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Summary. In this article we define noetherian and co-noetherian lattices
and show how some properties concerning upper and lower neighbours, irreduci-
bility and density can be improved when restricted to these kinds of lattices. In
addition we define atomic lattices.

MML Identifier: LATTICE6.

The notation and terminology used here are introduced in the following papers:

[18], [13], [17], [14], [19], [7], [1], [8], [6], [20], [3], [9], [2], [10], [15], [16], [5], [11],

[4], and [12].

Let us observe that there exists a lattice which is finite.

Let us mention that every lattice which is finite is also complete.

Let L be a lattice and let D be a subset of the carrier of L. The functor D·

yields a subset of Poset(L) and is defined by:

(Def. 1) D· = {d·; d ranges over elements of the carrier of L: d ∈ D}.

Let L be a lattice and let D be a subset of the carrier of Poset(L). The

functor ·D yielding a subset of the carrier of L is defined by:

(Def. 2) ·D = {·d; d ranges over elements of Poset(L): d ∈ D}.

Let L be a finite lattice. Note that Poset(L) is well founded.

Let L be a lattice. We say that L is noetherian if and only if:

(Def. 3) Poset(L) is well founded.

We say that L is co-noetherian if and only if:

(Def. 4) Poset(L)` is well founded.

One can verify the following observations:

∗ there exists a lattice which is noetherian and upper-bounded,

∗ there exists a lattice which is noetherian and lower-bounded, and

∗ there exists a lattice which is noetherian and complete.
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One can verify the following observations:

∗ there exists a lattice which is co-noetherian and upper-bounded,

∗ there exists a lattice which is co-noetherian and lower-bounded, and

∗ there exists a lattice which is co-noetherian and complete.

Next we state the proposition

(1) For every lattice L holds L is noetherian iff L◦ is co-noetherian.

One can check that every lattice which is finite is also noetherian and every

lattice which is finite is also co-noetherian.

Let L be a lattice and let a, b be elements of the carrier of L. We say that

a is-upper-neighbour-of b if and only if:

(Def. 5) a 6= b and b ⊑ a and for every element c of the carrier of L such that

b ⊑ c and c ⊑ a holds c = a or c = b.

We introduce b is-lower-neighbour-of a as a synonym of a is-upper-neighbour-of

b.

We now state several propositions:

(2) Let L be a lattice, a be an element of the carrier of L, and b, c be elements

of the carrier of L such that b 6= c. Then

(i) if b is-upper-neighbour-of a and c is-upper-neighbour-of a, then a = c⊓b,

and

(ii) if b is-lower-neighbour-of a and c is-lower-neighbour-of a, then a = c⊔b.

(3) Let L be a noetherian lattice, a be an element of the carrier of L, and d

be an element of the carrier of L. Suppose a ⊑ d and a 6= d. Then there

exists an element c of the carrier of L such that c ⊑ d and c is-upper-

neighbour-of a.

(4) Let L be a co-noetherian lattice, a be an element of the carrier of L,

and d be an element of the carrier of L. Suppose d ⊑ a and a 6= d. Then

there exists an element c of the carrier of L such that d ⊑ c and c is-lower-

neighbour-of a.

(5) Let L be an upper-bounded lattice. Then it is not true that there exists

an element b of the carrier of L such that b is-upper-neighbour-of ⊤L.

(6) Let L be a noetherian upper-bounded lattice and a be an element of the

carrier of L. Then a = ⊤L if and only if it is not true that there exists an

element b of the carrier of L such that b is-upper-neighbour-of a.

(7) Let L be a lower-bounded lattice. Then it is not true that there exists

an element b of the carrier of L such that b is-lower-neighbour-of ⊥L.

(8) Let L be a co-noetherian lower-bounded lattice and a be an element of

the carrier of L. Then a = ⊥L if and only if it is not true that there exists

an element b of the carrier of L such that b is-lower-neighbour-of a.
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Let L be a complete lattice and let a be an element of the carrier of L. The

functor a∗ yielding an element of the carrier of L is defined by:

(Def. 6) a∗ = ⌈−⌉L{d; d ranges over elements of the carrier of L: a ⊑ d ∧ d 6= a}.

The functor ∗a yields an element of the carrier of L and is defined as follows:

(Def. 7) ∗a =
⊔

L
{d; d ranges over elements of the carrier of L: d ⊑ a ∧ d 6= a}.

Let L be a complete lattice and let a be an element of the carrier of L. We

say that a is completely-meet-irreducible if and only if:

(Def. 8) a∗ 6= a.

We say that a is completely-join-irreducible if and only if:

(Def. 9) ∗a 6= a.

The following propositions are true:

(9) For every complete lattice L and for every element a of the carrier of L

holds a ⊑ a∗ and ∗a ⊑ a.

(10) For every complete lattice L holds (⊤L)∗ = ⊤L and (⊤L)· is meet-

irreducible.

(11) For every complete lattice L holds ∗(⊥L) = ⊥L and (⊥L)· is join-

irreducible.

(12) Let L be a complete lattice and a be an element of the carrier of L.

Suppose a is completely-meet-irreducible. Then

(i) a∗ is-upper-neighbour-of a, and

(ii) for every element c of the carrier of L such that c is-upper-neighbour-of

a holds c = a∗.

(13) Let L be a complete lattice and a be an element of the carrier of L.

Suppose a is completely-join-irreducible. Then

(i) ∗a is-lower-neighbour-of a, and

(ii) for every element c of the carrier of L such that c is-lower-neighbour-of

a holds c = ∗a.

(14) Let L be a noetherian complete lattice and a be an element of the carrier

of L. Suppose a 6= ⊤L. Then a is completely-meet-irreducible if and only if

there exists an element b of the carrier of L such that b is-upper-neighbour-

of a and for every element c of the carrier of L such that c is-upper-

neighbour-of a holds c = b.

(15) Let L be a co-noetherian complete lattice and a be an element of the

carrier of L. Suppose a 6= ⊥L. Then a is completely-join-irreducible if and

only if there exists an element b of the carrier of L such that b is-lower-

neighbour-of a and for every element c of the carrier of L such that c

is-lower-neighbour-of a holds c = b.

(16) Let L be a complete lattice and a be an element of the carrier of L. If a

is completely-meet-irreducible, then a· is meet-irreducible.
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(17) Let L be a complete noetherian lattice and a be an element of the carrier

of L. Suppose a 6= ⊤L. Then a is completely-meet-irreducible if and only

if a· is meet-irreducible.

(18) Let L be a complete lattice and a be an element of the carrier of L. If a

is completely-join-irreducible, then a· is join-irreducible.

(19) Let L be a complete co-noetherian lattice and a be an element of the

carrier of L. Suppose a 6= ⊥L. Then a is completely-join-irreducible if and

only if a· is join-irreducible.

(20) Let L be a finite lattice and a be an element of the carrier of L such that

a 6= ⊥L and a 6= ⊤L. Then

(i) a is completely-meet-irreducible iff a· is meet-irreducible, and

(ii) a is completely-join-irreducible iff a· is join-irreducible.

Let L be a lattice and let a be an element of the carrier of L. We say that

a is atomic if and only if:

(Def. 10) a is-upper-neighbour-of ⊥L.

We say that a is co-atomic if and only if:

(Def. 11) a is-lower-neighbour-of ⊤L.

One can prove the following propositions:

(21) Let L be a complete lattice and a be an element of the carrier of L. If a

is atomic, then a is completely-join-irreducible.

(22) Let L be a complete lattice and a be an element of the carrier of L. If a

is co-atomic, then a is completely-meet-irreducible.

Let L be a lattice. We say that L is atomic if and only if the condition

(Def. 12) is satisfied.

(Def. 12) Let a be an element of the carrier of L. Then there exists a subset X of

the carrier of L such that for every element x of the carrier of L such that

x ∈ X holds x is atomic and a =
⊔

L
X.

One can verify that there exists a lattice which is atomic and complete.

Let L be a complete lattice and let D be a subset of L. We say that D is

supremum-dense if and only if:

(Def. 13) For every element a of the carrier of L there exists a subset D′ of D such

that a =
⊔

L
D′.

We say that D is infimum-dense if and only if:

(Def. 14) For every element a of the carrier of L there exists a subset D′ of D such

that a = ⌈−⌉LD′.

One can prove the following propositions:

(23) Let L be a complete lattice andD be a subset of L. ThenD is supremum-

dense if and only if for every element a of the carrier of L holds a =
⊔

L
{d; d ranges over elements of the carrier of L: d ∈ D ∧ d ⊑ a}.
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(24) Let L be a complete lattice and D be a subset of L. Then D is infimum-

dense if and only if for every element a of the carrier of L holds a =

⌈−⌉L{d; d ranges over elements of the carrier of L: d ∈ D ∧ a ⊑ d}.

(25) Let L be a complete lattice and D be a subset of L. Then D is infimum-

dense if and only if D· is order-generating.

Let L be a complete lattice. The functor MIRRSL yields a subset of L and

is defined by:

(Def. 15) MIRRSL = {a; a ranges over elements of the carrier of L: a is

completely-meet-irreducible}.

The functor JIRRSL yielding a subset of L is defined by:

(Def. 16) JIRRSL = {a; a ranges over elements of the carrier of L: a is completely-

join-irreducible}.

One can prove the following two propositions:

(26) For every complete lattice L and for every subset D of L such that D is

supremum-dense holds JIRRSL ⊆ D.

(27) For every complete lattice L and for every subset D of L such that D is

infimum-dense holds MIRRSL ⊆ D.

Let L be a co-noetherian complete lattice. Note that MIRRSL is infimum-

dense.

Let L be a noetherian complete lattice. One can check that JIRRSL is

supremum-dense.
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