A Small Computer Model with Push-Down \mathbf{Stack}^1

Jing-Chao Chen Shanghai Jiaotong University

Summary. The SCMFSA computer can prove the correctness of many algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms. For this reason, this article improves the SCMFSA computer and presents a Small Computer Model with Push-Down Stack (called SCMPDS for short). In addition to conventional arithmetic and "goto" instructions, we increase two new instructions such as "return" and "save instruction-counter" in order to be able to design recursive programs.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{SCMPDS}_{-1}.$

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14], [19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we follow the rules: x_1, x_2, x_3, x_4, x_5 are sets, i, j, k are natural numbers, I, I_2, I_3, I_4 are elements of \mathbb{Z}_{14}, i_1 is an element of Instr-Loc_{SCM}, d_1, d_2, d_3, d_4, d_5 are elements of Data-Loc_{SCM}, and $k_1, k_2, k_3, k_4, k_5, k_6$ are integers.

Let x_1, x_2, x_3, x_4 be sets. The functor $\langle *x_1, x_2, x_3, x_4 \rangle$ yields a set and is defined as follows:

(Def. 1) $\langle *x_1, x_2, x_3, x_4 \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4 \rangle.$

Let x_5 be a set. The functor $\langle *x_1, x_2, x_3, x_4, x_5 * \rangle$ yielding a set is defined by: (Def. 2) $\langle *x_1, x_2, x_3, x_4, x_5 * \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4, x_5 \rangle$.

C 1999 University of Białystok ISSN 1426-2630

¹This work was done while the author visited Shinshu University March-April 1999.

JING-CHAO CHEN

Let x_1, x_2, x_3, x_4 be sets. One can verify that $\langle *x_1, x_2, x_3, x_4 * \rangle$ is function-like and relation-like. Let x_5 be a set. One can verify that $\langle *x_1, x_2, x_3, x_4, x_5 * \rangle$ is function-like and relation-like.

Let x_1, x_2, x_3, x_4 be sets. One can verify that $\langle *x_1, x_2, x_3, x_4 * \rangle$ is finite sequence-like. Let x_5 be a set. One can check that $\langle *x_1, x_2, x_3, x_4, x_5 * \rangle$ is finite sequence-like.

Let D be a non empty set and let x_1, x_2, x_3, x_4 be elements of D. Then $\langle *x_1, x_2, x_3, x_4 * \rangle$ is a finite sequence of elements of D.

Let D be a non empty set and let x_1, x_2, x_3, x_4, x_5 be elements of D. Then $\langle *x_1, x_2, x_3, x_4, x_5 * \rangle$ is a finite sequence of elements of D.

One can prove the following propositions:

- (1) $\langle *x_1, x_2, x_3, x_{4*} \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4 \rangle$ and $\langle *x_1, x_2, x_3, x_{4*} \rangle = \langle x_1, x_2 \rangle \cap \langle x_3, x_4 \rangle$ and $\langle *x_1, x_2, x_3, x_{4*} \rangle = \langle x_1 \rangle \cap \langle x_2, x_3, x_4 \rangle$ and $\langle *x_1, x_2, x_3, x_{4*} \rangle = \langle x_1 \rangle \cap \langle x_2, x_3, x_4 \rangle$ and $\langle *x_1, x_2, x_3, x_{4*} \rangle = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle$.
- $\begin{array}{l} (2) < *x_1, x_2, x_3, x_4, x_5* >= \langle x_1, x_2, x_3 \rangle^{\frown} \langle x_4, x_5 \rangle \text{ and } < *x_1, x_2, x_3, x_4, x_5* > \\ = < *x_1, x_2, x_3, x_4* > ^{\frown} \langle x_5 \rangle \text{ and } < *x_1, x_2, x_3, x_4, x_5* > = \langle x_1 \rangle^{\frown} \langle x_2 \rangle^{\frown} \\ \langle x_3 \rangle^{\frown} \langle x_4 \rangle^{\frown} \langle x_5 \rangle \text{ and } < *x_1, x_2, x_3, x_4, x_5* > = \langle x_1, x_2 \rangle^{\frown} \langle x_3, x_4, x_5 \rangle \text{ and } \\ < *x_1, x_2, x_3, x_4, x_5* > = \langle x_1 \rangle^{\frown} < *x_2, x_3, x_4, x_5* > . \end{array}$

We adopt the following rules: N_1 is a non empty set, y_1 , y_2 , y_3 , y_4 , y_5 are elements of N_1 , and p is a finite sequence.

We now state several propositions:

- (3) $p = \langle *x_1, x_2, x_3, x_4 \rangle$ iff len p = 4 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$.
- (4) dom $\langle *x_1, x_2, x_3, x_4 \rangle = \text{Seg } 4.$
- (5) $p = \langle *x_1, x_2, x_3, x_4, x_5 \rangle$ iff len p = 5 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$.
- (6) dom $\langle *x_1, x_2, x_3, x_4, x_5 \rangle = \text{Seg 5}.$
- (7) $\pi_1 < *y_1, y_2, y_3, y_4 * >= y_1$ and $\pi_2 < *y_1, y_2, y_3, y_4 * >= y_2$ and $\pi_3 < *y_1, y_2, y_3, y_4 * >= y_3$ and $\pi_4 < *y_1, y_2, y_3, y_4 * >= y_4$.
- (8) $\pi_1 < *y_1, y_2, y_3, y_4, y_5 >= y_1$ and $\pi_2 < *y_1, y_2, y_3, y_4, y_5 >= y_2$ and $\pi_3 < *y_1, y_2, y_3, y_4, y_5 >= y_3$ and $\pi_4 < *y_1, y_2, y_3, y_4, y_5 >= y_4$ and $\pi_5 < *y_1, y_2, y_3, y_4, y_5 >= y_5$.
- (9) For every integer k holds $k \in \bigcup \{\mathbb{Z}\} \cup \mathbb{N}$.
- (10) For every integer k holds $k \in \text{Data-Loc}_{\text{SCM}} \cup \mathbb{Z}$.
- (11) For every element d of Data-Loc_{SCM} holds $d \in \text{Data-Loc}_{SCM} \cup \mathbb{Z}$.

2. The Construction of SCM with Push-Down Stack

The subset SCMPDS – Instr of $[\mathbb{Z}_{14}, (\bigcup \{\mathbb{Z}\} \cup \mathbb{N})^*]$ is defined by the condition (Def. 3).

(Def. 3) SCMPDS – Instr = { $\langle 0, \langle l \rangle \rangle$: l ranges over integers} \cup { $\langle 1, \langle s_1 \rangle \rangle$: s_1 ranges over elements of Data-Loc_{SCM}} \cup { $\langle I, \langle v, c \rangle \rangle$; I ranges over elements of \mathbb{Z}_{14} , v ranges over elements of Data-Loc_{SCM}, c ranges over integers: $I \in \{2,3\}\} \cup$ { $\langle I, \langle v, c_1, c_2 \rangle$ }; I ranges over elements of \mathbb{Z}_{14} , v ranges over elements of Data-Loc_{SCM}, c_1 ranges over integers, c_2 ranges over integers: $I \in \{4, 5, 6, 7, 8\}\} \cup$ { $\langle I, \langle *v_1, v_2, c_1, c_2 * \rangle$ }; I ranges over elements of \mathbb{Z}_{14} , v_1 ranges over elements of Data-Loc_{SCM}, v_2 ranges over elements of Data-Loc_{SCM}, c_1 ranges over integers, c_2 ranges over elements of Data-Loc_{SCM}, c_1 ranges over integers, c_2 ranges over integers: $I \in \{9, 10, 11, 12, 13\}$ }.

We now state two propositions:

- (12) SCMPDS Instr = { $\langle 0, \langle k_1 \rangle \rangle$ } \cup { $\langle 1, \langle d_1 \rangle \rangle$ } \cup { $\langle I_2, \langle d_2, k_2 \rangle \rangle$: $I_2 \in$ {2,3}} \cup { $\langle I_3, \langle d_3, k_3, k_4 \rangle \rangle$: $I_3 \in$ {4,5,6,7,8}} \cup { $\langle I_4, \langle *d_4, d_5, k_5, k_6 * \rangle \rangle$: $I_4 \in$ {9,10,11,12,13}}.
- (13) $\langle 0, \langle 0 \rangle \rangle \in \text{SCMPDS} \text{Instr}.$

One can verify that SCMPDS – Instr is non empty. We now state three propositions:

- (14) k = 0 or there exists j such that $k = 2 \cdot j + 1$ or there exists j such that $k = 2 \cdot j + 2$.
- (15) If k = 0, then it is not true that there exists j such that $k = 2 \cdot j + 1$ and it is not true that there exists j such that $k = 2 \cdot j + 2$.
- (16)(i) If there exists j such that $k = 2 \cdot j + 1$, then $k \neq 0$ and it is not true that there exists j such that $k = 2 \cdot j + 2$, and
 - (ii) if there exists j such that $k = 2 \cdot j + 2$, then $k \neq 0$ and it is not true that there exists j such that $k = 2 \cdot j + 1$.

The function SCMPDS – OK from \mathbb{N} into $\{\mathbb{Z}\}\cup\{\text{SCMPDS} - \text{Instr}, \text{Instr-Loc}_{SCM}\}$ is defined as follows:

(Def. 4) (SCMPDS – OK)(0) = Instr-Loc_{SCM} and for every natural number k holds (SCMPDS – OK)($2 \cdot k + 1$) = Z and (SCMPDS – OK)($2 \cdot k + 2$) = SCMPDS – Instr.

A SCMPDS-State is an element of \prod SCMPDS – OK. Next we state several propositions:

- (17) Instr-Loc_{SCM} \neq SCMPDS Instr and SCMPDS Instr $\neq \mathbb{Z}$.
- (18) $(\text{SCMPDS} \text{OK})(i) = \text{Instr-Loc}_{\text{SCM}} \text{ iff } i = 0.$
- (19) $(\text{SCMPDS} \text{OK})(i) = \mathbb{Z}$ iff there exists k such that $i = 2 \cdot k + 1$.
- (20) $(\text{SCMPDS} \text{OK})(i) = \text{SCMPDS} \text{Instr iff there exists } k \text{ such that } i = 2 \cdot k + 2.$
- (21) (SCMPDS OK) $(d_1) = \mathbb{Z}$.
- (22) $(\text{SCMPDS} \text{OK})(i_1) = \text{SCMPDS} \text{Instr}.$
- (23) $\pi_0 \prod \text{SCMPDS} \text{OK} = \text{Instr-Loc}_{\text{SCM}}.$

(24) $\pi_{d_1} \prod \text{SCMPDS} - \text{OK} = \mathbb{Z}.$

(25) $\pi_{i_1} \prod \text{SCMPDS} - \text{OK} = \text{SCMPDS} - \text{Instr}.$

Let s be a SCMPDS-State. The functor IC_s yielding an element of Instr-Loc_{SCM} is defined as follows:

(Def. 5) $IC_s = s(0)$.

Let s be a SCMPDS-State and let u be an element of Instr-Loc_{SCM}. The functor $Chg_{SCM}(s, u)$ yielding a SCMPDS-State is defined as follows:

 $(\text{Def. 6}) \quad \text{Chg}_{\text{SCM}}(s, u) = s + \cdot (0 {\longmapsto} u).$

We now state three propositions:

- (26) For every SCMPDS-State s and for every element u of Instr-Loc_{SCM} holds $(Chg_{SCM}(s, u))(0) = u$.
- (27) For every SCMPDS-State s and for every element u of Instr-Loc_{SCM} and for every element m_1 of Data-Loc_{SCM} holds $(Chg_{SCM}(s, u))(m_1) = s(m_1)$.
- (28) For every SCMPDS-State s and for all elements u, v of Instr-Loc_{SCM} holds $(Chg_{SCM}(s, u))(v) = s(v)$.

Let s be a SCMPDS-State, let t be an element of Data-Loc_{SCM}, and let u be an integer. The functor $Chg_{SCM}(s, t, u)$ yields a SCMPDS-State and is defined as follows:

(Def. 7) $\operatorname{Chg}_{\operatorname{SCM}}(s, t, u) = s + (t \mapsto u).$

The following propositions are true:

- (29) For every SCMPDS-State s and for every element t of Data-Loc_{SCM} and for every integer u holds $(Chg_{SCM}(s, t, u))(0) = s(0)$.
- (30) For every SCMPDS-State s and for every element t of Data-Loc_{SCM} and for every integer u holds $(Chg_{SCM}(s,t,u))(t) = u$.
- (31) Let s be a SCMPDS-State, t be an element of Data-Loc_{SCM}, u be an integer, and m_1 be an element of Data-Loc_{SCM}. If $m_1 \neq t$, then $(Chg_{SCM}(s,t,u))(m_1) = s(m_1).$
- (32) Let s be a SCMPDS-State, t be an element of Data-Loc_{SCM}, u be an integer, and v be an element of Instr-Loc_{SCM}. Then $(Chg_{SCM}(s,t,u))(v) = s(v)$.

Let s be a SCMPDS-State and let a be an element of Data-Loc_{SCM}. Then s(a) is an integer.

Let s be a SCMPDS-State, let a be an element of Data-Loc_{SCM}, and let n be an integer. The functor Address_Add(s, a, n) yields an element of Data-Loc_{SCM} and is defined by:

(Def. 8) Address_Add $(s, a, n) = 2 \cdot |s(a) + n| + 1$.

Let s be a SCMPDS-State and let n be an integer. The functor $jump_address(s, n)$ yielding an element of $Instr-Loc_{SCM}$ is defined as follows:

(Def. 9) jump_address $(s, n) = |((\mathbf{IC}_s \mathbf{qua} \text{ natural number}) - 2) + 2 \cdot n| + 2.$

Let d be an element of Data-Loc_{SCM} and let s be an integer. Then $\langle d, s \rangle$ is a finite sequence of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$.

Let x be an element of SCMPDS – Instr. Let us assume that there exist an element m_1 of Data-Loc_{SCM} and I such that $x = \langle I, \langle m_1 \rangle \rangle$. The functor x address₁ yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₁ = $\pi_1 f$.

The following proposition is true

(33) For every element x of SCMPDS – Instr and for every element m_1 of Data-Loc_{SCM} such that $x = \langle I, \langle m_1 \rangle \rangle$ holds x address₁ = m_1 .

Let x be an element of SCMPDS – Instr. Let us assume that there exist an integer r and I such that $x = \langle I, \langle r \rangle \rangle$. The functor x const_INT yielding an integer is defined by:

(Def. 11) There exists a finite sequence f of elements of \mathbb{Z} such that $f = x_2$ and $x \operatorname{const}_{\operatorname{INT}} = \pi_1 f$.

The following proposition is true

(34) For every element x of SCMPDS – Instr and for every integer k such that $x = \langle I, \langle k \rangle \rangle$ holds x const_INT = k.

Let x be an element of SCMPDS – Instr. Let us assume that there exist an element m_1 of Data-Loc_{SCM}, an integer r, and I such that $x = \langle I, \langle m_1, r \rangle \rangle$. The functor x P21address yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P21address} = \pi_1 f$.

The functor x P22 const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \operatorname{P22const} = \pi_2 f$.

The following proposition is true

(35) Let x be an element of SCMPDS – Instr, m_1 be an element of Data-Loc_{SCM}, and r be an integer. If $x = \langle I, \langle m_1, r \rangle \rangle$, then $x \text{ P21address} = m_1$ and x P22const = r.

Let x be an element of SCMPDS – Instr. Let us assume that there exist an element m_2 of Data-Loc_{SCM}, integers k_1 , k_2 , and I such that $x = \langle I, \langle m_2, k_1, k_2 \rangle \rangle$. The functor x P31address yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 14) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{P31address} = \pi_1 f$.

The functor $x \operatorname{P32const}$ yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \operatorname{P32const} = \pi_2 f$.

The functor x P33const yields an integer and is defined by:

(Def. 16) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P33const} = \pi_3 f$.

We now state the proposition

(36) Let x be an element of SCMPDS – Instr, d_1 be an element of Data-Loc_{SCM}, and k_1 , k_2 be integers. If $x = \langle I, \langle d_1, k_1, k_2 \rangle \rangle$, then $x \operatorname{P31address} = d_1$ and $x \operatorname{P32const} = k_1$ and $x \operatorname{P33const} = k_2$.

Let x be an element of SCMPDS – Instr. Let us assume that there exist elements m_2 , m_3 of Data-Loc_{SCM}, integers k_1 , k_2 , and I such that $x = \langle I, < *m_2, m_3, k_1, k_2 * \rangle$. The functor x P41address yields an element of Data-Loc_{SCM} and is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and x P41address $= \pi_1 f$.

The functor x P42address yields an element of Data-Loc_{SCM} and is defined as follows:

(Def. 18) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \operatorname{P42address} = \pi_2 f$.

The functor x P43const yielding an integer is defined as follows:

(Def. 19) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P43const} = \pi_3 f$.

The functor x P44const yielding an integer is defined as follows:

(Def. 20) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \operatorname{P44const} = \pi_4 f$.

We now state the proposition

(37) Let x be an element of SCMPDS – Instr, d_1 , d_2 be elements of Data-Loc_{SCM}, and k_1 , k_2 be integers. If $x = \langle I, \langle *d_1, d_2, k_1, k_2 \rangle \rangle$, then $x \operatorname{P41address} = d_1$ and $x \operatorname{P42address} = d_2$ and $x \operatorname{P43const} = k_1$ and $x \operatorname{P44const} = k_2$.

Let s be a SCMPDS-State and let a be an element of Data-Loc_{SCM}. The functor PopInstrLoc(s, a) yielding an element of Instr-Loc_{SCM} is defined as follows:

(Def. 21) PopInstrLoc(s, a) = 2 · ($|s(a)| \div 2$) + 4.

The natural number RetSP is defined as follows:

(Def. 22) $\operatorname{RetSP} = 0.$

The natural number RetIC is defined as follows:

(Def. 23) RetIC = 1.

Let x be an element of SCMPDS – Instr and let s be a SCMPDS-State. The functor Exec-Res_{SCM}(x, s) yielding a SCMPDS-State is defined as follows:

(Def. 24) Exec-Res_{SCM}(x, s) = $Chg_{SCM}(s, jump_address(s, x const_INT))$, if there exists k_1 such that $x = \langle 0, \langle k_1 \rangle \rangle,$ $Chg_{SCM}(Chg_{SCM}(s, x P21 address, x P22 const), Next(IC_s))$, if there exist d_1, k_1 such that $x = \langle 2, \langle d_1, k_1 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P21address, x P22const), (IC_s qua natural))$ number)), Next(IC_s)), if there exist d_1, k_1 such that $x = \langle 3, \langle d_1, k_1 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, x \text{ address}_1, s(Address_Add(s, x \text{ address}_1, RetSP))), PopInstrLoc$ $(s, \text{Address}_A \text{dd}(s, x \text{ address}_1, \text{RetIC})))$, if there exists d_1 such that $x = \langle 1, \langle d_1 \rangle \rangle$, $Chg_{SCM}(s, (s(Address_Add(s, x P31address, x P32const))) = 0 \rightarrow Next(IC_s), jump_$ address(s, x P33const)), if there exist d_1, k_1, k_2 such that $x = \langle 4, \langle d_1, k_1, k_2 \rangle \rangle$, $\operatorname{Chg}_{\operatorname{SCM}}(s, (s(\operatorname{Address}_{\operatorname{Add}}(s, x \operatorname{P31address}, x \operatorname{P32const})) > 0 \rightarrow \operatorname{Next}(\operatorname{IC}_s), \operatorname{jump}_{\operatorname{IC}}(s) \rightarrow \operatorname{Next}(\operatorname{IC}_s)$ address(s, x P33const)), if there exist d_1, k_1, k_2 such that $x = \langle 5, \langle d_1, k_1, k_2 \rangle \rangle$, $Chg_{SCM}(s, (0 > s(Address_Add(s, x P31address, x P32const))) \rightarrow Next(IC_s), jump_$ address(s, x P33const)), if there exist d_1, k_1, k_2 such that $x = \langle 6, \langle d_1, k_1, k_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P31address, x P32const), x P33const),$ Next(**IC**_s)), if there exist d_1, k_1, k_2 such that $x = \langle 7, \langle d_1, k_1, k_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P31address, x P32const)),$ $s(\text{Address}_\text{Add}(s, x \text{P31address}, x \text{P32const})) + x \text{P33const}), \text{Next}(\mathbf{IC}_s)),$ if there exist d_1, k_1, k_2 such that $x = \langle 8, \langle d_1, k_1, k_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P41address, x P43const), s(Address_Add$ $(s, x P41address, x P43const)) + s(Address_Add(s, x P42address, x P44const))),$ Next(\mathbf{IC}_s)), if there exist d_1, d_2, k_1, k_2 such that $x = \langle 9, \langle *d_1, d_2, k_1, k_2 \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P41address, x P43const), s(Address_Add$ $(s, x \text{ P41address}, x \text{ P43const})) - s(\text{Address}_\text{Add}(s, x \text{ P42address}, x \text{ P44const}))),$ Next(IC_s)), if there exist d_1, d_2, k_1, k_2 such that $x = \langle 10, < *d_1, d_2, k_1, k_2 > \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P41address, x P43const), s(Address_Add$ $(s, x \text{ P41}address, x \text{ P43}const)) \cdot s(\text{Address}_\text{Add}(s, x \text{ P42}address, x \text{ P44}const))),$ Next(IC_s)), if there exist d_1, d_2, k_1, k_2 such that $x = \langle 11, < *d_1, d_2, k_1, k_2 * \rangle$, $Chg_{SCM}(Chg_{SCM}(s, Address_Add(s, x P41address, x P43const)),$ $s(\text{Address}_Add(s, x \text{P42address}, x \text{P44const}))), \text{Next}(\mathbf{IC}_s)), \text{ if there exist } d_1, d_2,$ k_1, k_2 such that $x = \langle 13, < *d_1, d_2, k_1, k_2 * \rangle$, $Chg_{SCM}(Chg_{SCM}(chg_{SCM}(s, Address_Add(s, x P41address, x P43const))))$ $s(\text{Address}_\text{Add}(s, x \text{ P41address}, x \text{ P43const})) \div s(\text{Address}_\text{Add}(s, x \text{ P42address}, x \text{ P42address}))$ $x P44const))), Address_Add(s, x P42address, x P44const), s(Address_Add(s, s, s))))$ x P41address, x P43const)) mod s(Address_Add(s, x P42address, x P44const))), Next(IC_s)), if there exist d_1, d_2, k_1, k_2 such that $x = \langle 12, < *d_1, d_2, k_1, k_2 * \rangle$, s, otherwise. Let f be a function from SCMPDS – Instr into $(\prod \text{SCMPDS} - \text{OK})^{\prod \text{SCMPDS} - \text{OK}}$ and let x be an element of SCMPDS – Instr. Note that f(x) is function-like and relation-like.

The function SCMPDS - Exec from SCMPDS - Instr into

JING-CHAO CHEN

$(\prod \text{SCMPDS} - \text{OK})^{\prod \text{SCMPDS} - \text{OK}}$ is defined by:

```
(Def. 25) For every element x of SCMPDS – Instr and for every SCMPDS-State y holds (SCMPDS – Exec)(x)(y) = \text{Exec-Res}_{SCM}(x, y).
```

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. A classical first order language. *Formalized Mathematics*, 1(4):669–676, 1990.
- [5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990, D. K. L. Theorem is the function of the set of the
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- [8] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [9] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241–250, 1992.
- [12] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623-627, 1991.
- [13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 15, 1999