are instructions of SCMPDS; s, s1, sy are
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states of SCMPDS, [, [ are instructions-locations of SCMPDS, and I, J, K are
Program-block.
We now state a number of propositions:

(1) For every state s of SCMPDS and for all natural numbers m, n such
that ICs = inspos m holds ICplusConst(s,n — m) = insposn.

(2) For all finite partial states P, @ of SCMPDS such that P C @ holds
ProgramPart(P) C ProgramPart(Q).

(3) For all programmed finite partial states P, @ of SCMPDS and for every
natural number k such that P C @ holds Shift(P, k) C Shift(Q, k).

(4) If ICs = inspos0, then Initialized(s) = s.

(5) If ICs = inspos0, then s+- Initialized([) = s+-1.

(6) (Computation(s))(n)[the instruction locations of SCMPDS = s[the in-
struction locations of SCMPDS.

(7) Let s1, s2 be states of SCMPDS. Suppose IC(,,) = IC(,) and
s1|Data-Locgom = so|Data-Locgem and si[the instruction locations of
SCMPDS = ss[the instruction locations of SCMPDS. Then s; = so.

(8) I €doml iff I € dom Initialized(I).
(9) If z € domI, then I(x) = (s+-(I+- Start-At(l)))(x).
(10) If l; € domI, then (s+- Initialized(I))(l1) = I(L1).
(11)  (s+-(I+- Start-At(1)))(a) = s(a).
(12) (s+-Start-At(l1))(ICscmpps) = -
(13) card(I;i) = card I + 1.
(14) (Iyis5)(insposcard I) = i.
(15)  (s:135):k = i5(135:k).
(16)  Shift(J, card I) C I;J;K.
(17) I CstopI;J.
(18) 1If Iy € dom I, then (Shift(stop I,n))(l1 + n) = (Shift(I,n))(l1 + n).
(19) If card I > 0, then (Shift(stop I,n))(insposn) = (Shift(Z,n))(insposn).
(20) For every state s of SCMPDS and for every instruction i of SCMPDS

such that InsCode(i) € {0,4,5,6} holds Exec(i,s)[Data-Locscm =
s|Data-Locgcnm.

(21) For all states s, s3 of SCMPDS holds (s+-s3[the instruction locations of
SCMPDS) [Data-Locgcom = s[Data-Locgom.

(22) For every instruction ¢ of SCMPDS holds rng Load(i) = {i}.

(23) If IC,,) = IC, and si[Data-Locscm = s2[Data-Locsom,
then ICgyec(is) = ICxec(iss) and Exec(i,si)[Data-Locscm =
Exec(i, s2) [Data-Locgc.
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(24) Let s, so be states of SCMPDS and I be a Program-block. Suppose
I is closed on s; and Initialized(stop I) C s; and Initialized(stop I) C
so and sj[Data-Locgsem = solData-Locgom. Let ¢ be a natu-
ral number. Then IC(Computation(sl))(i) = IC(Computation(sg))(i) and
Curlnstr((Computation(s1))(i)) = Curlnstr((Computation(sz2))(i)) and
(Computation(sy))(7) |Data-Locgcy = (Computation(se))(i) [Data-Locgc.

(25) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose I
is closed on s; and halting on s; and s; [Data-Locgcen = s2[Data-Locgom-
Let k be a natural number. Then (Computation(s;+- Initialized(stop I))) (k)
and (Computation(se+- Initialized(stop I)))(k) are equal outside the in-
struction locations of SCMPDS and Curlnstr((Computation(s;+- Initialized
(stopI)))(k)) = Curlnstr((Computation(sa+- Initialized(stop I)))(k)).

(26) Let I be a Program-block. Suppose that

(i) I is closed on s; and halting on s,

(ii)  Initialized(stop I) C s1,

) Initialized(stop I) C s9, and
) s1 and sy are equal outside the instruction locations of SCMPDS.

Let k be a natural number. Then (Computation(s;))(k) and

(Computation(sz))(k) are equal outside the instruction locations of

SCMPDS and Curlnstr((Computation(sy))(k)) =

Curlnstr((Computation(sq))(k)).

(27) Let s, so be states of SCMPDS and I be a Program-block. Suppose
I is closed on s; and halting on s; and Initialized(stop ) C s; and
Initialized(stop I) C s and s;[Data-Locscy = s2[Data-Locscy. Then
LifeSpan(s;) = LifeSpan(sa).

(28) Let I be a Program-block. Suppose that

(

(iii
(iv

i) I is closed on s and halting on s1,

(ii) Initialized(stop I) C sy,

(iii)  Initialized(stop I) C so, and

(iv)  s1 and s are equal outside the instruction locations of SCMPDS.
Then LifeSpan(s;) = LifeSpan(sy) and Result(s;) and Result(s2) are equal
outside the instruction locations of SCMPDS.

(29) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose I
is closed on s; and halting on s1 and s; [Data-Locgcym = so[Data-Locgcom.-
Then LifeSpan(s;+- Initialized(stop I)) = LifeSpan(so+- Initialized(stop I))
and Result(s;+- Initialized(stop I)) and Result(sa+- Initialized(stop I))
are equal outside the instruction locations of SCMPDS.

(30) Let s, so be states of SCMPDS and I be a Program-block. Suppose
that

(i) I is closed on s; and halting on sy,
(ii)  Initialized(stop I) C sy,
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(iii)  Initialized(stop I) C so, and
(iv)  there exists a natural number k such that (Computation(s;))(k) and
so are equal outside the instruction locations of SCMPDS.

Then Result(s;) and Result(s2) are equal outside the instruction locations
of SCMPDS.

Let I be a Program-block. One can check that Initialized([) is initial.
The following propositions are true:

(31) Let s be a state of SCMPDS, I be a Program-block, and a
be a Int position. If I is halting on s, then (IExec(I,s))(a) =
(Computation(s+- Initialized(stop I)))(LifeSpan(s—+- Initialized(stop I)))(a).

(32) Let s be a state of SCMPDS, I be a parahalting Program-block, and a
be a Int position. Then (IExec(I, s))(a) =
(Computation(s+- Initialized(stop I)))(LifeSpan(s+- Initialized(stop I)))(a).

(33) Let I be a Program-block and ¢ be a natural number. If
Initialized(stopI) € s and I is closed on s and halting on s and i <
LifeSpan(s), then IC(computation(s))(i) € dom .

(34) Let I be a shiftable Program-block. Suppose Initialized(stopI) C s;
and I is closed on s; and halting on s;. Let n be a natural num-
ber. Suppose Shift(I,n) C sz and card/ > 0 and IC(,,) = insposn
and s1[Data-Locgcm = soData-Locgom. Let ¢ be a natural number. If
i < Lifespan(51)7 then IC(Computation(sl))(i) +tn= IC(Computation(SQ))(i) and
Curlnstr((Computation(sy))(i)) = Curlnstr((Computation(sz2))(i)) and
(Computation(si))(i) [Data-Locscm = (Computation(ss))(é) [Data-Locsonm.

(35) For every No-StopCode Program-block I such that Initialized(stop I) C
s and I is halting on s and card I > 0 holds LifeSpan(s) > 0.

(36) Let I be a No-StopCode shiftable Program-block. Suppose Initialized
(stopI) C s; and I is closed on s; and halting on s;. Let n be
a natural number. Suppose Shift(/,n) C sy and card/ > 0 and
IC(,) = insposn and sj[Data-Locscm = s2[Data-Locgem. Then
IC (Computation(ss))(LifeSpan(s;)) = inspos card I +n and (Computation(sy))
(LifeSpan(sy)) [Data-Locgom =
(Computation(sq))(LifeSpan(s;)) [Data-Locscm-

(37) Let s be a state of SCMPDS, I be a Program-block, and n be
a natural number. If ICcomputation(s+- Initialized(1)))(n) = nspos0, then
(Computation(s+- Initialized([)))(n)+- Initialized(I) =
(Computation(s+- Initialized(I)))(n).

(38) Let I be a Program-block, J be a Program-block, and k be a na-
tural number. Suppose I is closed on s and halting on s and k£ <
LifeSpan(s+- Initialized(stop I)). Then (Computation(s+- Initialized
(stopl)))(k) and (Computation(s+-((I;J)+- Start-At(inspos0))))(k) are
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equal outside the instruction locations of SCMPDS.

(39) Let I, J be Program-block and k be a natural number. Sup-
pose I C J and [ is closed on s and halting on s and k& <
LifeSpan(s+- Initialized(stop I)). Then (Computation(s+- Initialized(J)))(k)
and (Computation(s+- Initialized(stop I)))(k) are equal outside the in-
struction locations of SCMPDS.

(40) Let I, J be Program-block and k be a natural number. Suppose k <
LifeSpan(s+- Initialized(stop I)) and I C J and [ is closed on s and halting
on s. Then IC(Computation(s+-Initialized(])))(k) € domstop I.

(41) Let I, J be Program-block. Suppose I C J and I is closed on s and
halting on s. Then Curlnstr((Computation(s+- Initialized(.J)))
(LifeSpan(s+- Initialized(stop I)))) = haltscapps or
IC(Computation(s—i-- Initialized(J)))(LifeSpan(s+- Initialized(stop I))) = inspos card I.

(42) Let I, J be Program-block. Suppose I is halting on s and J is clo-
sed on IExec(l,s) and halting on IExec(I,s). Then J is closed on
(Computation(s+- Initialized(stop I')))(LifeSpan(s+- Initialized (stop I)))
and halting on (Computation(s+- Initialized(stop I)))

(LifeSpan(s+- Initialized(stop I))).

(43) Let I be a Program-block and J be a shiftable Program-block. Suppose
I is closed on s and halting on s and J is closed on IExec(/, s) and halting
on IExec(I, s). Then I;J is closed on s and [I;J is halting on s.

(44) Let I be a No-StopCode Program-block and J be a Program-
block. If I C J and [ is closed on s and halting on s, then
IC(Computation(er- Initialized(J)))(LifeSpan(s+- Initialized(stop I))) — inspos card I.

(45) Let I be a Program-block, s be a state of SCMPDS, and & be a natural
number. If I is halting on s and k < LifeSpan(s+- Initialized(stop I)), then
Curlnstr((Computation(s+- Initialized(stop I)))(k)) # haltscmpps.

(46) Let I, J be Program-block, s be a state of SCMPDS, and k be a
natural number. Suppose [ is closed on s and halting on s and k& <
LifeSpan(s+- Initialized(stop I)). Then Curlnstr((Computation(s+-
Initialized(stop I;J)))(k)) # haltscmpps-

(47) Let I be a No-StopCode Program-block and J be a shifta-
ble Program-block. Suppose [ is closed on s and halting on s
and J is closed on IExec(I,s) and halting on IExec(l,s). Then
LifeSpan(s+- Initialized(stop I;J)) = LifeSpan(s+- Initialized(stop I)) +
LifeSpan(Result(s+- Initialized (stop I))+- Initialized(stop .J)).

(48) Let I be a No-StopCode Program-block and J be a shiftable Program-
block. Suppose I is closed on s and halting on s and J is clo-
sed on IExec(I,s) and halting on IExec(l,s). Then IExec([;J,s) =
[Exec(J, [Exec([, 5))+- Start-At(IC:gyec(.1Exec(1,s)) + card I).
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(49) Let I be a No-StopCode Program-block and J be a shiftable Program-
block. Suppose [ is closed on s and halting on s and J is closed
on IExec(l,s) and halting on IExec(I,s). Then (IExec([;J,s))(a) =
(IExec(J, IExec(I, s)))(a).

(50) Let I be a No-StopCode Program-block and j be a parahalting shifta-
ble instruction of SCMPDS. If [ is closed on s and halting on s, then
(IExec(I;7, s))(a) = (Exec(j, IExec(1, s)))(a).

2. THE CONSTRUCTION OF FOR-UP LOOP PROGRAM

Let a be a Int position, let ¢ be an integer, let n be a natural number, and let
I be a Program-block. The functor for-up(a,i,n, I) yielding a Program-block is
defined by:
(Def. 1) for-up(a,i,n,I) = ((a,i) >= 0_gotocard I + 3);I; AddTo(a,,n);
goto (—(card I + 2)).

3. THE COMPUTATION OF FOR-UP LOOP PROGRAM

We now state several propositions:

(51) Let a be a Int position, i be an integer, n be a natural number, and I
be a Program-block. Then card for-up(a,i,n,I) = card I + 3.

(52) Let a be a Int position, ¢ be an integer, n, m be natural numbers, and
I be a Program-block. Then m < cardl + 3 if and only if insposm €
dom for-up(a,i,n, I).

(53) Let a be a Int position, i be an integer, n be a natural number, and
I be a Program-block. Then (for-up(a,i,n,I))(inspos0) = (a,i) >=
0_goto card I + 3 and (for-up(a,i,n,I))(insposcard I +1) = AddTo(a,i,n)
and (for-up(a,i,n,I))(insposcard I + 2) = goto (—(card I + 2)).

(54) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),i)) > 0,
then for-up(a,i,n, I) is closed on s and for-up(a,i,n,I) is halting on s.

(55) Let s be a state of SCMPDS, I be a Program-block, a, ¢ be Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),?)) > 0,
then IExec(for-up(a,i,n,I),s) = s+- Start-At(inspos card I + 3).

(56) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),i)) > 0,
then ICigyec(for-up(asi,n,1),s) = insposcard I + 3.
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(57) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),7)) > 0,
then (IExec(for-up(a,i,n,I),s))(b) = s(b).

(58) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be a Int position, ¢ be an integer, n be a natural number, and X
be a set. Suppose that

(i)  s(DataLoc(s(a),?)) < 0,
(i) DataLoc(s(a),i) ¢ X,
(i) n>0,
(iv) cardI >0,
(v) a # DataLoc(s(a),i), and
(vi)  for every state t of SCMPDS such that for every Int position x such

that € X holds t(z) = s(x) and t(a) = s(a) holds (IExec(I,t))(a) = t(a)
and (IExec(I,t))(DataLoc(s(a),i)) = t(DataLoc(s(a),i)) and I is closed
on t and halting on ¢ and for every Int position y such that y € X holds
(IExec(1,1))(y) = t(y).
Then for-up(a,i,n,I) is closed on s and for-up(a,i,n, I) is halting on s.
(59) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be a Int position, ¢ be an integer, n be a natural number, and X
be a set. Suppose that
) s(DataLoc(s(a),i)) <0,
) DataLoc(s(a),i) ¢ X,
(i) n>0,
) cardl >0,
) a # DataLoc(s(a),i), and
) for every state t of SCMPDS such that for every Int position z such
that € X holds t(z) = s(x) and t(a) = s(a) holds (IExec(I,t))(a) = t(a)
and (IExec(I,t))(DataLoc(s(a),i)) = t(DataLoc(s(a),i)) and I is closed
on t and halting on ¢ and for every Int position y such that y € X holds
(IExec(I,1))(y) = H(y).
Then IExec(for-up(a,i,n,I),s) =
IExec(for-up(a,i,n, I),1Exec(I; AddTo(a,i,n), s)).
Let I be a shiftable Program-block, let a be a Int position, let i be an integer,
and let n be a natural number. Observe that for-up(a,i,n, I) is shiftable.
Let I be a No-StopCode Program-block, let a be a Int position, let ¢ be
an integer, and let n be a natural number. Note that for-up(a,i,n,I) is No-
StopCode.
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4. THE CONSTRUCTION OF FOR-DOWN LOOP PROGRAM

Let a be a Int position, let ¢ be an integer, let n be a natural number, and
let I be a Program-block. The functor for — down(a, i,n, I) yielding a Program-
block is defined as follows:

(Def. 2) for — down(a,i,n,I) = ((a,i) <= 0_gotocard I + 3);I; AddTo(a,i,—n);
goto (—(card I + 2)).

5. THE COMPUTATION OF FOR-DOWN LOOP PROGRAM

One can prove the following propositions:

(60) Let a be a Int position, ¢ be an integer, n be a natural number, and I
be a Program-block. Then card for — down(a,i,n,I) = card I + 3.

(61) Let a be a Int position, ¢ be an integer, n, m be natural numbers, and
I be a Program-block. Then m < card I + 3 if and only if insposm €
dom for — down(a, i,n, I).

(62) Let a be a Int position, ¢ be an integer, n be a natural number,
and I be a Program-block. Then (for — down(a,i,n,I))(inspos0) =
(a,i) <= O_gotocardl + 3 and (for — down(a,i,n,I))(insposcard I +
1) = AddTo(a,i,—n) and (for — down(a,i,n,I))(insposcard I + 2) =
goto (—(card I 4 2)).

(63) Let s be a state of SCMPDS, I be a Program-block, a be a Int position, 4
be an integer, and n be a natural number. If s(DataLoc(s(a),7)) < 0, then
for — down(a,i,n,I) is closed on s and for — down(a,4,n, I) is halting on
s.

(64) Let s be a state of SCMPDS, I be a Program-block, a, ¢ be Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),)) < 0,
then IExec(for — down(a,i,n,I),s) = s+- Start-At(inspos card I + 3).

(65) Let s be a state of SCMPDS, I be a Program-block, a be a Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),7)) < 0,
then ICIExec(for—down(a,i,n,[),s) = inspos card I + 3.

(66) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
i be an integer, and n be a natural number. If s(DataLoc(s(a),?)) < 0,
then (IExec(for — down(a,i,n,I),s))(b) = s(b).

(67) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be a Int position, ¢ be an integer, n be a natural number, and X
be a set. Suppose that

(i) s(DataLoc(s(a),7)) > 0,
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DataLoc(s(a),i) ¢ X,

)
(iii) n>0,
(iv) cardI >0,
(v) a# DatalLoc(s(a),i), and
(vi)  for every state t of SCMPDS such that for every Int position x such

that z € X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I,t))(a) = t(a)
and (IExec(I,t))(DataLoc(s(a),i)) = t(DataLoc(s(a),i)) and I is closed
on t and halting on ¢ and for every Int position y such that y € X holds
(IExec(1,£))(y) = H(y).
Then for — down(a,i,n,I) is closed on s and for — down(a,i,n,I) is hal-
ting on s.

(68) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, a be a Int position, ¢ be an integer, n be a natural number, and X
be a set. Suppose that

(i) s(DataLoc(s(a),i)) > 0,
(i) DataLoc(s(a),i) ¢ X,
(iii) n>0,
(iv) cardI >0,
(v) a# DatalLoc(s(a),i), and
(vi)  for every state t of SCMPDS such that for every Int position z such

that z € X holds t(x) = s(x) and t(a) = s(a) holds (IExec(I,t))(a) = t(a)
and (IExec(I,t))(DataLoc(s(a),7)) = t(DataLoc(s(a),)) and I is closed
on t and halting on ¢ and for every Int position y such that y € X holds
(IExec(I,t))(y) = t(y)-
Then TExec(for — down(a,i,n, ), s) = IExec(for — down(a,i,n,I),
IExec(I; AddTo(a,i,—n),s)).
Let I be a shiftable Program-block, let a be a Int position, let ¢ be an integer,
and let n be a natural number. Observe that for — down(a,,n, I) is shiftable.
Let I be a No-StopCode Program-block, let a be a Int position, let ¢ be
an integer, and let n be a natural number. Note that for — down(a,i,n,I) is
No-StopCode.

6. Two EXAMPLES FOR SUMMING

Let n be a natural number. The functor sumn yielding a Program-block is
defined as follows:
(Def. 3) sumn = (GBP :=0);((GBP)2:=n);((GBP)3:=0); for — down(GBP, 2, 1,
Load(AddTo(GBP, 3,1))).

Next we state three propositions:

217
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(69) For every state s of SCMPDS such that s(GBP) = 0 holds
for — down(GBP, 2,1, Load(AddTo(GBP,3,1))) is closed on s and
for — down(GBP, 2, 1, Load(AddTo(GBP, 3,1))) is halting on s.

(70) Let s be a state of SCMPDS and n be a natural number. If

s(GBP) = 0 and s(intpos2) = mn and s(intpos3) = 0, then
(IExec(for — down(GBP, 2, 1, Load(AddTo(GBP, 3,1))), s))(intpos 3) =
n.

(71) For every state s of SCMPDS and for every natural number n holds
(IExec(summn, s))(intpos 3) = n.
Let s4, ¢1, 71, p1, p2 be natural numbers. The functor sum(sy, ¢1,71, p1,p2)
yields a Program-block and is defined as follows:
(Def. 4) sum(sy, c1,71,p1,p2) = ((intpos s4),,:=0);(intpos p1:=p2);
for — down(intpos s4, ¢1, 1, AddTo(intpos s4, 71, intpos p2, 0);
AddTo(intpospy,0,1)).
Next we state three propositions:

(72) Let s be a state of SCMPDS and s4, c2, 71, p1, p3 be natural num-
bers. Suppose s(intposss) > s4 and co < r; and s(intposp;) = p3
and s(intposss) + 71 < p1 and p1 < p3 and ps < s(intposps). Then
for — down(intpos sy4, c2, 1, AddTo(intpos s4, 71, intpos ps, 0);
AddTo(intpospi,0,1)) is closed on s and for — down(intpos s4, ¢z, 1,
AddTo(intpos s4, 71, intpos p3, 0); AddTo(intpos p1, 0, 1)) is halting on s.

(73) Let s be a state of SCMPDS, sy, ¢2, 71, p1, p3 be natural numbers, and
f be a finite sequence of elements of N. Suppose that
s(intpos sq) > s4 and ¢a < r1 and s(intpos p;) = p3 and s(intpos s4) +r1 <
p1 and p; < ps and p3 < s(intpos p3) and s(DataLoc(s(intpossy),r1)) =0
and len f = s(DataLoc(s(intpos s4), c2)) and for every natural number k
such that k£ < len f holds f(k + 1) = s(DataLoc(s(intposps),k)). Then
(IExec(for — down(intpos s4, ¢, 1, AddTo(intpos s4, r1, intpos ps, 0);
AddTo(intpospi,0,1)),s))(DataLoc(s(intpos s4), 1)) = > f.

(74) Let s be a state of SCMPDS, sy, ¢2, 71, p1, p3 be natural numbers, and
f be a finite sequence of elements of N. Suppose that
s(intpossy) > s4 and ¢; < 71 and s(intposss) + 71 < p; and p; <
ps and p3 < s(intposps) and len f = s(Dataloc(s(intpossy),cz)) and
for every natural number k such that & < lenf holds f(k + 1) =
s(DataLoc(s(intposps), k)). Then (IExec(sum(sy, ca2,71,p1,p3),$))
(DataLoc(s(intpossyg),71)) = > f.
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Summary. In this paper, we proved some elementary predicate calculus
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1. PRELIMINARIES

For simplicity, we adopt the following convention: Y is a non empty set, a is
an element of BVF(Y), G is a subset of PARTITIONS(Y), A, B, C, D, E, F,
J, M, N are partitions of Y, and z, x1, x2, x3, 4, X5, Tg, L7, Ts, Tg are sets.
The following propositions are true:
(1) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # Eand D # Fand D # J and E # F and E # J
and F # J. Then CompF(A,G)=BANCANDANEANF A J.
(2) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# Jand B# C and B # D
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and B# F and B# F and B# J and C # D and C # E and C # F
and C' # Jand D # Eand D # F and D # J and E # F and E # J
and F' # J. Then CompF(B,G) = ANCANDANEANF AJ.

(3) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A# Dand A# Fand A# Fand A# Jand B# C and B # D
and B# Fand B# Fand B# Jand C # D and C # E and C # F
and C # Jand D # EFand D # Fand D # Jand E # F and E # J
and F' # J. Then CompF(C,G) =AANBADANENF A J.

(4) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A # Fand A# Fand A# J and B # C and B # D
and B# F and B # F and B# J and C # D and C # E and C # F
and C # Jand D # EFand D # Fand D # Jand E # Fand E # J
and F' # J. Then CompF(D,G) = AANBANCANEANFAJ.

(5) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# F and B# Jand C # D and C # F and C # F
and C # Jand D # Eand D # Fand D # J and E # F and E # J
and F # J. Then CompF(E,G) = AANBANCANDANF AJ.

(6) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A # Fand A # Fand A# J and B # C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C #Jand D # EFand D # Fand D # Jand £ # F and EF # J
and F' # J. Then CompF(F,G) = ANBANCANDANEAJ.

(7) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# F and B# Jand C # D and C # F and C # F
and C' # Jand D # Eand D # F and D # J and E # F and E # J
and F' # J. Then CompF(J,G) = AANBACADAEAF.

(8) Let A, B, C, D, E, F, J be sets, h be a function, and A’, B’, C', D',
E', F’, J be sets. Suppose that
A# Band A# Cand A # D and A # Fand A # F and A # J
and B # C and B # D and B # FE and B # F and B # J
and C # D and C # FE and C # F and C # J and D # E and
D # Fand D # Jand F # F and £ # J and F # J and h =
(B—B')+-(C+—C")+-(D——D")+-(E—E')+-(F——F")+-(J——J')+-
(A—=—A"). Then h(A) = A’ and h(B) = B’ and h(C) = C' and h(D) = D’



9)

(10)

(11)

(12)

(13)

(14)
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and h(E) = E' and h(F) = F' and h(J) = J'.

Let A, B, C, D, E, F, J be sets, h be a function, and A’, B, C’, D/,
E', F', J be sets. Suppose that
A# Band A # Cand A # D and A # Eand A # F and A # J
and B # C and B # D and B # E and B # F and B # J
and C # D and C # FE and C # F and C # J and D # E and
D # Fand D # Jand F # F and EF # J and F # J and h =
(B——DB')+-(C——C")+-(D——D")+-(E—E")+-(F——F')+-(J——J')+-
(A——A"). Then domh = {A,B,C,D,E,F, J}.

Let A, B, C, D, E, F, J be sets, h be a function, and A’, B’, C', D',
E', F’, J be sets. Suppose that
A# Band A # Cand A # D and A # E and A # F and A # J
and B # C and B # D and B # EF and B # F and B # J
and C # D and C # E and C # F and C # J and D # E and
D # Fand D # Jand F # F and £ # J and F # J and h =
(B—B')+-(C——C")+(D——D")+-(E——E' )+ (F+—F")+-(J——J")+-
(A——A"). Then rngh = {h(A), h(B),h(C),h(D),h(E),h(F),h(J)}.

Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J be partitions
of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # Dand A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # EFEand D # Fand D # Jand E # F and £ # J
and F # J. Then EqClass(u, BACADAEAF AJ)NEqClass(z, A) # 0.

Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J be partitions
of Y, and z, u be elements of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# J and B # C and B # D
and B# F and B# F and B# J and C # D and C # E and C # F
and C # Jand D # Eand D # Fand D # J and E # F and E # J and
F # J and EqClass(z, CADANEANFAJ) = EqClass(u, CADANEANFAJ).
Then EqClass(u, CompF (A4, G)) N EqClass(z, CompF(B, G)) # 0.

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A#Fand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
andC#Fand C# Fand C#Jand C# M and D # FE and D # F
and D # Jand D # M and E # F and £ # J and F # M and F # J
and F' # M and J # M. Then CompF(A,G) = BACADANENFANJAM.

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
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and A# Dand A# Fand A# F and A# Jand A # M and B # C
and B# D and B# E and B# F and B # J and B # M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
and D # Jand D # M and E # F and F # J and F # M and F # J
and F' # M and J # M. Then CompF(B,G) = ANCADANEANFANJAM.

(15) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
andC#Fand C# Fand C#Jand C# M and D # FE and D # F
and D # Jand D # M and E # F and £ # J and E # M and F # J
and F' # M and J # M. Then CompF(C,G) = ANABADANENFANJAM.

(16) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
and A#Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EFand B# Fand B# J and B# M and C # D
and C # Eand C # Fand C # Jand C # M and D # E and D # F
and D # Jand D # M and E # F and E # J and E # M and F # J
and F' # M and J # M. Then CompF(D,G) = AABANCANENFANJAM.

(17) Suppose that
G is a coordinate and G = {A, B,C,D,E,F,J,M} and A # Band A # C
and A# D and A# Fand A# F and A# J and A # M and B # C
and B# D and B# E and B# F and B # J and B # M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
and D # Jand D # M and E # F and F # J and E # M and F # J
and F' # M and J # M. Then CompF(E,G) = ANABANCADANFANJAM.

(18) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
and D # Jand D # M and E # Fand £ # J and E # M and F # J
and F' # M and J # M. Then CompF(F,G) = ANBANCANDANEANJAM.

(19) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
and A# Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EFand B# Fand B# J and B# M and C # D
and C#Fand C# Fand C# Jand C# M and D # F and D # F
and D # Jand D # M and £ # F and E # J and E # M and F # J
and F' # M and J # M. Then CompF(J,G) = ANABANCADANENFAM.

(20) Suppose that
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G is a coordinate and G = {A, B,C,D,E,F,J, M} and A # B and A # C
and A # D and A# Fand A# F and A# J and A # M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C #Fand C # Fand C # Jand C # M and D # F and D # F
and D # Jand D # M and E # F and £ # J and F # M and F # J
and F' # M and J # M. Then CompF(M,G) = ANABANCADANENFAJ.

(21) Let A, B, C, D, E, F, J, M be sets, h be a function, and A’, B’, C’,
D', E', F', J, M be sets. Suppose that
A# Band A # Cand A # D and A # Eand A # F and A # J
and A # M and B # C and B # D and B # F and B # F and
B# Jand B# M and C # D and C # FE and C # F and C # J and
C#Mand D # Fand D # Fand D # Jand D # M and E # F
and F # Jand E # M and F # J and F # M and J # M and h =
(B——DB')+-(C——C")+-(D——D")+-(E—E')+-(F——F')+-(J——J')+-
(M——M")+-(A—=—A"). Then h(A) = A" and h(B) = B’ and h(C) = C’
and h(D) = D’ and h(E) = E' and h(F) = F' and h(J) = J' and
h(M) = M'.

(22) Let A, B, C, D, E, F, J, M be sets, h be a function, and A’, B’, C’,
D', E', F', J, M be sets. Suppose that
A# Band A# Cand A # D and A # Fand A # F and A # J
and A # M and B # C and B # D and B # F and B # F and
B#Jand B# M and C # D and C # F and C # F and C # J and
C#Mand D # Fand D # Fand D # Jand D # M and E # F
and F # Jand E # M and FF # J and FF # M and J # M and h =
(B—B")+-(C——C")+(D——D")+-(E-—E")+-(F——F")+-(J—J")+-
(Mr—M")+-(A——A"). Then domh = {A, B,C, D, E, F, J, M.

(23) Let A, B, C, D, E, F, J, M be sets, h be a function, and A’, B’, C’,
D', E', F', J, M be sets. Suppose that
A# Band A# Cand A # D and A # Fand A # F and A # J
and A # M and B # C and B # D and B # F and B # F and
B#Jand B# M and C # D and C # F and C # F and C # J and
C# Mand D # FEand D # Fand D # J and D # M and E # F
and F # Jand E # M and FF # Jand FF # M and J # M and h =
(B—B")+-(C——C")+(D——D")+-(E-—FE')+-(F——F")+-(J—J")+-
(M——M")+-(A——A"). Then rng h = {h(A), h(B), h(C),h(D), h(E), h(F),
h(J), h(M)}.

(24) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), A,
B,C,D, E, F,J, M be partitions of Y, z, u be elements of Y, and h be
a function. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
and A# Dand A# EFand A # Fand A # Jand A # M and B # C and
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B# D and B# FE and B # F and B # J and B # M and C # D and
C#FandC# FandC # JandC # M and D # Eand D # F and D #
Jand D# M and E# Fand E# Jand E# M and F # Jand FF # M
and J # M. Then EqClass(u, BACADAEANFANJAM)NEqClass(z, A) # 0.

(25) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
A, B,C, D, E, F, J, M be partitions of Y, and z, u be elements of Y.
Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A# Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C#Fand C# Fand C# Jand C # M and D # F and D # F
and D # Jand D # M and £ # F and E # J and E # M and F # J
and F' # M and J # M and EqClass(z, C ADANEANFANJAM) =
EqClass(u,C ADANENF ANJAM). Then EqClass(u, CompF(A,G)) N
EqClass(z, CompF (B, G)) # 0.

The scheme UI10 deals with a set A, a set B, a set C, a set D, a set £, a set
F,aset G, aset H, aset Z, aset J, and and states that:

P[A,B,C,D,E,F,G, H,T,T]

provided the following condition is satisfied:

e For all sets x1, x2, 3, T4, 5, T, T7, TS, L9, T10

holds Plx1, x2, x3, x4, T5, T6, T7, T8, T9, T10)-

Let us consider x1, x2, 3, x4, T5, Tg, T7, T8, T9.

The functor {z1, z2, x3, x4, x5, Te, T7, T3, Tg} yielding a set is defined as fol-
lows:

(Def. 1) x € {x1,x2,x3, x4, x5, x6, T7, 8,29} iff x = 21 or © = 29 or x = 23 or
X =24 Or T =25 O X = Xg OF & = T7 OF T = Tg OF T = Ig.

We now state a number of propositions:

(26) z € {x1,x9,x3, 24, x5, T, T7, T8, T} iff x = x1 or & = 29 Or x = 3 Or
T =14 0" XL =250 X=2=Tg O T=2T7 O T =g Ol T =Tg.

N
J

{x1, 22, 23, T4, T5,T6, X7, 28, X9} = {1} U {22, T3, T4, X5, T6, T7, X8, T9}.
{xl, 9, x3,$4,$5,$6,$7,$8,1‘9} = {1'1, .%'2} U {$3,$4,$5,1‘6,$7, s, .%'9}.
{z1, 22, 23, T4, T5, T6, T7, T8, X9} = {1, T2, 23} U {24, X5, X6, T7, X8, T9}.
{xl, 9, 233,334,1'5,2?6,1'7,1'8,.%'9} = {.1'1, xg,fbg,x4} U {1'5,.%'6,.%'7, s, xg}.
{x1, 22, 23, T4, T5, T6, X7, T8, X9} = {1, T2, X3, T4, x5} U {x6, T7, 28,79}
{1, 29, 3, 24, 5, T, T7, T8, T9} = {21, X2, T3, Ta, x5, 6} U {x7, 28,29}
{xl, 9, .%'3,.264,$5,$6,$7,£U8,£E‘9} = {acl, .%'2,.%'3,$4,1‘5,:E6,$7} U {x’g, .%'9}.
{z1, 22, 23, T4, T5, T6, T7, T8, X9} = {T1, T2, XT3, T4, X5, X6, T7, 28} U {x9}.
Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that

W N N
S ©

e N N N e e e e T
W W W Ww
=W N =

e N N e T N N N

wo
ot
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G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A# F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D#A#Nand F# Fand F# Jand E# M and E # N and F # J
and FF % M and FF # N and J # M and J # N and M # N. Then
CompF(A,G)=BANCANDANEANFANJANMAN.

(36) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# N and B# C and B# D and B # E and B # F and B # J and
B#Mand B# N and C # D and C # FE and C # F and C # J and
C#MandC # Nand D # Fand D # Fand D # Jand D # M
and D # N and F# F and F # J and E # M and E # N and F # J
and F' # M and FF # N and J # M and J # N and M # N. Then
CompF(B,G)=ANCADANEANFANJAMAN.

(37) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A# Fand A # Fand A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# Mand B# N and C # D and C # E and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D # Nand F # Fand F # J and F # M and E # N and F # J
and FF ## M and F # N and J # M and J # N and M # N. Then
CompF(C,G) =ANBADANEANFANJANMAN.

(38) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D# Nand F# Fand F # J and E# M and F # N and F # J
and F' # M and F # N and J # M and J # N and M # N. Then
CompF(D,G)=AANBANCANEANFANJANMAN.

(39) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
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A#Cand A# D and A# Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# Mand B# N and C # D and C # E and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # Jand D # M
and D# Nand F # Fand F # Jand F# M and F # N and F # J
and FF ## M and FF # N and J # M and J # N and M # N. Then
CompF(E,G) = AANBANCANDANFANJANMAN.

Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # E and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D# Nand F# Fand F # J and E# M and F # N and F # J
and F' # M and F # N and J # M and J # N and M # N. Then
CompF(F,G)=AANBANCANDANEANJANMAN.

Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # FEand D # Fand D # Jand D # M
and D# Nand F# Fand F# Jand E# M and F # N and F # J
and FF # M and F # N and J # M and J # N and M # N. Then
CompF(J,G)=AANBANCADANEANFANMAN.

Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D# Nand F# Fand F # J and E# M and F # N and F # J
and FF' % M and FF # N and J # M and J # N and M # N. Then
CompF(M,G)=AANBANCANDANEANFANJAN.

Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N
be partitions of Y. Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
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A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # F and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # Jand D # M
and D# Nand F# Fand F # Jand F# M and F # N and F # J
and FF ## M and F # N and J # M and J # N and M # N. Then
CompF(N,G) = AANBANCADANENFNJANM.

Let A, B,C, D, E, F, J, M, N be sets, h be a function, and A’, B’, C’,
D', E,F,J, M, N be sets. Suppose that
A#Band A#Cand A# Dand A# Fand A# Fand A# J and A #
M and A# N and B# C and B# D and B# FE and B # F and B # J
and B# M and B# N and C # D and C # E and C # F and C # J
andC# Mand C# Nand D# Fand D# Fand D # Jand D # M
and D# Nand F# Fand F# Jand E# M and F # N and F # J
and FF'# M and FF # N and J # M and J # N and M # N and h =
(B—B')+-(C——C")+(D——D")+-(E——E')+-(F+—F')+(J——J')+-
(M——M")+(N——N")+:(A——A"). Then h(A) = A" and h(B) = B’ and
h(C)=C"and h(D) = D" and h(E) = E' and h(F) = F' and h(J) = J’
and h(M) = M’ and h(N) = N'.

Let A, B,C, D, E, F, J, M, N be sets, h be a function, and A’, B’, C’,
D', EF,J, M, N be sets. Suppose that
A#Band A#Cand A# Dand A# Fand A# Fand A# J and A #
Mand A# Nand B# Cand B# D and B# F and B # F and B # J
and B# M and B# N and C # D and C # F and C # F and C # J
and C # M and C # N and D # Fand D # F and D # J and D # M
and D # N and F # Fand F # J and E# M and E # N and F # J
and FF # M and FF # N and J # M and J # N and M # N and h =
(B—B")+-(C——C")+(D——D")+-(E——E')+-(F——F")+-(J—J")+-
(M——M")4+-(N——N")+-(A——A").
Then domh = {A,B,C,D,E,F,J,M,N}.

Let A, B,C, D, E, F, J, M, N be sets, h be a function, and A’, B’, C’,
D', E' F',J, M, N be sets. Suppose that
A#Band A#Cand A# Dand A# Fand A# Fand A# J and A #
Mand A# Nand B# Cand B# D and B# F and B # F and B # J
and B# M and B# N and C# D and C # FEand C # F and C # J
and C # M and C# Nand D# Fand D# Fand D # J and D # M
and D# Nand F# Fand F # J and E# M and F # N and F # J
and FF# M and FF# N and J # M and J # N and M # N and h =
(B—B")+-(C—C")+(D——D")+-(E——E')+-(F——F")4-(J—J")+-
(M—=—M")+-(N——-N'")+-(A——A").
Then rngh = {h(A), h(B),h(C),h(D),h(E), h(F),h(J), h(M),h(N)}.

Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), A,
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B,C,D,E,F,J, M, N be partitions of Y, z, u be elements of Y, and h
be a function. Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # Fand A# F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C # Nand D # Fand D # Fand D # J and D # M
and D# Nand F # Fand F # Jand E# M and F # N and F # J
and F' # M and FF # N and J # M and J # N and M # N. Then
EqClass(u, BACANDANEANFAJANMAN)NEqClass(z, A) # 0.

Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'), A,
B, C,D,E, F,J, M, N be partitions of Y, and z, u be elements of Y.
Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C# Mand C # Nand D # Fand D # Fand D # Jand D # M
and D # N and F # F and E # J and £ # M and F # N and
F#Jand F# M and F'# N and J # M and J # N and M # N and
EqClass(z, CADAEANFAJAMAN) = EqClass(u, CADANEANFAJAMAN).
Then EqClass(u, CompF (A4, G)) N EqClass(z, CompF(B, G)) # 0.

2. PREDICATE CALCULUS

We now state a number of propositions:

(49)

(50)

(51)

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A # Fand A# Fand A# J and B # C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # Fand D # Fand D # Jand E # Fand E # J
and I 7& J. Then vVa,AG,BG S VVG,BG,AG-

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# J and B # C and B # D
and B# F and B# F and B# J and C # D and C # E and C # F
and C # Jand D # EFand D # Fand D # Jand E # Fand E # J
and F' 75 J. Then VV(LAG,BG = vVa,BG,AG'

Suppose that
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G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A # Fand A # Fand A# J and B # C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # Fand D # Fand D # Jand E # F and E # J
and F' 75 J. Then Elva,AG,BG S VH,LBG,AG-

(52) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A# Dand A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # Fand D # Fand D # Jand E # F and F # J
and F' # J. Then 33, ;¢ aG € 33, ,¢,8G.

(53) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C' # Jand D # Eand D # F and D # J and E # F and E # J
and F 75 J. Then 33a7AG73G = 33@73G7AG.

(54) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # D and A# Fand A# Fand A# J and B # C and B # D
and B# F and B# F and B# J and C # D and C # E and C # F
and C # Jand D # Fand D # Fand D # Jand E # Fand E # J
and F' 7& J. Then vva,AG,BG S ElV(L,BG,AG-

(55) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A# Dand A# Fand A# Fand A# Jand B# Cand B# D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # Fand D # Fand D # Jand F # F and F # J
and F' # J. Then Vv, ,¢,8G € 33, ;¢,4G.

(56) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A # Dand A# Fand A# Fand A# Jand B # C and B # D
and B# F and B# F and B# Jand C # D and C # F and C # F
and C # Jand D # EFEand D# Fand D # Jand E # Fand £ # J
and F 75 J. Then VVG,AG,BG S vﬁa,BGAG'

(57) vﬂayAG,BG (& HHG,BG,AG-

(58) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J} and A # B and A # C
and A# Dand A# Fand A# Fand A# Jand B# C and B # D
and B# F and B# Fand B# Jand C # D and C # F and C # F
and C # Jand D # EFand D # Fand D # Jand E # F and F # J
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(59)

(60)

(61)

(62)

(63)

(64)
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and F 75 J. Then ElvayAG,BG c EIHa,BGvAG'

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A#FEFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C#Fand C# Fand C# Jand C # M and D # F and D # F
and D# Jand D # M and E# Fand £ # Jand FE # M and F # J
and F 75 M and J 75 M. Then VVG,AG,BG S VVmBG,AG.

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A# FEFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C#Fand C# Fand C# Jand C # M and D # F and D # F
and D# Jand D # M and E # Fand £ # Jand FE # M and F # J
andF;éM and J#M Then VVGVAG,BG:vaBG,AG'

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
and A#Dand A# Fand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
and D# Jand D # M and E # Fand £ # J and E # M and F # J
andF;éM and J#M. Then ElVa,AG,BG@VHa,BG,AG'

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A#FEFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C#Fand C# Fand C# Jand C # M and D # F and D # F
and D# Jand D # M and E # Fand £ # J and FE # M and F # J
andF;éM and J#M. Then Hﬂa,BG,AG@ EIEa,AG,BG'

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # Band A # C
and A#ZDand A# FEFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
and D# Jand D # M and E # Fand £ # Jand FE # M and F # J
andF;éM and J#M Then Haa,AGuBGZHEG,BG7AG'

Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M} and A # B and A # C
and A#Dand A# EFand A# Fand A# Jand A# M and B # C
and B# D and B# EF and B# Fand B# J and B# M and C # D
and C #Fand C# Fand C# Jand C # M and D # F and D # F
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and D # Jand D # M and E # F and E # J and E # M and F # J
and F 75 M and J 75 M. Then VVGYAG,BG S HV(LBG,AG-

(66)! Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M} and A # B and A # C
and A Dand A# FEand A# Fand A# Jand A# M and B # C
and B# D and B# E and B# F and B # J and B # M and C # D
and C # Eand C # Fand C # J and C # M and D # E and D # F
and D # Jand D # M and E # F and E # J and E # M and F # J
and F 75 M and J 75 M. Then Vva’ACLBG <€ VHG,BG,AG-

(67) Suppose that
G is a coordinate and G = {A, B,C,D,E,F,J, M} and A # Band A # C
and A# D and A# Fand A# F and A# Jand A # M and B # C
and B# D and B# E and B# F and B # J and B # M and C # D
and C#FEFand C# Fand C# Jand C # M and D # EF and D # F
and D # Jand D # M and E # F and F # J and E # M and F # J
and F' 7& M and J 7& M. Then HVQ’AG,BG S Elﬂa’BG,AG-

(68) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A# F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# Mand B# N and C # D and C # FE and C # F and C # J and
C#Mand C # Nand D # Fand D # Fand D # J and D # M
and D#A#Nand F# Fand F# Jand E# M and E # N and F # J
and FF % M and FF # N and J # M and J # N and M # N. Then
W, 46,BG € Wy, 5G,AG.

(69) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# Mand B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D # N and F# F and F # J and E# M and F # N and F # J
and F' # M and FF # N and J # M and J # N and M # N. Then
W, 46,BG =Wy, z6.4G.

(70) Suppose that
G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A# Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # F and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # Jand D # M

!The proposition (65) has been removed.
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(71)

(72)

(73)
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and D # N and F# F and F # J and E # M and F # N and F # J
and F' # M and F # N and J # M and J # N and M # N. Then
HVQ,AG,BG@VEI&BG,AG-

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# Mand B# N and C # D and C # E and C # F and C # J and
C# MandC # Nand D # Fand D # Fand D # Jand D # M
and D # N and F# F and F # J and E # M and F # N and F # J
and FF # M and FF # N and J # M and J # N and M # N. Then
33,56,4G € 33, ,6,8G.

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C# Mand C # Nand D # Fand D # Fand D # Jand D # M
and D # N and F# F and FE # J and E # M and F # N and F # J
and FF # M and F # N and J # M and J # N and M # N. Then
33,.46,8G = 33, 56,AG.

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J, M,N} and A # B and
A#Cand A# D and A # F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # E and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D # N and E# F and E # J and E # M and E # N and F # J
and F' # M and F # N and J # M and J # N and M # N. Then
W, 46,BG € Ty, 564G

(74) VVQ,AG,BG (& EIHa,BGvAG'

(75)

(76)

Suppose that

G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A # Fand A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C # Nand D # Fand D # Fand D # Jand D # M
and D# Nand F # Fand F # Jand E# M and F # N and F # J
and FF' % M and FF # N and J # M and J # N and M # N. Then
W, 46,BG € V3, z6,AG.

Suppose that
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G is a coordinate and G = {A,B,C,D,E,F,J,M,N} and A # B and
A#Cand A# D and A# F and A # F and A # J and A # M and
A# Nand B# C and B# D and B # E and B # F and B # J and
B# M and B# N and C # D and C # FE and C # F and C # J and
C#Mand C# Nand D # Fand D # Fand D # J and D # M
and D # N and F # Fand F # J and F # M and E # N and F # J
and FF % M and FF # N and J # M and J # N and M # N. Then

H,,46.BG € T3, 564G
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