A Small Computer Model with Push-Down Stack ${ }^{1}$

Jing-Chao Chen
Shanghai Jiaotong University

Abstract

Summary. The SCMFSA computer can prove the correctness of many algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms. For this reason, this article improves the SCMFSA computer and presents a Small Computer Model with Push-Down Stack (called SCMPDS for short). In addition to conventional arithmetic and "goto" instructions, we increase two new instructions such as "return" and "save instruction-counter" in order to be able to design recursive programs.

MML Identifier: SCMPDS_1.

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14], [19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we follow the rules: $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are sets, i, j, k are natural numbers, I, I_{2}, I_{3}, I_{4} are elements of \mathbb{Z}_{14}, i_{1} is an element of Instr-Locscm, d_{1}, $d_{2}, d_{3}, d_{4}, d_{5}$ are elements of Data-LocsCM , and $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$ are integers.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be sets. The functor $<* x_{1}, x_{2}, x_{3}, x_{4} *>$ yields a set and is defined as follows:
(Def. 1) $<* x_{1}, x_{2}, x_{3}, x_{4} *>=\left\langle x_{1}, x_{2}, x_{3}\right\rangle \wedge\left\langle x_{4}\right\rangle$.
Let x_{5} be a set. The functor $<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>$ yielding a set is defined by: (Def. 2) $\left.<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle=\left\langle x_{1}, x_{2}, x_{3}\right\rangle \wedge\left\langle x_{4}, x_{5}\right\rangle$.

[^0]Let $x_{1}, x_{2}, x_{3}, x_{4}$ be sets. One can verify that $<* x_{1}, x_{2}, x_{3}, x_{4} *>$ is functionlike and relation-like. Let x_{5} be a set. One can verify that $\left\langle * x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle$ is function-like and relation-like.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be sets. One can verify that $<* x_{1}, x_{2}, x_{3}, x_{4} *>$ is finite sequence-like. Let x_{5} be a set. One can check that $<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>$ is finite sequence-like.

Let D be a non empty set and let $x_{1}, x_{2}, x_{3}, x_{4}$ be elements of D. Then $<* x_{1}, x_{2}, x_{3}, x_{4} *>$ is a finite sequence of elements of D.

Let D be a non empty set and let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be elements of D. Then $<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>$ is a finite sequence of elements of D.

One can prove the following propositions:
(1) $<* x_{1}, x_{2}, x_{3}, x_{4} *>=\left\langle x_{1}, x_{2}, x_{3}\right\rangle \wedge\left\langle x_{4}\right\rangle$ and $<* x_{1}, x_{2}, x_{3}, x_{4} *>=$ $\left\langle x_{1}, x_{2}\right\rangle^{\wedge}\left\langle x_{3}, x_{4}\right\rangle$ and $<* x_{1}, x_{2}, x_{3}, x_{4} *>=\left\langle x_{1}\right\rangle \wedge\left\langle x_{2}, x_{3}, x_{4}\right\rangle$ and $<$ $* x_{1}, x_{2}, x_{3}, x_{4} *>=\left\langle x_{1}\right\rangle \wedge\left\langle x_{2}\right\rangle \wedge\left\langle x_{3}\right\rangle \wedge\left\langle x_{4}\right\rangle$.
(2) $\left.<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle=\left\langle x_{1}, x_{2}, x_{3}\right\rangle^{\wedge}\left\langle x_{4}, x_{5}\right\rangle$ and $\left.<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle$ $=<* x_{1}, x_{2}, x_{3}, x_{4} *>\wedge\left\langle x_{5}\right\rangle$ and $<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>=\left\langle x_{1}\right\rangle^{\wedge}\left\langle x_{2}\right\rangle^{\wedge}$ $\left\langle x_{3}\right\rangle \wedge\left\langle x_{4}\right\rangle \wedge\left\langle x_{5}\right\rangle$ and $\left.<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle=\left\langle x_{1}, x_{2}\right\rangle \wedge\left\langle x_{3}, x_{4}, x_{5}\right\rangle$ and $\left.\left.<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle=\left\langle x_{1}\right\rangle^{\wedge}<* x_{2}, x_{3}, x_{4}, x_{5} *\right\rangle$.
We adopt the following rules: N_{1} is a non empty set, $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ are elements of N_{1}, and p is a finite sequence.

We now state several propositions:
(3) $p=<* x_{1}, x_{2}, x_{3}, x_{4} *>$ iff $\operatorname{len} p=4$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$.
(4) $\operatorname{dom}<* x_{1}, x_{2}, x_{3}, x_{4} *>=\operatorname{Seg} 4$.
(5) $p=<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>$ iff len $p=5$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$.
(6) $\operatorname{dom}<* x_{1}, x_{2}, x_{3}, x_{4}, x_{5} *>=\operatorname{Seg} 5$.
(7) $\pi_{1}<* y_{1}, y_{2}, y_{3}, y_{4} *>=y_{1}$ and $\pi_{2}<* y_{1}, y_{2}, y_{3}, y_{4} *>=y_{2}$ and $\pi_{3}<$ $* y_{1}, y_{2}, y_{3}, y_{4} *>=y_{3}$ and $\pi_{4}<* y_{1}, y_{2}, y_{3}, y_{4} *>=y_{4}$.
(8) $\pi_{1}<* y_{1}, y_{2}, y_{3}, y_{4}, y_{5} *>=y_{1}$ and $\pi_{2}<* y_{1}, y_{2}, y_{3}, y_{4}, y_{5} *>=y_{2}$ and $\pi_{3}<* y_{1}, y_{2}, y_{3}, y_{4}, y_{5} *>=y_{3}$ and $\pi_{4}<* y_{1}, y_{2}, y_{3}, y_{4}, y_{5} *>=y_{4}$ and $\pi_{5}<* y_{1}, y_{2}, y_{3}, y_{4}, y_{5} *>=y_{5}$.
(9) For every integer k holds $k \in \bigcup\{\mathbb{Z}\} \cup \mathbb{N}$.
(10) For every integer k holds $k \in$ Data-LocsCM $\cup \mathbb{Z}$.
(11h For every element d of Data-Locscm holds $d \in$ Data-Locscm $\cup \mathbb{Z}$.

2. The Construction of SCM with Push-Down Stack

The subset SCMPDS - Instr of $\left.: \mathbb{Z}_{14},(\bigcup\{\mathbb{Z}\} \cup \mathbb{N})^{*}:\right]$ is defined by the condition (Def. 3).
(Def. 3) $\operatorname{SCMPDS}-\operatorname{Instr}=\{\langle 0,\langle l\rangle\rangle: l$ ranges over integers $\} \cup\left\{\left\langle 1,\left\langle s_{1}\right\rangle\right\rangle: s_{1}\right.$ ranges over elements of Data-Loccscm $\} \cup\{\langle I,\langle v, c\rangle\rangle ; I$ ranges over elements of \mathbb{Z}_{14}, v ranges over elements of Data-LocsCM, c ranges over integers: $I \in\{2,3\}\} \cup\left\{\left\langle I,\left\langle v, c_{1}, c_{2}\right\rangle\right\rangle ; I\right.$ ranges over elements of \mathbb{Z}_{14}, v ranges over elements of Data-LocsCM, c_{1} ranges over integers, c_{2} ranges over integers: $I \in\{4,5,6,7,8\}\} \cup\left\{\left\langle I,<* v_{1}, v_{2}, c_{1}, c_{2} *>\right\rangle ; I\right.$ ranges over elements of \mathbb{Z}_{14}, v_{1} ranges over elements of Data-Loc ${ }_{S C M}$, v_{2} ranges over elements of Data-Locscm,c_{1} ranges over integers, c_{2} ranges over integers: $I \in\{9,10,11,12,13\}\}$.
We now state two propositions:
(12) $\mathrm{SCMPDS}-\operatorname{Instr}=\left\{\left\langle 0,\left\langle k_{1}\right\rangle\right\rangle\right\} \cup\left\{\left\langle 1,\left\langle d_{1}\right\rangle\right\rangle\right\} \cup\left\{\left\langle I_{2},\left\langle d_{2}, k_{2}\right\rangle\right\rangle: I_{2} \in\right.$ $\{2,3\}\} \cup\left\{\left\langle I_{3},\left\langle d_{3}, k_{3}, k_{4}\right\rangle\right\rangle: I_{3} \in\{4,5,6,7,8\}\right\} \cup\left\{\left\langle I_{4},<* d_{4}, d_{5}, k_{5}, k_{6} *>\right.\right.$ $\left.\rangle: I_{4} \in\{9,10,11,12,13\}\right\}$.
(13) $\langle 0,\langle 0\rangle\rangle \in$ SCMPDS - Instr .

One can verify that SCMPDS - Instr is non empty.
We now state three propositions:
(14) $k=0$ or there exists j such that $k=2 \cdot j+1$ or there exists j such that $k=2 \cdot j+2$.
(15) If $k=0$, then it is not true that there exists j such that $k=2 \cdot j+1$ and it is not true that there exists j such that $k=2 \cdot j+2$.
(16)(i) If there exists j such that $k=2 \cdot j+1$, then $k \neq 0$ and it is not true that there exists j such that $k=2 \cdot j+2$, and
(ii) if there exists j such that $k=2 \cdot j+2$, then $k \neq 0$ and it is not true that there exists j such that $k=2 \cdot j+1$.
The function SCMPDS - OK from \mathbb{N} into $\{\mathbb{Z}\} \cup\{$ SCMPDS - Instr, Instr-LoccsCM $\}$ is defined as follows:
(Def. 4) (SCMPDS -OK$)(0)=$ Instr-Loc $_{S C M}$ and for every natural number k holds $(\operatorname{SCMPDS}-\mathrm{OK})(2 \cdot k+1)=\mathbb{Z}$ and $(\operatorname{SCMPDS}-\mathrm{OK})(2 \cdot k+2)=$ SCMPDS - Instr .
A SCMPDS-State is an element of \prod SCMPDS - OK .
Next we state several propositions:
(17) \quad Instr-Loc ${ }_{S C M} \neq$ SCMPDS - Instr and SCMPDS $-\operatorname{Instr} \neq \mathbb{Z}$.
(18) $\quad(S C M P D S ~-~ O K) ~(i)=I n s t r-L o c_{S C M}$ iff $i=0$.
(19) $\quad(\mathrm{SCMPDS}-\mathrm{OK})(i)=\mathbb{Z}$ iff there exists k such that $i=2 \cdot k+1$.
(20) $\quad(\mathrm{SCMPDS}-\mathrm{OK})(i)=\mathrm{SCMPDS}-\operatorname{Instr}$ iff there exists k such that $i=$ $2 \cdot k+2$.
(21) $(\mathrm{SCMPDS}-\mathrm{OK})\left(d_{1}\right)=\mathbb{Z}$.
(22) $\quad(\mathrm{SCMPDS}-\mathrm{OK})\left(i_{1}\right)=\mathrm{SCMPDS}-$ Instr.
(23) $\quad \pi_{0} \prod \mathrm{SCMPDS}-\mathrm{OK}=$ Instr-Loc ${ }_{\mathrm{SCM}}$.

$$
\begin{align*}
& \pi_{d_{1}} \Pi \text { SCMPDS }- \text { OK }=\mathbb{Z} . \tag{24}\\
& \pi_{i_{1}} \Pi \text { SCMPDS }- \text { OK }=\text { SCMPDS }- \text { Instr } .
\end{align*}
$$

Let s be a SCMPDS-State. The functor $\mathbf{I C}_{s}$ yielding an element of Instr-Locscm is defined as follows:
(Def. 5) $\quad \mathbf{I C}_{s}=s(0)$.
Let s be a SCMPDS-State and let u be an element of Instr-Locscm. The functor $\operatorname{Chg}_{S_{C M}}(s, u)$ yielding a SCMPDS-State is defined as follows:
(Def. 6) $\operatorname{Chg}_{\mathrm{SCM}}(s, u)=s+\cdot(0 \longmapsto u)$.
We now state three propositions:
(26) For every SCMPDS-State s and for every element u of Instr-LocsCM holds $\left(\operatorname{Chg}_{\text {SCM }}(s, u)\right)(0)=u$.
(27) For every SCMPDS-State s and for every element u of Instr-Loc ${ }_{S C M}$ and for every element m_{1} of Data-LocsCM holds $\left(\operatorname{Chg}_{\mathrm{SCM}}(s, u)\right)\left(m_{1}\right)=s\left(m_{1}\right)$.
(28) For every SCMPDS-State s and for all elements u, v of Instr-LocsCM holds $\left(\operatorname{Chg}_{\mathrm{SCM}}(s, u)\right)(v)=s(v)$.
Let s be a SCMPDS-State, let t be an element of Data-Locscm, and let u be an integer. The functor $\operatorname{Chg}_{\text {SCM }}(s, t, u)$ yields a SCMPDS-State and is defined as follows:
(Def. 7) $\quad \operatorname{Chg}_{S C M}(s, t, u)=s+\cdot(t \mapsto u)$.
The following propositions are true:
(29) For every SCMPDS-State s and for every element t of Data-LocsCM and for every integer u holds $\left(\mathrm{Chg}_{\mathrm{SCM}}(s, t, u)\right)(0)=s(0)$.
(30) For every SCMPDS-State s and for every element t of Data-Locscm and for every integer u holds $\left(\mathrm{Chg}_{\mathrm{SCM}}(s, t, u)\right)(t)=u$.
(31) Let s be a SCMPDS-State, t be an element of Data-Locscm, u be an integer, and m_{1} be an element of Data-LocsCm. If $m_{1} \neq t$, then $\left(\operatorname{Chg}_{\mathrm{SCM}}(s, t, u)\right)\left(m_{1}\right)=s\left(m_{1}\right)$.
(32) Let s be a SCMPDS-State, t be an element of Data-Locscm, u be an integer, and v be an element of Instr-Locscm. Then $\left(\operatorname{Chg}_{\mathrm{SCM}}(s, t, u)\right)(v)=$ $s(v)$.
Let s be a SCMPDS-State and let a be an element of Data-Locscm. Then $s(a)$ is an integer.

Let s be a SCMPDS-State, let a be an element of Data-Locscm, and let n be an integer. The functor Address_Add (s, a, n) yields an element of Data-Locscm and is defined by:
(Def. 8) Address_Add $(s, a, n)=2 \cdot|s(a)+n|+1$.
Let s be a SCMPDS-State and let n be an integer. The functor jump_address (s, n) yielding an element of Instr-LocsCm is defined as follows:
(Def. 9) jump_address $(s, n)=\mid\left(\left(\mathbf{I C}_{s}\right.\right.$ qua natural number $\left.)-2\right)+2 \cdot n \mid+2$.

Let d be an element of Data-LocsCm and let s be an integer. Then $\langle d, s\rangle$ is a finite sequence of elements of Data-Locscm $\cup \mathbb{Z}$.

Let x be an element of SCMPDS - Instr. Let us assume that there exist an element m_{1} of Data-Locscm and I such that $x=\left\langle I,\left\langle m_{1}\right\rangle\right\rangle$. The functor x address $_{1}$ yielding an element of Data-Locscm is defined as follows:
(Def. 10) There exists a finite sequence f of elements of Data-Locccm such that $f=x_{2}$ and x address $_{1}=\pi_{1} f$.
The following proposition is true
(33) For every element x of SCMPDS - Instr and for every element m_{1} of Data-Locscm such that $x=\left\langle I,\left\langle m_{1}\right\rangle\right\rangle$ holds x address $_{1}=m_{1}$.
Let x be an element of SCMPDS - Instr. Let us assume that there exist an integer r and I such that $x=\langle I,\langle r\rangle\rangle$. The functor x constINT yielding an integer is defined by:
(Def. 11) There exists a finite sequence f of elements of \mathbb{Z} such that $f=x_{2}$ and x const_INT $=\pi_{1} f$.
The following proposition is true
(34) For every element x of SCMPDS - Instr and for every integer k such that $x=\langle I,\langle k\rangle\rangle$ holds x const_INT $=k$.
Let x be an element of SCMPDS - Instr. Let us assume that there exist an element m_{1} of Data-Locscm, an integer r, and I such that $x=\left\langle I,\left\langle m_{1}, r\right\rangle\right\rangle$. The functor x P21address yielding an element of Data-LocsCM is defined as follows:
(Def. 12) There exists a finite sequence f of elements of Data-LocsCM $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P21address $=\pi_{1} f$.
The functor x P22const yielding an integer is defined as follows:
(Def. 13) There exists a finite sequence f of elements of Data-LocsCM $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P22const $=\pi_{2} f$.
The following proposition is true
(35) Let x be an element of SCMPDS - Instr, m_{1} be an element of Data-Locscm, and r be an integer. If $x=\left\langle I,\left\langle m_{1}, r\right\rangle\right\rangle$, then x P21address $=m_{1}$ and x P22const $=r$.
Let x be an element of SCMPDS - Instr. Let us assume that there exist an element m_{2} of Data-Locscm, integers k_{1}, k_{2}, and I such that $x=\left\langle I,\left\langle m_{2}, k_{1}\right.\right.$, $\left.\left.k_{2}\right\rangle\right\rangle$. The functor x P31address yielding an element of Data-LocsCm is defined as follows:
(Def. 14) There exists a finite sequence f of elements of Data-LocsCM $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P31address $=\pi_{1} f$.
The functor x P32const yielding an integer is defined as follows:
(Def. 15) There exists a finite sequence f of elements of Data-Loc ${ }_{S C M} \cup \mathbb{Z}$ such that $f=x_{2}$ and x P32const $=\pi_{2} f$.

The functor x P33const yields an integer and is defined by:
(Def. 16) There exists a finite sequence f of elements of Data-LocsCM $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P33const $=\pi_{3} f$.
We now state the proposition
(36) Let x be an element of SCMPDS - Instr, d_{1} be an element of Data-Locscm, and k_{1}, k_{2} be integers. If $x=\left\langle I,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$, then x P31address $=d_{1}$ and x P32const $=k_{1}$ and x P33const $=k_{2}$.

Let x be an element of SCMPDS - Instr. Let us assume that there exist elements m_{2}, m_{3} of Data-LocsCM, integers k_{1}, k_{2}, and I such that $x=$ $\left\langle I,<* m_{2}, m_{3}, k_{1}, k_{2} *>\right\rangle$. The functor x P41address yields an element of Data-Loc ${ }_{\mathrm{SCM}}$ and is defined by:
(Def. 17) There exists a finite sequence f of elements of Data-Locscm $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P41address $=\pi_{1} f$.
The functor x P42address yields an element of Data-LocsCM and is defined as follows:
(Def. 18) There exists a finite sequence f of elements of Data-Locscm $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P42address $=\pi_{2} f$.
The functor x P43const yielding an integer is defined as follows:
(Def. 19) There exists a finite sequence f of elements of Data-LocsCM $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P43const $=\pi_{3} f$.
The functor x P44const yielding an integer is defined as follows:
(Def. 20) There exists a finite sequence f of elements of Data-Locscm $\cup \mathbb{Z}$ such that $f=x_{2}$ and x P44const $=\pi_{4} f$.
We now state the proposition
(37) Let x be an element of SCMPDS - Instr, d_{1}, d_{2} be elements of Data-Locscm, and k_{1}, k_{2} be integers. If $\left.x=\left\langle I,<* d_{1}, d_{2}, k_{1}, k_{2} *\right\rangle\right\rangle$, then x P41address $=d_{1}$ and x P42address $=d_{2}$ and x P43const $=k_{1}$ and $x \mathrm{P} 44$ const $=k_{2}$.
Let s be a SCMPDS-State and let a be an element of Data-Locscm. The functor $\operatorname{PopInstrLoc}(s, a)$ yielding an element of Instr-Locscm is defined as follows:
(Def. 21) $\operatorname{PopInstrLoc}(s, a)=2 \cdot(|s(a)| \div 2)+4$.
The natural number RetSP is defined as follows:
(Def. 22) $\operatorname{RetSP}=0$.
The natural number RetIC is defined as follows:
(Def. 23) $\quad \operatorname{RetIC}=1$.
Let x be an element of SCMPDS - Instr and let s be a SCMPDS-State. The functor Exec-RessCm (x, s) yielding a SCMPDS-State is defined as follows:
(Def. 24) $\operatorname{Exec}-\operatorname{Res}_{\mathrm{SCM}}(x, s)=$
$\left(\operatorname{Chg}_{\mathrm{SCM}}(s\right.$, jump_address $(s, x$ const_INT $))$, if there exists k_{1} such that $x=\left\langle 0,\left\langle k_{1}\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}(s, x \mathrm{P} 21\right.$ address, $x \mathrm{P} 22$ const $)$, $\left.\operatorname{Next}\left(\mathbf{I C}_{s}\right)\right)$, if there exist d_{1}, k_{1} such that $x=\left\langle 2,\left\langle d_{1}, k_{1}\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}\left(s\right.\right.$, Address_Add $\left(s, x \mathrm{P} 21\right.$ address, $x \mathrm{P} 22$ const), $\left(\mathbf{I C}_{s}\right.$ qua natural number) $\left.), \operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist d_{1}, k_{1} such that $x=\left\langle 3,\left\langle d_{1}, k_{1}\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}\left(s, x\right.\right.$ address $_{1}, s\left(\right.$ Address_Add $\left(s, x\right.$ address $_{1}$, RetSP $\left.\left.)\right)\right)$, PopInstrLoc $\left(s, \operatorname{Address} _\operatorname{Add}\left(s, x\right.\right.$ address $\left.\left.\left._{1}, \operatorname{RetIC}\right)\right)\right)$, if there exists d_{1} such that $x=\left\langle 1,\left\langle d_{1}\right\rangle\right\rangle$,
$\operatorname{Chg}_{\text {SCM }}\left(s,(s\right.$ (Address_Add $(s, x$ P31address, x P32const $))=0 \rightarrow \operatorname{Next}\left(\mathbf{I C}_{s}\right)$, jump $_{-}$ $\operatorname{address}(s, x \mathrm{P} 33$ const $))$), if there exist d_{1}, k_{1}, k_{2} such that $x=\left\langle 4,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$,
$\operatorname{Chg}_{\mathrm{SCM}}\left(s,(s\right.$ (Address_Add $(s, x$ P31address, x P32const $))>0 \rightarrow \operatorname{Next}\left(\mathbf{I C}_{s}\right)$, jump_ $\operatorname{address}(s, x \mathrm{P} 33$ const $))$), if there exist d_{1}, k_{1}, k_{2} such that $x=\left\langle 5,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$,
$\operatorname{Chg}_{\text {SCM }}\left(s,\left(0>s(\right.\right.$ Address_Add $(s, x$ P31address, x P32const $)) \rightarrow \operatorname{Next}\left(\mathbf{I C}_{s}\right)$, jump_ $_{-}$ $\operatorname{address}(s, x \mathrm{P} 33 \mathrm{const}))$), if there exist d_{1}, k_{1}, k_{2} such that $x=\left\langle 6,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$,
Chg $_{\text {SCM }}\left(\right.$ Chg $_{\text {SCM }}(s$, Address_Add $(s, x$ P31address, x P32const), x P33const), $\left.\operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist d_{1}, k_{1}, k_{2} such that $x=\left\langle 7,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}(s\right.$, Address_Add $(s, x$ P31address, x P32const $)$,
s (Address_Add(s, x P31address, x P32const) $)+x$ P33const), Next($\left.\left.\mathbf{I C}_{s}\right)\right)$, if there exist d_{1}, k_{1}, k_{2} such that $x=\left\langle 8,\left\langle d_{1}, k_{1}, k_{2}\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}(s\right.$, Address_Add $(s, x$ P41address, x P43const), s (Address_Add $(s, x$ P41address, x P43const $))+s($ Address_Add $(s, x$ P42address, x P44const $)))$, $\left.\operatorname{Next}\left(\mathbf{I C}_{s}\right)\right)$, if there exist $d_{1}, d_{2}, k_{1}, k_{2}$ such that $x=\left\langle 9,<* d_{1}, d_{2}, k_{1}, k_{2} *>\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}\left(s, \operatorname{Address} _\mathrm{Add}(s, x \mathrm{P} 41\right.\right.$ address, $x \mathrm{P} 43$ const), s (Address_Add $(s, x$ P41address, x P43const) $)-s($ Address_Add $(s, x$ P42address, x P44const $))$), $\left.\operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist $d_{1}, d_{2}, k_{1}, k_{2}$ such that $x=\left\langle 10,<* d_{1}, d_{2}, k_{1}, k_{2} *>\right\rangle$, $\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}(s\right.$, Address_Add $(s, x$ P41address, x P43const), s (Address_Add $(s, x$ P41address, x P43const $)) \cdot s($ Address_Add $(s, x$ P42address, x P44const $)))$, $\left.\operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist $d_{1}, d_{2}, k_{1}, k_{2}$ such that $x=\left\langle 11,<* d_{1}, d_{2}, k_{1}, k_{2} *>\right\rangle$, Chg $_{\text {SCM }}\left(\mathrm{Chg}_{\mathrm{SCM}}(s\right.$, Address_Add $(s, x$ P41address, x P43const $)$, $s($ Address_Add $(s, x \mathrm{P} 42$ address, $x \mathrm{P} 44$ const $\left.))), \operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist d_{1}, d_{2}, k_{1}, k_{2} such that $\left.x=\left\langle 13,<* d_{1}, d_{2}, k_{1}, k_{2} *\right\rangle\right\rangle$,
$\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}\left(\mathrm{Chg}_{\mathrm{SCM}}(s\right.\right.$, Address_Add $(s, x$ P41address, x P43const), $s($ Address_Add $(s, x \mathrm{P} 41$ address, $x \mathrm{P} 43$ const $)) \div s($ Address_Add $(s, x \mathrm{P} 42$ address, $x \mathrm{P} 44$ const $))$) Address_Add (s, x P42address, x P44const), s (Address_Add $(s$, x P41address, x P43const) $)$ mod $s($ Address_Add (s, x P42address, x P44const) $)$), $\left.\operatorname{Next}\left(\mathbf{I} \mathbf{C}_{s}\right)\right)$, if there exist $d_{1}, d_{2}, k_{1}, k_{2}$ such that $\left.x=\left\langle 12,<* d_{1}, d_{2}, k_{1}, k_{2} *\right\rangle\right\rangle$, s, otherwise.
Let f be a function from SCMPDS - Instr into
$\left(\Pi\right.$ SCMPDS - OK) $\Pi^{\text {SCMPDS-OK }}$ and let x be an element of SCMPDS - Instr.
Note that $f(x)$ is function-like and relation-like.
The function SCMPDS - Exec from SCMPDS - Instr into
$\left(\prod \text { SCMPDS }-\mathrm{OK}\right)^{\Pi \text { SCMPDS-OK }}$ is defined by:
(Def. 25) For every element x of SCMPDS - Instr and for every SCMPDS-State y holds $(\operatorname{SCMPDS}-\operatorname{Exec})(x)(y)={\operatorname{Exec}-\operatorname{Res}_{S C M}}^{(x, y)}$.

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[12] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This work was done while the author visited Shinshu University March-April 1999.

