Gauges

Czesław Byliński University of Białystok

MML Identifier: JORDAN8.

The papers [20], [5], [23], [22], [10], [1], [17], [19], [24], [4], [2], [3], [21], [12], [11], [18], [7], [8], [9], [13], [14], [15], [6], and [16] provide the terminology and notation for this paper.

We follow the rules: $i, i_1, i_2, j, j_1, j_2, k, m, n$ are natural numbers, D is a non empty set, and f is a finite sequence of elements of D.

We now state two propositions:

- (1) If len $f \ge 2$, then $f \upharpoonright 2 = \langle \pi_1 f, \pi_2 f \rangle$.
- (2) If $k+1 \leq \text{len } f$, then $f \upharpoonright (k+1) = (f \upharpoonright k) \cap \langle \pi_{k+1} f \rangle$.

In the sequel f denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, G denotes a Go-board, and p denotes a point of $\mathcal{E}_{\mathrm{T}}^2$.

The following propositions are true:

- (3) $\varepsilon_{\text{(the carrier of } \mathcal{E}_{T}^{2})}$ is a sequence which elements belong to G.
- (4) If f is a sequence which elements belong to G, then $f \upharpoonright m$ is a sequence which elements belong to G.
- (5) If f is a sequence which elements belong to G, then $f_{\downarrow m}$ is a sequence which elements belong to G.
- (6) Suppose $1 \leq k$ and $k+1 \leq len f$ and f is a sequence which elements belong to G. Then there exist natural numbers i_1, j_1, i_2, j_2 such that
- (i) $\langle i_1, j_1 \rangle \in$ the indices of G,
- (ii) $\pi_k f = G_{i_1, j_1},$
- (iii) $\langle i_2, j_2 \rangle \in$ the indices of G,
- (iv) $\pi_{k+1}f = G_{i_2,j_2}$, and
- (v) $i_1 = i_2$ and $j_1 + 1 = j_2$ or $i_1 + 1 = i_2$ and $j_1 = j_2$ or $i_1 = i_2 + 1$ and $j_1 = j_2$ or $i_1 = i_2$ and $j_1 = j_2 + 1$.
- (7) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a sequence which elements belong to G. Then f is standard and special.

C 1999 University of Białystok ISSN 1426-2630

CZESŁAW BYLIŃSKI

- (8) Let f be a non empty finite sequence of elements of \mathcal{E}_{T}^{2} . Suppose len $f \ge 2$ and f is a sequence which elements belong to G. Then f is non constant.
- (9) Let f be a non empty finite sequence of elements of \mathcal{E}_{T}^{2} . Suppose that
- (i) f is a sequence which elements belong to G,
- there exist i, j such that $\langle i, j \rangle \in$ the indices of G and $p = G_{i,j}$, and (ii)
- for all i_1, j_1, i_2, j_2 such that $\langle i_1, j_1 \rangle \in$ the indices of G and $\langle i_2, j_2 \rangle \in$ the (iii) indices of G and $\pi_{\text{len}f} = G_{i_1,j_1}$ and $p = G_{i_2,j_2}$ holds $|i_2 - i_1| + |j_2 - j_1| = 1$. Then $f \cap \langle p \rangle$ is a sequence which elements belong to G.
- (10) If i + k < len G and $1 \leq j$ and j < width G and cell(G, i, j) meets $\operatorname{cell}(G, i+k, j)$, then $k \leq 1$.
- (11) For every non empty compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds C is vertical iff E-bound $C \leq W$ -bound C.
- (12) For every non empty compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ holds C is horizontal iff N-bound $C \leq$ S-bound C.

Let C be a non empty subset of $\mathcal{E}^2_{\mathrm{T}}$ and let n be a natural number. The functor Gauge(C, n) yielding a matrix over $\mathcal{E}_{\mathrm{T}}^2$ is defined by the conditions (Def. 1). (Def. 1)(i)

- $\operatorname{len}\operatorname{Gauge}(C,n) = 2^n + 3,$
 - len Gauge(C, n) = width Gauge(C, n), and (ii)
 - for all i, j such that $\langle i, j \rangle \in$ the indices of Gauge(C, n) holds (iii) $(\operatorname{Gauge}(C,n))_{i,j} = [\operatorname{W-bound} C + \frac{\operatorname{E-bound} C - \operatorname{W-bound} C}{2^n} \cdot (i-2), \operatorname{S-bound} C + \frac{\operatorname{N-bound} C - \operatorname{S-bound} C}{2^n} \cdot (j-2)].$

Let C be a compact non empty subset of $\mathcal{E}^2_{\mathrm{T}}$ and let n be a natural number. Note that Gauge(C, n) is non trivial line **X**-constant and column **Y**-constant.

In the sequel C is a compact non vertical non horizontal non empty subset of $\mathcal{E}_{\mathrm{T}}^2$.

Let us consider C, n. Observe that Gauge(C, n) is line **Y**-increasing and column **X**-increasing.

The following propositions are true:

- (13) len Gauge $(C, n) \ge 4$.
- (14) If $1 \leq j$ and $j \leq \text{len} \text{Gauge}(C, n)$, then $((\text{Gauge}(C, n))_{2,j})_1 =$ W-bound C.
- (15) If $1 \leq j$ and $j \leq \text{len Gauge}(C, n)$, then $((\text{Gauge}(C, n))_{\text{len Gauge}(C, n)-i_{1,j}})_1 =$ E-bound C.
- (16) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then $((\text{Gauge}(C, n))_{i,2})_2 = \text{S-bound } C$.
- (17) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then $((\text{Gauge}(C, n))_{i, \text{len Gauge}(C, n)-i})_2 =$ N-bound C.
- (18) If $i \leq \text{len Gauge}(C, n)$, then cell(Gauge(C, n), i, len Gauge(C, n)) $\cap C = \emptyset$.
- (19) If $j \leq \text{len Gauge}(C, n)$, then $\text{cell}(\text{Gauge}(C, n), \text{len Gauge}(C, n), j) \cap C =$ Ø.
- (20) If $i \leq \text{len Gauge}(C, n)$, then $\text{cell}(\text{Gauge}(C, n), i, 0) \cap C = \emptyset$.

26

GAUGES

(21) If $j \leq \text{len Gauge}(C, n)$, then $\text{cell}(\text{Gauge}(C, n), 0, j) \cap C = \emptyset$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275–278, 1992.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
- thematics, 1(1):17-23, 1990.
 [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 22, 1999