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Summary. By the special polygonal curve we meana simple closed curve,
that is a polygone and moreover has edges parallel to axes. We continue the
formalization of the Takeuti-Nakamura proof [21] of the Jordan curve theorem. In
the paper we prove that the complement of the special polygonal curve consists of
at least two components. With the theorem which has at most two components
we completed the theorem that a special polygonal curve cuts the plane into
exactly two components.

MML Identifier: SPRECT 4.

The articles [22], [29], [1], [11], [3], [2], [27], [28], [19], [12], [20], [30], [7], [8], [9],

[16], [4], [24], [13], [14], [15], [5], [18], [23], [17], [6], [10], [26], and [25] provide

the terminology and notation for this paper.

In this paper j denotes a natural number.

One can prove the following propositions:

(1) Let f be a S-sequence in R
2 and Q be a non empty compact subset of E2

T
.

If L̃(f) meets Q and π1f /∈ Q, then L̃(⇂ f,FPoint(L̃(f), π1f, πlen ff, Q)) ∩

Q = {FPoint(L̃(f), π1f, πlen ff, Q)}.

(2) Let f be a finite sequence of elements of E2
T
and p be a point of E2

T
. If f

is a special sequence and p = πlen ff, then L̃(⇃ p, f) = {p}.

(3) Let f be a finite sequence of elements of E2
T
and p be a point of E2

T
. If f

is a special sequence and p ∈ L̃(f), then L̃(⇃ p, f) ⊆ L̃(f).

(4) Let f be a S-sequence in R
2, p be a point of E2

T
, and given j. If 1 ¬ j and

j < len f and p ∈ L̃(mid(f, j, len f)), then LE πjf, p, L̃(f), π1f, πlen ff.

1The work had been done when the first author visited Nagano in fall of 1998.
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(5) Let f be a S-sequence in R
2, p, q be points of E2

T
, and given j. If 1 ¬ j

and j < len f and p ∈ L(f, j) and q ∈ L(p, πj+1f), then LE p, q, L̃(f),

π1f, πlen ff.

(6) Let f be a S-sequence in R
2 and Q be a non empty com-

pact subset of E2
T
. If L̃(f) meets Q and πlen ff /∈ Q, then

L̃(⇃LPoint(L̃(f), π1f, πlen ff, Q), f) ∩Q = {LPoint(L̃(f), π1f, πlen ff, Q)}.

(7) For every non constant standard special circular sequence f holds

LeftComp(f) 6= RightComp(f).
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