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Summary. The SCMFSA computer can prove the correctness of many
algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms.
For this reason, this article improves the SCMFSA computer and presents a
Small Computer Model with Push-Down Stack (called SCMPDS for short). In
addition to conventional arithmetic and ”goto” instructions, we increase two new
instructions such as ”return” and ”save instruction-counter” in order to be able
to design recursive programs.

MML Identifier: SCMPDS 1.

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14],

[19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this

paper.

1. Preliminaries

For simplicity, we follow the rules: x1, x2, x3, x4, x5 are sets, i, j, k are natural

numbers, I, I2, I3, I4 are elements of Z14, i1 is an element of Instr-LocSCM, d1,

d2, d3, d4, d5 are elements of Data-LocSCM, and k1, k2, k3, k4, k5, k6 are integers.

Let x1, x2, x3, x4 be sets. The functor < ∗x1, x2, x3, x4∗ > yields a set and

is defined as follows:

(Def. 1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉
a 〈x4〉.

Let x5 be a set. The functor < ∗x1, x2, x3, x4, x5∗ > yielding a set is defined by:

(Def. 2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉
a 〈x4, x5〉.

1This work was done while the author visited Shinshu University March–April 1999.

175
c© 1999 University of Białystok

ISSN 1426–2630



176 jing-chao chen

Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is function-

like and relation-like. Let x5 be a set. One can verify that < ∗x1, x2, x3, x4, x5∗ >

is function-like and relation-like.

Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is finite

sequence-like. Let x5 be a set. One can check that < ∗x1, x2, x3, x4, x5∗ > is

finite sequence-like.

Let D be a non empty set and let x1, x2, x3, x4 be elements of D. Then

< ∗x1, x2, x3, x4∗ > is a finite sequence of elements of D.

Let D be a non empty set and let x1, x2, x3, x4, x5 be elements of D. Then

< ∗x1, x2, x3, x4, x5∗ > is a finite sequence of elements of D.

One can prove the following propositions:

(1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉
a 〈x4〉 and < ∗x1, x2, x3, x4∗ >=

〈x1, x2〉
a 〈x3, x4〉 and < ∗x1, x2, x3, x4∗ >= 〈x1〉

a 〈x2, x3, x4〉 and <

∗x1, x2, x3, x4∗ >= 〈x1〉
a 〈x2〉

a 〈x3〉
a 〈x4〉.

(2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉
a〈x4, x5〉 and< ∗x1, x2, x3, x4, x5∗ >

=< ∗x1, x2, x3, x4∗ > a〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1〉
a 〈x2〉

a

〈x3〉
a 〈x4〉

a 〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2〉
a 〈x3, x4, x5〉 and

< ∗x1, x2, x3, x4, x5∗ >= 〈x1〉
a < ∗x2, x3, x4, x5∗ > .

We adopt the following rules: N1 is a non empty set, y1, y2, y3, y4, y5 are

elements of N1, and p is a finite sequence.

We now state several propositions:

(3) p =< ∗x1, x2, x3, x4∗ > iff len p = 4 and p(1) = x1 and p(2) = x2 and

p(3) = x3 and p(4) = x4.

(4) dom < ∗x1, x2, x3, x4∗ >= Seg 4.

(5) p =< ∗x1, x2, x3, x4, x5∗ > iff len p = 5 and p(1) = x1 and p(2) = x2 and

p(3) = x3 and p(4) = x4 and p(5) = x5.

(6) dom < ∗x1, x2, x3, x4, x5∗ >= Seg 5.

(7) π1 < ∗y1, y2, y3, y4∗ >= y1 and π2 < ∗y1, y2, y3, y4∗ >= y2 and π3 <

∗y1, y2, y3, y4∗ >= y3 and π4 < ∗y1, y2, y3, y4∗ >= y4.

(8) π1 < ∗y1, y2, y3, y4, y5∗ >= y1 and π2 < ∗y1, y2, y3, y4, y5∗ >= y2 and

π3 < ∗y1, y2, y3, y4, y5∗ >= y3 and π4 < ∗y1, y2, y3, y4, y5∗ >= y4 and

π5 < ∗y1, y2, y3, y4, y5∗ >= y5.

(9) For every integer k holds k ∈
⋃

{Z} ∪ N.

(10) For every integer k holds k ∈ Data-LocSCM ∪ Z.

(11) For every element d of Data-LocSCM holds d ∈ Data-LocSCM ∪ Z.m

2. The Construction of SCM with Push-Down Stack

The subset SCMPDS− Instr of [: Z14, (
⋃

{Z} ∪ N)∗ :] is defined by the condition

(Def. 3).
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(Def. 3) SCMPDS− Instr = {〈〈0, 〈l〉〉〉 : l ranges over integers} ∪ {〈〈1, 〈s1〉〉〉 : s1

ranges over elements of Data-LocSCM} ∪ {〈〈I, 〈v, c〉〉〉; I ranges over ele-

ments of Z14, v ranges over elements of Data-LocSCM, c ranges over inte-

gers: I ∈ {2, 3}} ∪ {〈〈I, 〈v, c1, c2〉〉〉; I ranges over elements of Z14, v ranges

over elements of Data-LocSCM, c1 ranges over integers, c2 ranges over

integers: I ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I, < ∗v1, v2, c1, c2∗ > 〉〉; I ranges over ele-

ments of Z14, v1 ranges over elements of Data-LocSCM, v2 ranges over

elements of Data-LocSCM, c1 ranges over integers, c2 ranges over integers:

I ∈ {9, 10, 11, 12, 13}}.

We now state two propositions:

(12) SCMPDS− Instr = {〈〈0, 〈k1〉〉〉} ∪ {〈〈1, 〈d1〉〉〉} ∪ {〈〈I2, 〈d2, k2〉〉〉 : I2 ∈

{2, 3}} ∪ {〈〈I3, 〈d3, k3, k4〉〉〉 : I3 ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I4, < ∗d4, d5, k5, k6∗ >

〉〉 : I4 ∈ {9, 10, 11, 12, 13}}.

(13) 〈〈0, 〈0〉〉〉 ∈ SCMPDS− Instr .

One can verify that SCMPDS− Instr is non empty.

We now state three propositions:

(14) k = 0 or there exists j such that k = 2 · j + 1 or there exists j such that

k = 2 · j + 2.

(15) If k = 0, then it is not true that there exists j such that k = 2 · j + 1

and it is not true that there exists j such that k = 2 · j + 2.

(16)(i) If there exists j such that k = 2 · j + 1, then k 6= 0 and it is not true

that there exists j such that k = 2 · j + 2, and

(ii) if there exists j such that k = 2 · j + 2, then k 6= 0 and it is not true

that there exists j such that k = 2 · j + 1.

The function SCMPDS−OK from N into {Z}∪{SCMPDS− Instr, Instr-LocSCM}

is defined as follows:

(Def. 4) (SCMPDS−OK)(0) = Instr-LocSCM and for every natural number k

holds (SCMPDS−OK)(2 · k + 1) = Z and (SCMPDS−OK)(2 · k + 2) =

SCMPDS− Instr .

A SCMPDS-State is an element of
∏

SCMPDS−OK .

Next we state several propositions:

(17) Instr-LocSCM 6= SCMPDS− Instr and SCMPDS− Instr 6= Z.

(18) (SCMPDS−OK)(i) = Instr-LocSCM iff i = 0.

(19) (SCMPDS−OK)(i) = Z iff there exists k such that i = 2 · k + 1.

(20) (SCMPDS−OK)(i) = SCMPDS− Instr iff there exists k such that i =

2 · k + 2.

(21) (SCMPDS−OK)(d1) = Z.

(22) (SCMPDS−OK)(i1) = SCMPDS− Instr .

(23) π0

∏

SCMPDS−OK = Instr-LocSCM.
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(24) πd1

∏

SCMPDS−OK = Z.

(25) πi1

∏

SCMPDS−OK = SCMPDS− Instr .

Let s be a SCMPDS-State. The functor ICs yielding an element of

Instr-LocSCM is defined as follows:

(Def. 5) ICs = s(0).

Let s be a SCMPDS-State and let u be an element of Instr-LocSCM. The

functor ChgSCM(s, u) yielding a SCMPDS-State is defined as follows:

(Def. 6) ChgSCM(s, u) = s+·(0 7−→. u).

We now state three propositions:

(26) For every SCMPDS-State s and for every element u of Instr-LocSCM
holds (ChgSCM(s, u))(0) = u.

(27) For every SCMPDS-State s and for every element u of Instr-LocSCM and

for every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) = s(m1).

(28) For every SCMPDS-State s and for all elements u, v of Instr-LocSCM
holds (ChgSCM(s, u))(v) = s(v).

Let s be a SCMPDS-State, let t be an element of Data-LocSCM, and let u be

an integer. The functor ChgSCM(s, t, u) yields a SCMPDS-State and is defined

as follows:

(Def. 7) ChgSCM(s, t, u) = s+·(t 7−→. u).

The following propositions are true:

(29) For every SCMPDS-State s and for every element t of Data-LocSCM and

for every integer u holds (ChgSCM(s, t, u))(0) = s(0).

(30) For every SCMPDS-State s and for every element t of Data-LocSCM and

for every integer u holds (ChgSCM(s, t, u))(t) = u.

(31) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be

an integer, and m1 be an element of Data-LocSCM. If m1 6= t, then

(ChgSCM(s, t, u))(m1) = s(m1).

(32) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be an

integer, and v be an element of Instr-LocSCM. Then (ChgSCM(s, t, u))(v) =

s(v).

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. Then

s(a) is an integer.

Let s be a SCMPDS-State, let a be an element of Data-LocSCM, and let n be

an integer. The functor Address Add(s, a, n) yields an element of Data-LocSCM
and is defined by:

(Def. 8) Address Add(s, a, n) = 2 · |s(a) + n|+ 1.

Let s be a SCMPDS-State and let n be an integer. The functor

jump address(s, n) yielding an element of Instr-LocSCM is defined as follows:

(Def. 9) jump address(s, n) = |((ICs qua natural number)−2) + 2 · n|+ 2.
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Let d be an element of Data-LocSCM and let s be an integer. Then 〈d, s〉 is

a finite sequence of elements of Data-LocSCM ∪ Z.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

an element m1 of Data-LocSCM and I such that x = 〈〈I, 〈m1〉〉〉. The functor

x address1 yielding an element of Data-LocSCM is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-LocSCM such that

f = x2 and x address1 = π1f.

The following proposition is true

(33) For every element x of SCMPDS− Instr and for every element m1 of

Data-LocSCM such that x = 〈〈I, 〈m1〉〉〉 holds x address1 = m1.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

an integer r and I such that x = 〈〈I, 〈r〉〉〉. The functor x const INT yielding an

integer is defined by:

(Def. 11) There exists a finite sequence f of elements of Z such that f = x2 and

x const INT = π1f.

The following proposition is true

(34) For every element x of SCMPDS− Instr and for every integer k such

that x = 〈〈I, 〈k〉〉〉 holds x const INT = k.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an

element m1 of Data-LocSCM, an integer r, and I such that x = 〈〈I, 〈m1, r〉〉〉. The

functor xP21address yielding an element of Data-LocSCM is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP21address = π1f.

The functor xP22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP22const = π2f.

The following proposition is true

(35) Let x be an element of SCMPDS− Instr, m1 be an element

of Data-LocSCM, and r be an integer. If x = 〈〈I, 〈m1, r〉〉〉, then

xP21address = m1 and xP22const = r.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an

element m2 of Data-LocSCM, integers k1, k2, and I such that x = 〈〈I, 〈m2, k1,

k2〉〉〉. The functor xP31address yielding an element of Data-LocSCM is defined

as follows:

(Def. 14) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP31address = π1f.

The functor xP32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP32const = π2f.
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The functor xP33const yields an integer and is defined by:

(Def. 16) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP33const = π3f.

We now state the proposition

(36) Let x be an element of SCMPDS− Instr, d1 be an element of

Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, 〈d1, k1, k2〉〉〉, then

xP31address = d1 and xP32const = k1 and xP33const = k2.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

elements m2, m3 of Data-LocSCM, integers k1, k2, and I such that x =

〈〈I, < ∗m2,m3, k1, k2∗ > 〉〉. The functor xP41address yields an element of

Data-LocSCM and is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP41address = π1f.

The functor xP42address yields an element of Data-LocSCM and is defined as

follows:

(Def. 18) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP42address = π2f.

The functor xP43const yielding an integer is defined as follows:

(Def. 19) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP43const = π3f.

The functor xP44const yielding an integer is defined as follows:

(Def. 20) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP44const = π4f.

We now state the proposition

(37) Let x be an element of SCMPDS− Instr, d1, d2 be elements of

Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, < ∗d1, d2, k1, k2∗ > 〉〉,

then xP41address = d1 and xP42address = d2 and xP43const = k1 and

xP44const = k2.

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. The

functor PopInstrLoc(s, a) yielding an element of Instr-LocSCM is defined as fol-

lows:

(Def. 21) PopInstrLoc(s, a) = 2 · (|s(a)| ÷ 2) + 4.

The natural number RetSP is defined as follows:

(Def. 22) RetSP = 0.

The natural number RetIC is defined as follows:

(Def. 23) RetIC = 1.

Let x be an element of SCMPDS− Instr and let s be a SCMPDS-State. The

functor Exec-ResSCM(x, s) yielding a SCMPDS-State is defined as follows:
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(Def. 24) Exec-ResSCM(x, s) =










































































































































































































































































































ChgSCM(s, jump address(s, x const INT)), if there exists k1 such that

x = 〈〈0, 〈k1〉〉〉,

ChgSCM(ChgSCM(s, xP21address, xP22const),Next(ICs)), if there exist

d1, k1 such that x = 〈〈2, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP21address, xP22const), (ICs qua natural

number)),Next(ICs)), if there exist d1, k1 such that x = 〈〈3, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(Address Add(s, x address1,RetSP))),PopInstrLoc

(s,Address Add(s, x address1,RetIC))), if there exists d1 such that x = 〈〈1, 〈d1〉〉〉,

ChgSCM(s, (s(Address Add(s, xP31address, xP32const)) = 0→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈4, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (s(Address Add(s, xP31address, xP32const)) > 0→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈5, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (0 > s(Address Add(s, xP31address, xP32const))→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈6, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP31address, xP32const), xP33const),

Next(ICs)), if there exist d1, k1, k2 such that x = 〈〈7, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP31address, xP32const),

s(Address Add(s, xP31address, xP32const)) + xP33const),Next(ICs)),

if there exist d1, k1, k2 such that x = 〈〈8, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const)) + s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈9, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const))− s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈10, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const)) · s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈11, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const),

s(Address Add(s, xP42address, xP44const))),Next(ICs)), if there exist d1, d2,

k1, k2 such that x = 〈〈13, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const),

s(Address Add(s, xP41address, xP43const))÷ s(Address Add(s, xP42address,

xP44const))),Address Add(s, xP42address, xP44const), s(Address Add(s,

xP41address, xP43const))mod s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈12, < ∗d1, d2, k1, k2∗ > 〉〉,

s, otherwise.

Let f be a function from SCMPDS− Instr into

(
∏

SCMPDS−OK)
∏
SCMPDS−OK and let x be an element of SCMPDS− Instr.

Note that f(x) is function-like and relation-like.

The function SCMPDS− Exec from SCMPDS− Instr into
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(
∏

SCMPDS−OK)
∏
SCMPDS−OK is defined by:

(Def. 25) For every element x of SCMPDS− Instr and for every SCMPDS-State

y holds (SCMPDS− Exec)(x)(y) = Exec-ResSCM(x, y).
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