Compactness of the Bounded Closed Subsets of $\mathcal{E}_{\mathrm{T}}^{2}$

Artur Korniłowicz ${ }^{1}$
University of Bialystok

Abstract

Summary. This paper contains theorems which describe the correspondence between topological properties of real numbers subsets introduced in [40] and introduced in [38], [16]. We also show the homeomorphism between the cartesian product of two R^{1} and $\mathcal{E}_{\mathrm{T}}^{2}$. The compactness of the bounded closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is proven.

MML Identifier: TOPREAL6.

The articles [41], [48], [12], [49], [10], [11], [6], [47], [7], [18], [24], [43], [1], [39], [35], [8], [14], [28], [27], [26], [45], [25], [23], [3], [9], [13], [29], [2], [46], [40], [38], [50], [17], [36], [37], [16], [42], [5], [19], [4], [20], [21], [22], [51], [33], [32], [15], [31], [30], [44], and [34] provide the notation and terminology for this paper.

1. Real Numbers

For simplicity, we use the following convention: a, b are real numbers, r is a real number, i, j, n are natural numbers, M is a non empty metric space, p, q, s are points of $\mathcal{E}_{\mathrm{T}}^{2}, e$ is a point of \mathcal{E}^{2}, w is a point of \mathcal{E}^{n}, z is a point of M, A, B are subsets of $\mathcal{E}_{\mathrm{T}}^{n}, P$ is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and D is a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

One can prove the following propositions:
(2) $\quad a-2 \cdot a=-a$.
(3) $-a+2 \cdot a=a$.

[^0](4) $a-\frac{a}{2}=\frac{a}{2}$.
(5) If $a \neq 0$ and $b \neq 0$, then $\frac{a}{\frac{a}{b}}=b$.
(6) For all real numbers a, b such that $0 \leqslant a$ and $0 \leqslant b$ holds $\sqrt{a+b} \leqslant$ $\sqrt{a}+\sqrt{b}$.
(7) If $0 \leqslant a$ and $a \leqslant b$, then $|a| \leqslant|b|$.
(8) If $b \leqslant a$ and $a \leqslant 0$, then $|a| \leqslant|b|$.
(9) $\quad \prod(0 \mapsto r)=1$.
(10) $\quad \prod(1 \mapsto r)=r$.
(11) $\Pi(2 \mapsto r)=r \cdot r$.
(12) $\quad \prod((n+1) \mapsto r)=\prod(n \mapsto r) \cdot r$.
(13) $j \neq 0$ and $r=0$ iff $\prod(j \mapsto r)=0$.
(14) If $r \neq 0$ and $j \leqslant i$, then $\prod\left(\left(i-^{\prime} j\right) \mapsto r\right)=\frac{\prod(i \mapsto r)}{\prod(j \mapsto r)}$.
(15) If $r \neq 0$ and $j \leqslant i$, then $r^{i-^{\prime} j}=\frac{r^{i}}{r^{j}}$.

In the sequel a, b denote real numbers.
The following propositions are true:
(16) ${ }^{2}\langle a, b\rangle=\left\langle a^{\mathbf{2}}, b^{\mathbf{2}}\right\rangle$.
(17) For every finite sequence F of elements of \mathbb{R} such that $i \in \operatorname{dom}|F|$ and $a=F(i)$ holds $|F|(i)=|a|$.
(18) $\quad|\langle a, b\rangle|=\langle | a|,|b|\rangle$.
(19) For all real numbers a, b, c, d such that $a \leqslant b$ and $c \leqslant d$ holds $|b-a|+$ $|d-c|=(b-a)+(d-c)$.
(20) If $r>0$, then $a \in] a-r, a+r[$.
(21) If $r \geqslant 0$, then $a \in[a-r, a+r]$.
(22) If $a<b$, then inf $] a, b[=a$ and sup $] a, b[=b$.
(23) $] a, b[\subseteq[a, b]$.
(24) For every bounded subset A of \mathbb{R} holds $A \subseteq[\inf A, \sup A]$.

2. Topological Preliminaries

Let T be a topological structure and let A be a finite subset of the carrier of T. One can verify that $T \upharpoonright A$ is finite.

Let us observe that there exists a topological space which is finite, non empty, and strict.

Let T be a topological structure. Note that every subset of T which is empty is also connected.

Let T be a topological space. Observe that every subset of T which is finite is also compact.

Let T be T_{2} non empty topological space. Observe that every subset of T which is compact is also closed.

The following two propositions are true:
(25) For all topological spaces S, T such that S and T are homeomorphic and S is connected holds T is connected.
(26) Let T be a topological space and F be a finite family of subsets of T. Suppose that for every subset X of T such that $X \in F$ holds X is compact. Then $\bigcup F$ is compact.

3. Points and Subsets in $\mathcal{E}_{\mathrm{T}}^{2}$

The following propositions are true:
(27) For every non empty set X and for every set Y such that $X \subseteq Y$ holds X meets Y.
(28) For all sets A, B, C, D, X such that $A \cup B=X$ and $C \cup D=X$ and $A \cap B=\emptyset$ and $C \cap D=\emptyset$ and $B=D$ holds $A=C$.
(29) For all sets A, B, C, D, a, b such that $A \subseteq B$ and $C \subseteq D$ holds $\prod[a \longmapsto A, b \longmapsto C] \subseteq \prod[a \longmapsto B, b \longmapsto D]$.
(30) For all subsets A, B of \mathbb{R} holds $\Pi[1 \longmapsto A, 2 \longmapsto B]$ is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(31) $\quad|[0, a]|=|a|$ and $|[a, 0]|=|a|$.
(32) For every point p of \mathcal{E}^{2} and for every point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p=00_{\mathcal{E}_{\mathrm{T}}^{2}}$ and $p=q$ holds $q=\langle 0,0\rangle$ and $q_{1}=0$ and $q_{2}=0$.
(33) For all points p, q of \mathcal{E}^{2} and for every point z of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p=00_{\mathcal{E}_{\mathrm{T}}^{2}}$ and $q=z$ holds $\rho(p, q)=|z|$.
(34) $r \cdot p=\left[r \cdot p_{\mathbf{1}}, r \cdot p_{\mathbf{2}}\right]$.
(35) If $s=(1-r) \cdot p+r \cdot q$ and $s \neq p$ and $0 \leqslant r$, then $0<r$.
(36) If $s=(1-r) \cdot p+r \cdot q$ and $s \neq q$ and $r \leqslant 1$, then $r<1$.
(37) If $s \in \mathcal{L}(p, q)$ and $s \neq p$ and $s \neq q$ and $p_{\mathbf{1}}<q_{1}$, then $p_{1}<s_{\mathbf{1}}$ and $s_{1}<q_{1}$.
(38) If $s \in \mathcal{L}(p, q)$ and $s \neq p$ and $s \neq q$ and $p_{\mathbf{2}}<q_{\mathbf{2}}$, then $p_{\mathbf{2}}<s_{\mathbf{2}}$ and $s_{2}<q_{2}$.
(39) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q_{1}<$ W-bound D and $p \neq q$.
(40) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q_{1}>$ E-bound D and $p \neq q$.
(41) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q_{\mathbf{2}}>$ N-bound D and $p \neq q$.
(42) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q_{2}<$ S-bound D and $p \neq q$.
One can verify the following observations:

* every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is convex and non empty is also connected,
* every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non horizontal is also non empty,
* every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non vertical is also non empty,
* every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is region is also open and connected, and
* every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is open and connected is also region.

Let us observe that every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is empty is also horizontal and every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is empty is also vertical.

Let us mention that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non empty and convex.

Let a, b be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Observe that $\mathcal{L}(a, b)$ is convex and connected.
Let us mention that $\square_{\mathcal{E}^{2}}$ is connected.
Let us observe that every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is simple closed curve is also connected and compact.

One can prove the following propositions:
(43) $\quad \mathcal{L}($ NE-corner P, SE-corner $P) \subseteq \widetilde{\mathcal{L}}(\operatorname{SpStSeq} P)$.
(44) $\mathcal{L}($ SW-corner P, SE-corner $P) \subseteq \widetilde{\mathcal{L}}(\operatorname{SpStSeq} P)$.
(45) $\mathcal{L}($ SW-corner P, NW-corner $P) \subseteq \widetilde{\mathcal{L}}($ SpStSeq $P)$.
(46) For every subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}<$ W-bound $C\}$ is a non empty convex connected subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

4. Balls AS SUBSETS of $\mathcal{E}_{\mathrm{T}}^{n}$

We now state a number of propositions:
(47) If $e=q$ and $p \in \operatorname{Ball}(e, r)$, then $q_{1}-r<p_{\mathbf{1}}$ and $p_{\mathbf{1}}<q_{1}+r$.
(48) If $e=q$ and $p \in \operatorname{Ball}(e, r)$, then $q_{2}-r<p_{2}$ and $p_{2}<q_{2}+r$.
(49) If $p=e$, then $\prod[1 \longmapsto] p_{\mathbf{1}}-\frac{r}{\sqrt{2}}, p_{\mathbf{1}}+\frac{r}{\sqrt{2}}[, 2 \longmapsto] p_{\mathbf{2}}-\frac{r}{\sqrt{2}}, p_{\mathbf{2}}+\frac{r}{\sqrt{2}}[] \subseteq$ $\operatorname{Ball}(e, r)$.
(50) If $p=e$, then $\operatorname{Ball}(e, r) \subseteq \prod[1 \longmapsto] p_{\mathbf{1}}-r, p_{\mathbf{1}}+r[, 2 \longmapsto] p_{\mathbf{2}}-r, p_{\mathbf{2}}+r[]$.
(51) If $P=\operatorname{Ball}(e, r)$ and $p=e$, then $\left.(\operatorname{proj} 1)^{\circ} P=\right] p_{\mathbf{1}}-r, p_{\mathbf{1}}+r[$.
(52) If $P=\operatorname{Ball}(e, r)$ and $p=e$, then $\left.(\operatorname{proj} 2)^{\circ} P=\right] p_{\mathbf{2}}-r, p_{\mathbf{2}}+r[$.
(53) If $D=\operatorname{Ball}(e, r)$ and $p=e$, then W -bound $D=p_{\mathbf{1}}-r$.
(54) If $D=\operatorname{Ball}(e, r)$ and $p=e$, then E-bound $D=p_{1}+r$.
(55) If $D=\operatorname{Ball}(e, r)$ and $p=e$, then S -bound $D=p_{2}-r$.
(56) If $D=\operatorname{Ball}(e, r)$ and $p=e$, then N -bound $D=p_{\mathbf{2}}+r$.
(57) If $D=\operatorname{Ball}(e, r)$, then D is non horizontal.
(58) If $D=\operatorname{Ball}(e, r)$, then D is non vertical.
(59) For every point f of \mathcal{E}^{2} and for every point x of $\mathcal{E}_{\text {T }}^{2}$ such that $x \in$ $\operatorname{Ball}(f, a)$ holds $\left[x_{\mathbf{1}}-2 \cdot a, x_{\mathbf{2}}\right] \notin \operatorname{Ball}(f, a)$.
(60) Let X be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of \mathcal{E}^{2}. If $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$ and $a>0$, then $X \subseteq \operatorname{Ball}(p, \mid$ E-bound $X|+|$ N-bound $X \mid+$ \mid W-bound $X|+|$ S-bound $X \mid+a$).
(61) Let M be a Reflexive symmetric triangle non empty metric structure and z be a point of M. If $r<0$, then $\operatorname{Sphere}(z, r)=\emptyset$.
(62) For every Reflexive discernible non empty metric structure M and for every point z of M holds $\operatorname{Sphere}(z, 0)=\{z\}$.
(63) Let M be a Reflexive symmetric triangle non empty metric structure and z be a point of M. If $r<0$, then $\overline{\operatorname{Ball}}(z, r)=\emptyset$.
(64) $\overline{\operatorname{Ball}}(z, 0)=\{z\}$.
(65) For every subset A of $M_{\text {top }}$ such that $A=\overline{\operatorname{Ball}}(z, r)$ holds A is closed.
(66) If $A=\overline{\operatorname{Ball}}(w, r)$, then A is closed.
(67) $\overline{\operatorname{Ball}}(z, r)$ is bounded.
(68) For every subset A of $M_{\text {top }}$ such that $A=\operatorname{Sphere}(z, r)$ holds A is closed.
(69) If $A=\operatorname{Sphere}(w, r)$, then A is closed.
(70) $\operatorname{Sphere}(z, r)$ is bounded.
(71) If A is Bounded, then \bar{A} is Bounded.
(72) For every non empty metric structure M holds M is bounded iff every subset of the carrier of M is bounded.
(73) Let M be a Reflexive symmetric triangle non empty metric structure and X, Y be subsets of the carrier of M. Suppose the carrier of $M=X \cup Y$ and M is non bounded and X is bounded. Then Y is non bounded.
(74) For all subsets X, Y of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $n \geqslant 1$ and the carrier of $\mathcal{E}_{\mathrm{T}}^{n}=X \cup Y$ and X is Bounded holds Y is non Bounded.
$(76)^{3}$ If A is Bounded and B is Bounded, then $A \cup B$ is Bounded.

5. Topological Properties of Real Numbers Subsets

Let X be a non empty subset of \mathbb{R}. Observe that \bar{X} is non empty.
Let D be a lower bounded subset of \mathbb{R}. One can verify that \bar{D} is lower bounded.

[^1]Let D be an upper bounded subset of \mathbb{R}. One can verify that \bar{D} is upper bounded.

We now state two propositions:
(77) For every non empty lower bounded subset D of \mathbb{R} holds $\inf D=\inf \bar{D}$.
(78) For every non empty upper bounded subset D of \mathbb{R} holds $\sup D=\sup \bar{D}$.

Let us observe that $\mathbb{R}^{\mathbf{1}}$ is T_{2}.
The following three propositions are true:
(79) For every subset A of \mathbb{R} and for every subset B of $\mathbb{R}^{\mathbf{1}}$ such that $A=B$ holds A is closed iff B is closed.
(80) For every subset A of \mathbb{R} and for every subset B of $\mathbb{R}^{\mathbf{1}}$ such that $A=B$ holds $\bar{A}=\bar{B}$.
(81) For every subset A of \mathbb{R} and for every subset B of $\mathbb{R}^{\mathbf{1}}$ such that $A=B$ holds A is compact iff B is compact.
One can check that every subset of \mathbb{R} which is finite is also compact.
Let a, b be real numbers. Note that $[a, b]$ is compact.
Next we state the proposition
(82) $\quad a \neq b$ iff $\overline{] a, b[}=[a, b]$.

Let us observe that there exists a subset of \mathbb{R} which is non empty, finite, and bounded.

The following propositions are true:
(83) Let T be a topological structure, f be a real map of T, and g be a map from T into $\mathbb{R}^{\mathbf{1}}$. If $f=g$, then f is continuous iff g is continuous.
(84) Let A, B be subsets of \mathbb{R} and f be a map from $: \mathbb{R}^{\mathbf{1}}, \mathbb{R}^{\mathbf{1}}$; into $\mathcal{E}_{\mathrm{T}}^{2}$. If for all real numbers x, y holds $f(\langle x, y\rangle)=\langle x, y\rangle$, then $f^{\circ}: A, B:=\prod[1 \longmapsto$ $A, 2 \longmapsto B]$.
(85) For every map f from $: \mathbb{R}^{\mathbf{1}}, \mathbb{R}^{\mathbf{1}}$: into $\mathcal{E}_{\mathrm{T}}^{2}$ such that for all real numbers x, y holds $f(\langle x, y\rangle)=\langle x, y\rangle$ holds f is a homeomorphism.
(86) $\left.\quad: \mathbb{R}^{\mathbf{1}}, \mathbb{R}^{\mathbf{1}}:\right]$ and $\mathcal{E}_{\mathrm{T}}^{2}$ are homeomorphic.

6. Bounded Subsets

One can prove the following propositions:
(87) For all compact subsets A, B of \mathbb{R} holds $\prod[1 \longmapsto A, 2 \longmapsto B]$ is a compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(88) If P is Bounded and closed, then P is compact.
(89) If P is Bounded, then for every continuous real map g of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\overline{g^{\circ} P} \subseteq$ $g^{\circ} \bar{P}$.
(90) $\quad(\text { proj1 })^{\circ} \bar{P} \subseteq \overline{(\text { proj1 })^{\circ} P}$.
(91) $\quad(\text { proj2 } 2)^{\circ} \bar{P} \subseteq \overline{(\text { proj2 } 2)^{\circ} P}$.
(92) If P is Bounded, then $\overline{(\text { proj1 })^{\circ} P}=(\operatorname{proj} 1)^{\circ} \bar{P}$.
(93) If P is Bounded, then $\overline{(\operatorname{proj} 2)^{\circ} P}=(\operatorname{proj} 2)^{\circ} \bar{P}$.
(94) If D is Bounded, then W-bound $D=\mathrm{W}$-bound \bar{D}.
(95) If D is Bounded, then E-bound $D=$ E-bound \bar{D}.
(96) If D is Bounded, then N-bound $D=\mathrm{N}$-bound \bar{D}.
(97) If D is Bounded, then S-bound $D=$ S-bound \bar{D}.

Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353-359, 1996.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[14] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[15] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[16] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[17] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[18] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[19] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[20] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[21] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[22] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[23] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
[24] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[25] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[26] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[27] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[28] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[29] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[30] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193-201, 1998.
[31] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[32] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Formalized Mathematics, 3(1):101-106, 1992.
[33] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. Formalized Mathematics, 3(2):137-142, 1992.
[34] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[35] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[36] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[37] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[38] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[39] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[40] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[41] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[42] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[43] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[44] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. Formalized Mathematics, 6(4):531-539, 1997.
[45] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[46] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[47] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[48] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[49] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[50] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
[51] Mariusz Żynel and Adam Guzowski. T_{0} topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received February 19, 1999

[^0]: ${ }^{1}$ This paper was written while the author visited Shinshu University, winter 1999.
 ${ }^{2}$ The proposition (1) has been removed.

[^1]: ${ }^{3}$ The proposition (75) has been removed.

