Gauges

Czesław Byliński
University of Białystok

MML Identifier: JORDAN8.

The papers [20], [5], [23], [22], [10], [1], [17], [19], [24], [4], [2], [3], [21], [12], [11], [18], [7], [8], [9], [13], [14], [15], [6], and [16] provide the terminology and notation for this paper.

We follow the rules: $i, i_{1}, i_{2}, j, j_{1}, j_{2}, k, m, n$ are natural numbers, D is a non empty set, and f is a finite sequence of elements of D.

We now state two propositions:
(1) If len $f \geqslant 2$, then $f \upharpoonright 2=\left\langle\pi_{1} f, \pi_{2} f\right\rangle$.
(2) If $k+1 \leqslant \operatorname{len} f$, then $f \upharpoonright(k+1)=(f \upharpoonright k)^{\wedge}\left\langle\pi_{k+1} f\right\rangle$.

In the sequel f denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, G$ denotes a Go-board, and p denotes a point of $\mathcal{E}_{\mathrm{T}}^{2}$.

The following propositions are true:
(3) $\left.\varepsilon_{(\text {the carrier of }} \mathcal{E}_{\mathrm{T}}^{2}\right)$ is a sequence which elements belong to G.
(4) If f is a sequence which elements belong to G, then $f\lceil m$ is a sequence which elements belong to G.
(5) If f is a sequence which elements belong to G, then $f_{l m}$ is a sequence which elements belong to G.
(6) Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. Then there exist natural numbers $i_{1}, j_{1}, i_{2}, j_{2}$ such that
(i) $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G,
(ii) $\pi_{k} f=G_{i_{1}, j_{1}}$,
(iii) $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G,
(iv) $\pi_{k+1} f=G_{i_{2}, j_{2}}$, and
(v) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ or $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ or $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ or $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$.
(7) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is a sequence which elements belong to G. Then f is standard and special.
(8) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose len $f \geqslant 2$ and f is a sequence which elements belong to G. Then f is non constant.
(9) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) f is a sequence which elements belong to G,
(ii) there exist i, j such that $\langle i, j\rangle \in$ the indices of G and $p=G_{i, j}$, and
(iii) for all $i_{1}, j_{1}, i_{2}, j_{2}$ such that $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{\operatorname{len} f} f=G_{i_{1}, j_{1}}$ and $p=G_{i_{2}, j_{2}}$ holds $\left|i_{2}-i_{1}\right|+\left|j_{2}-j_{1}\right|=1$. Then $f^{\wedge}\langle p\rangle$ is a sequence which elements belong to G.
(10) If $i+k<\operatorname{len} G$ and $1 \leqslant j$ and $j<\operatorname{width} G$ and $\operatorname{cell}(G, i, j)$ meets $\operatorname{cell}(G, i+k, j)$, then $k \leqslant 1$.
(11) For every non empty compact subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds C is vertical iff E-bound $C \leqslant$ W-bound C.
(12) For every non empty compact subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds C is horizontal iff N -bound $C \leqslant \mathrm{~S}$-bound C.
Let C be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. The functor Gauge (C, n) yielding a matrix over $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the conditions (Def. 1).
(Def. 1)(i) len Gauge $(C, n)=2^{n}+3$,
(ii) len Gauge $(C, n)=\operatorname{width} \operatorname{Gauge}(C, n)$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ holds $(\text { Gauge }(C, n))_{i, j}=\left[\mathrm{W}\right.$-bound $C+\frac{\mathrm{E} \text {-bound } C-\mathrm{W} \text {-bound } C}{2^{n}} \cdot(i-2)$, S-bound $C+$ $\left.\frac{\mathrm{N} \text {-bound } C \text {-S-bound } C}{2^{n}} \cdot(j-2)\right]$.
Let C be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Note that $\operatorname{Gauge}(C, n)$ is non trivial line \mathbf{X}-constant and column \mathbf{Y}-constant.

In the sequel C is a compact non vertical non horizontal non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

Let us consider C, n. Observe that Gauge (C, n) is line \mathbf{Y}-increasing and column \mathbf{X}-increasing.

The following propositions are true:
(13) len Gauge $(C, n) \geqslant 4$.
(14) If $1 \leqslant j$ and $j \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\left((\operatorname{Gauge}(C, n))_{2, j}\right)_{1}=$ W-bound C.
(15) If $1 \leqslant j$ and $j \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\left((\operatorname{Gauge}(C, n))_{\operatorname{len} \operatorname{Gauge}(C, n)-{ }^{\prime} 1, j}\right)_{\mathbf{1}}=$ E-bound C.
(16) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\left((\operatorname{Gauge}(C, n))_{i, 2}\right)_{\mathbf{2}}=S$-bound C.
(17) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\left((\operatorname{Gauge}(C, n))_{i, \text { len Gauge }(C, n)-{ }^{\prime} 1}\right)_{\mathbf{2}}=$ N-bound C.
(18) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\operatorname{cell}(\operatorname{Gauge}(C, n), i$, len Gauge $(C, n)) \cap C=\emptyset$.
(19) If $j \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\operatorname{cell}(\operatorname{Gauge}(C, n)$, len Gauge $(C, n), j) \cap C=$ \emptyset.
(20) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then $\operatorname{cell}(\operatorname{Gauge}(C, n), i, 0) \cap C=\emptyset$.
(21)

$$
\text { If } j \leqslant \operatorname{len} \operatorname{Gauge}(C, n) \text {, then } \operatorname{cell}(\operatorname{Gauge}(C, n), 0, j) \cap C=\emptyset \text {. }
$$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 22, 1999

