Bounded Domains and Unbounded Domains

Yatsuka Nakamura
Shinshu University
Nagano

Andrzej Trybulec
University of Białystok

Czesław Byliński
University of Białystok

Abstract

Summary. First, notions of inside components and outside components are introduced for any subset of n-dimensional Euclid space. Next, notions of the bounded domain and the unbounded domain are defined using the above components. If the dimension is larger than 1 , and if a subset is bounded, a unbounded domain of the subset coincides with an outside component (which is unique) of the subset. For a sphare in n-dimensional space, the similar fact is true for a bounded domain. In 2 dimensional space, any rectangle also has such property. We discussed relations between the Jordan property and the concept of boundary, which are necessary to find points in domains near a curve. In the last part, we gave the sufficient criterion for belonging to the left component of some clockwise oriented finite sequences.

MML Identifier: JORDAN2C.

The articles [44], [51], [12], [50], [53], [9], [10], [7], [22], [2], [1], [40], [54], [16], [27], [15], [24], [5], [38], [39], [20], [35], [32], [18], [42], [3], [8], [49], [46], [41], [21], [4], [26], [34], [37], [43], [6], [30], [52], [11], [25], [13], [17], [33], [14], [48], [47], [19], [23], [28], [29], [36], [45], and [31] provide the notation and terminology for this paper.

1. Definitions of Bounded Domain and Unbounded Domain

We follow the rules: m, n are natural numbers, r, s are real numbers, and x, y are sets.

The following propositions are true:
(1) If $r \leqslant 0$, then $|r|=-r$.
(2) For all n, m such that $n \leqslant m$ and $m \leqslant n+2$ holds $m=n$ or $m=n+1$ or $m=n+2$.
(3) For all n, m such that $n \leqslant m$ and $m \leqslant n+3$ holds $m=n$ or $m=n+1$ or $m=n+2$ or $m=n+3$.
(4) For all n, m such that $n \leqslant m$ and $m \leqslant n+4$ holds $m=n$ or $m=n+1$ or $m=n+2$ or $m=n+3$ or $m=n+4$.
(5) For all real numbers a, b such that $a \geqslant 0$ and $b \geqslant 0$ holds $a+b \geqslant 0$.
(6) For all real numbers a, b such that $a>0$ and $b \geqslant 0$ or $a \geqslant 0$ and $b>0$ holds $a+b>0$.
(7) For every finite sequence f such that $\operatorname{rng} f=\{x, y\}$ and len $f=2$ holds $f(1)=x$ and $f(2)=y$ or $f(1)=y$ and $f(2)=x$.
(8) Let f be an increasing finite sequence of elements of \mathbb{R}. If rng $f=\{r, s\}$ and len $f=2$ and $r \leqslant s$, then $f(1)=r$ and $f(2)=s$.
In the sequel $p, p_{1}, p_{2}, p_{3}, q, q_{1}, q_{2}$ denote points of $\mathcal{E}_{\mathrm{T}}^{n}$.
We now state several propositions:
(9) $\left(p_{1}+p_{2}\right)-p_{3}=\left(p_{1}-p_{3}\right)+p_{2}$.
(10) $\quad\|q\|=|q|$.
(11) $\left|\left|q_{1}\right|-\left|q_{2}\right|\right| \leqslant\left|q_{1}-q_{2}\right|$.
(12) $\quad\|[r]\|=|r|$.
(13) $q-0_{\mathcal{E}_{\mathrm{T}}^{n}}=q$ and $0_{\mathcal{E}_{\mathrm{T}}^{n}}-q=-q$.

Let us consider n and let P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that P is n-convex if and only if:
(Def. 1) For all points w_{1}, w_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{1} \in P$ and $w_{2} \in P$ holds $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$.
The following propositions are true:
(14) For every non empty subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that P is n-convex holds P is connected.
(15) Let G be a non empty topological space, P be a subset of G, A be a subset of the carrier of G, and Q be a subset of $G \upharpoonright A$. If $P \neq \emptyset$ and $P=Q$ and P is connected, then Q is connected.
Let us consider n and let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that A is Bounded if and only if:
(Def. 2) There exists a subset C of the carrier of \mathcal{E}^{n} such that $C=A$ and C is bounded.

One can prove the following proposition
(16) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is Bounded and $A \subseteq B$ holds A is Bounded.

Let us consider n, let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and let B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that B is inside component of A if and only if:
(Def. 3) B is a component of $A^{\text {c }}$ and Bounded.
Next we state the proposition
(17) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then B is inside component of A if and only if there exists a subset C of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\mathrm{c}}$ such that $C=B$ and C is a component of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\mathrm{c}}$ and for every subset D of the carrier of \mathcal{E}^{n} such that $D=C$ holds D is bounded.
Let us consider n, let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and let B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that B is outside component of A if and only if:
(Def. 4) B is a component of A^{c} and B is not Bounded.
Next we state three propositions:
(18) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then B is outside component of A if and only if there exists a subset C of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\text {c }}$ such that $C=B$ and C is a component of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\mathrm{c}}$ and it is not true that for every subset D of the carrier of \mathcal{E}^{n} such that $D=C$ holds D is bounded.
(19) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is inside component of A holds $B \subseteq A^{\mathrm{c}}$.
(20) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is outside component of A holds $B \subseteq A^{\mathrm{c}}$.
Let us consider n and let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\mathrm{BDD} A$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and is defined by:
(Def. 5) $\quad \mathrm{BDD} A=\bigcup\left\{B ; B\right.$ ranges over subsets of $\mathcal{E}_{\mathrm{T}}^{n}: B$ is inside component of $A\}$.
Let us consider n and let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor UBD A yielding a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by:
(Def. 6) UBD $A=\bigcup\left\{B ; B\right.$ ranges over subsets of $\mathcal{E}_{\mathrm{T}}^{n}$: B is outside component of $A\}$.
One can prove the following propositions:
(21) $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ is n-convex.
(22) $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ is connected.

Let us consider n. One can check that $\Omega_{\mathcal{E}_{T}^{n}}$ is connected.
We now state several propositions:
(23) $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ is a component of $\mathcal{E}_{\mathrm{T}}^{n}$.
(24) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\mathrm{BDD} A$ is a union of components of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\mathrm{c}}$.
(25) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\mathrm{UBD} A$ is a union of components of $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright A^{\mathrm{c}}$.
(26) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If B is inside component of A, then $B \subseteq \operatorname{BDD} A$.
(27) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and B be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If B is outside component of A, then $B \subseteq \mathrm{UBD} A$.
(28) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\operatorname{BDD} A \cap \operatorname{UBD} A=\emptyset$.
(29) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\operatorname{BDD} A \subseteq A^{\mathrm{c}}$.
(30) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\mathrm{UBD} A \subseteq A^{\mathrm{c}}$.
(31) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\mathrm{BDD} A \cup \operatorname{UBD} A=A^{\mathrm{c}}$.

In the sequel u is a point of \mathcal{E}^{n}.
One can prove the following propositions:
(32) Let G be a non empty topological space, w_{1}, w_{2}, w_{3} be points of G, h_{1} be a map from \mathbb{I} into G, and h_{2} be a map from \mathbb{I} into G. Suppose h_{1} is continuous and $w_{1}=h_{1}(0)$ and $w_{2}=h_{1}(1)$ and h_{2} is continuous and $w_{2}=h_{2}(0)$ and $w_{3}=h_{2}(1)$. Then there exists a map h_{3} from \mathbb{I} into G such that h_{3} is continuous and $w_{1}=h_{3}(0)$ and $w_{3}=h_{3}(1)$ and $\operatorname{rng} h_{3} \subseteq \operatorname{rng} h_{1} \cup \operatorname{rng} h_{2}$.
(33) For every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $P=\mathcal{R}^{n}$ holds P is connected.

Let us consider n. The functor $1 * n$ yielding a finite sequence of elements of \mathbb{R} is defined by:
(Def. 7) $1 * n=n \mapsto(1$ qua real number).
Let us consider n. Then $1 * n$ is an element of \mathcal{R}^{n}.
Let us consider n. The functor 1.REAL n yielding a point of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by:
(Def. 8) 1.REAL $n=1 * n$.
One can prove the following propositions:
(34) $|1 * n|=n \mapsto(1$ qua real number).
(35) $|1 * n|=\sqrt{n}$.
(36) $1 . \operatorname{REAL} 1=\langle(1$ qua real number $)\rangle$.
(37) \mid 1.REAL $n \mid=\sqrt{n}$.
(38) If $1 \leqslant n$, then $1 \leqslant \mid 1$.REAL $n \mid$.
(39) For every subset W of the carrier of \mathcal{E}^{n} such that $n \geqslant 1$ and $W=\mathcal{R}^{n}$ holds W is not bounded.
(40) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Then A is Bounded if and only if there exists a real number r such that for every point q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $q \in A$ holds $|q|<r$.
(41) If $n \geqslant 1$, then $\Omega_{\mathcal{E}_{\mathrm{T}}^{n}}$ is not Bounded.
(42) If $n \geqslant 1$, then $\operatorname{UBD} \emptyset_{\mathcal{E}_{\mathrm{T}}^{n}}=\mathcal{R}^{n}$.
(43) Let w_{1}, w_{2}, w_{3} be points of $\mathcal{E}_{\mathrm{T}}^{n}, P$ be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and h_{1}, h_{2} be maps from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$. Suppose h_{1} is continuous and $w_{1}=h_{1}(0)$ and $w_{2}=h_{1}(1)$ and h_{2} is continuous and $w_{2}=h_{2}(0)$ and $w_{3}=h_{2}(1)$. Then there exists a map h_{3} from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ such that h_{3} is continuous and $w_{1}=h_{3}(0)$ and $w_{3}=h_{3}(1)$.
(44) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and w_{1}, w_{2}, w_{3} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $w_{1} \in P$ and $w_{2} \in P$ and $w_{3} \in P$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq P$. Then there exists a map h from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ such that h is continuous and $w_{1}=h(0)$ and $w_{3}=h(1)$.
(45) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and $w_{1}, w_{2}, w_{3}, w_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $w_{1} \in P$ and $w_{2} \in P$ and $w_{3} \in P$ and $w_{4} \in P$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq P$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq P$. Then there exists a map h from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ such that h is continuous and $w_{1}=h(0)$ and $w_{4}=h(1)$.
(46) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$, w_{7} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $w_{1} \in P$ and $w_{2} \in P$ and $w_{3} \in P$ and $w_{4} \in P$ and $w_{5} \in P$ and $w_{6} \in P$ and $w_{7} \in P$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq P$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq P$ and $\mathcal{L}\left(w_{4}, w_{5}\right) \subseteq P$ and $\mathcal{L}\left(w_{5}, w_{6}\right) \subseteq P$ and $\mathcal{L}\left(w_{6}, w_{7}\right) \subseteq P$. Then there exists a map h from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ such that h is continuous and $w_{1}=h(0)$ and $w_{7}=h(1)$.
(47) For all points w_{1}, w_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that it is not true that there exists a real number r such that $w_{1}=r \cdot w_{2}$ or $w_{2}=r \cdot w_{1}$ holds $0_{\mathcal{E}_{\mathrm{T}}^{n}} \notin \mathcal{L}\left(w_{1}, w_{2}\right)$.
(48) Let w_{1}, w_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$ and P be a subset of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. Suppose $P=$ $\mathcal{L}\left(w_{1}, w_{2}\right)$ and $0_{\mathcal{E}_{\mathrm{T}}^{n}} \notin \mathcal{L}\left(w_{1}, w_{2}\right)$. Then there exists a point w_{0} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{0} \in \mathcal{L}\left(w_{1}, w_{2}\right)$ and $\left|w_{0}\right|>0$ and $\left|w_{0}\right|=\left(\operatorname{dist}_{\min }(P)\right)\left(0_{\mathcal{E}_{\mathrm{T}}^{n}}\right)$.
(49) Let a be a real number, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and w_{1}, w_{4} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $Q=\{q:|q|>a\}$ and $w_{1} \in Q$ and $w_{4} \in Q$ and it is not true that there exists a real number r such that $w_{1}=r \cdot w_{4}$ or $w_{4}=r \cdot w_{1}$. Then there exist points w_{2}, w_{3} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{2} \in Q$ and $w_{3} \in Q$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq Q$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq Q$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq Q$.
(50) Let a be a real number, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and w_{1}, w_{4} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $Q=\mathcal{R}^{n} \backslash\{q:|q|<a\}$ and $w_{1} \in Q$ and $w_{4} \in Q$ and it is not true that there exists a real number r such that $w_{1}=r \cdot w_{4}$ or $w_{4}=r \cdot w_{1}$. Then there exist points w_{2}, w_{3} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{2} \in Q$ and $w_{3} \in Q$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq Q$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq Q$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq Q$.
(51) Let x be an element of \mathcal{R}^{n}. Then x is a finite sequence of elements of \mathbb{R} and for every finite sequence f such that $f=x$ holds len $f=n$.
(52) Every finite sequence f of elements of \mathbb{R} is an element of $\mathcal{R}^{\operatorname{len} f}$ and a point of $\mathcal{E}_{\mathrm{T}}^{\operatorname{len} f}$.
(53) Let x be an element of \mathcal{R}^{n}, f, g be finite sequences of elements of \mathbb{R}, and r be a real number. Suppose $f=x$ and $g=r \cdot x$. Then len $f=\operatorname{len} g$ and for
every natural number i such that $1 \leqslant i$ and $i \leqslant \operatorname{len} f$ holds $\pi_{i} g=r \cdot \pi_{i} f$.
(54) Let x be an element of \mathcal{R}^{n} and f be a finite sequence. Suppose $x \neq$ $\langle\underbrace{0, \ldots, 0}_{n}\rangle$ and $x=f$. Then there exists a natural number i such that $1 \leqslant i$ and $i \leqslant n$ and $f(i) \neq 0$.
(55) Let x be an element of \mathcal{R}^{n}. Suppose $n \geqslant 2$ and $x \neq\langle\underbrace{0, \ldots, 0}_{n}\rangle$. Then it is not true that there exists an element y of \mathcal{R}^{n} and there exists a real number r such that $y=r \cdot x$ or $x=r \cdot y$.
(56) Let a be a real number, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and w_{1}, w_{7} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $n \geqslant 2$ and $Q=\{q:|q|>a\}$ and $w_{1} \in Q$ and $w_{7} \in Q$ and there exists a real number r such that $w_{1}=r \cdot w_{7}$ or $w_{7}=r \cdot w_{1}$. Then there exist points $w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{2} \in Q$ and $w_{3} \in Q$ and $w_{4} \in Q$ and $w_{5} \in Q$ and $w_{6} \in Q$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq Q$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq Q$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq Q$ and $\mathcal{L}\left(w_{4}, w_{5}\right) \subseteq Q$ and $\mathcal{L}\left(w_{5}, w_{6}\right) \subseteq Q$ and $\mathcal{L}\left(w_{6}, w_{7}\right) \subseteq Q$.
(57) Let a be a real number, Q be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and w_{1}, w_{7} be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $n \geqslant 2$ and $Q=\mathcal{R}^{n} \backslash\{q:|q|<a\}$ and $w_{1} \in Q$ and $w_{7} \in Q$ and there exists a real number r such that $w_{1}=r \cdot w_{7}$ or $w_{7}=r \cdot w_{1}$. Then there exist points $w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{2} \in Q$ and $w_{3} \in Q$ and $w_{4} \in Q$ and $w_{5} \in Q$ and $w_{6} \in Q$ and $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq Q$ and $\mathcal{L}\left(w_{2}, w_{3}\right) \subseteq Q$ and $\mathcal{L}\left(w_{3}, w_{4}\right) \subseteq Q$ and $\mathcal{L}\left(w_{4}, w_{5}\right) \subseteq Q$ and $\mathcal{L}\left(w_{5}, w_{6}\right) \subseteq Q$ and $\mathcal{L}\left(w_{6}, w_{7}\right) \subseteq Q$.
(58) For every real number a such that $n \geqslant 1$ holds $\{q:|q|>a\} \neq \emptyset$.
(59) For every real number a and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $n \geqslant 2$ and $P=\{q:|q|>a\}$ holds P is connected.
(60) For every real number a such that $n \geqslant 1$ holds $\mathcal{R}^{n} \backslash\{q:|q|<a\} \neq \emptyset$.
(61) For every real number a and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $n \geqslant 2$ and $P=\mathcal{R}^{n} \backslash\{q:|q|<a\}$ holds P is connected.
(62) Let a be a real number, n be a natural number, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If $n \geqslant 1$ and $P=\mathcal{R}^{n} \backslash\left\{q ; q\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{n}:|q|<a\right\}$, then P is not Bounded.
(63) Let a be a real number and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=\langle r\rangle \wedge r>a)\right\}$. Then P is n-convex.
(64) Let a be a real number and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=\langle r\rangle \wedge r<-a)\right\}$. Then P is n-convex.
(65) Let a be a real number and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=\langle r\rangle \wedge r>a)\right\}$. Then P is connected.
(66) Let a be a real number and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $P=\{q ; q$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=\langle r\rangle \wedge r<-a)\right\}$. Then P is connected.
(67) Let W be a subset of the carrier of \mathcal{E}^{1}, a be a real number, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $W=\left\{q ; q\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=$ $\langle r\rangle \wedge r>a)\}$ and $P=W$. Then P is connected and W is not bounded.
(68) Let W be a subset of the carrier of \mathcal{E}^{1}, a be a real number, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $W=\left\{q ; q\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{1}: \bigvee_{r}(q=$ $\langle r\rangle \wedge r<-a)\}$ and $P=W$. Then P is connected and W is not bounded.
(69) Let W be a subset of the carrier of \mathcal{E}^{n}, a be a real number, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If $n \geqslant 2$ and $W=\{q:|q|>a\}$ and $P=W$, then P is connected and W is not bounded.
(70) Let W be a subset of the carrier of \mathcal{E}^{n}, a be a real number, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If $n \geqslant 2$ and $W=\mathcal{R}^{n} \backslash\{q:|q|<a\}$ and $P=W$, then P is connected and W is not bounded.
(71) Let P, P_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{n}, Q$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and W be a subset of the carrier of \mathcal{E}^{n}. Suppose $P=W$ and P is connected and W is not bounded and $P_{1}=\operatorname{Component}\left(\operatorname{Down}\left(P, Q^{\mathrm{c}}\right)\right)$ and $W \cap Q=\emptyset$. Then P_{1} is outside component of Q.
Let S be a 1 -sorted structure and let A be a subset of the carrier of S. The functor RAC A yields a subset of S and is defined as follows:
(Def. 9) $\operatorname{RAC} A=A$.
The following propositions are true:
(72) Let A be a subset of the carrier of \mathcal{E}^{n}, B be a non empty subset of the carrier of \mathcal{E}^{n}, and C be a subset of the carrier of $\mathcal{E}^{n} \mid B$. If $A \subseteq B$ and $A=C$ and C is bounded, then A is bounded.
(73) For every subset A of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A is compact holds A is Bounded.
(74) For every subset A of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $1 \leqslant n$ and A is Bounded holds $A^{\mathrm{c}} \neq \emptyset$.
(75) Let r be a real number. Then
(i) there exists a subset B of the carrier of \mathcal{E}^{n} such that $B=\{q:|q|<r\}$, and
(ii) for every subset A of the carrier of \mathcal{E}^{n} such that $A=\left\{q_{1}:\left|q_{1}\right|<r\right\}$ holds A is bounded.
(76) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $n \geqslant 2$ and A is Bounded. Then there exists a subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is outside component of A and $B=$ UBD A.
(77) For every real number a and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $P=\{q$: $|q|<a\}$ holds P is n-convex.
(78) For every real number a and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $P=$ $\operatorname{Ball}(u, a)$ holds P is n-convex.
(79) For every real number a and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $a>0$ and $P=\{q:|q|<a\}$ holds P is connected.

In the sequel R denotes a subset of $\mathcal{E}_{\mathrm{T}}^{n}, P$ denotes a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and f denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}$.

Next we state a number of propositions:
(80) Suppose $p \neq q$ and $p \in \operatorname{Ball}(u, r)$ and $q \in \operatorname{Ball}(u, r)$. Then there exists a map h from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ such that h is continuous and $h(0)=p$ and $h(1)=q$ and $\operatorname{rng} h \subseteq \operatorname{Ball}(u, r)$.
(81) Let f be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose f is continuous and $f(0)=p_{1}$ and $f(1)=p_{2}$ and $p \in \operatorname{Ball}(u, r)$ and $p_{2} \in \operatorname{Ball}(u, r)$. Then there exists a $\operatorname{map} h$ from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ such that h is continuous and $h(0)=p_{1}$ and $h(1)=p$ and $\operatorname{rng} h \subseteq \operatorname{rng} f \cup \operatorname{Ball}(u, r)$.
(82) Let f be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $p \neq p_{1}$ and f is continuous and $\operatorname{rng} f \subseteq P$ and $f(0)=p_{1}$ and $f(1)=p_{2}$ and $p \in \operatorname{Ball}(u, r)$ and $p_{2} \in \operatorname{Ball}(u, r)$ and $\operatorname{Ball}(u, r) \subseteq P$. Then there exists a map f_{1} from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ such that f_{1} is continuous and rng $f_{1} \subseteq P$ and $f_{1}(0)=p_{1}$ and $f_{1}(1)=p$.
(83) Let given p and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose that
(i) $\quad R$ is connected and open, and
(ii) $P=\left\{q: q \neq p \wedge q \in R \wedge \neg \bigvee_{f: \text { map from } \mathbb{I} \text { into } \mathcal{E}_{\mathrm{T}}^{n} \quad(f \text { is }, ~}^{\text {i }}\right.$ continuous $\wedge \operatorname{rng} f \subseteq R \wedge f(0)=p \wedge f(1)=q)\}$.
Then P is open.
(84) Let P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose that
(i) R is connected and open,
(ii) $p \in R$, and
(iii) $\quad P=\left\{q: q=p \vee \bigvee_{f: \text { map from } \mathbb{I} \text { into } \mathcal{E}_{\mathrm{T}}^{n}}(f\right.$ is continuous $\wedge \operatorname{rng} f \subseteq$ $R \wedge f(0)=p \wedge f(1)=q)\}$.
Then P is open.
(85) Let R be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $p \in R$ and $P=\{q$: $q=p \vee \bigvee_{f: \text { map from } \mathbb{I} \text { into } \mathcal{E}_{\mathrm{T}}^{n}}(f$ is continuous $\wedge \operatorname{rng} f \subseteq R \wedge f(0)=$ $p \wedge f(1)=q)\}$. Then $P \subseteq R$.
(86) Let R be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose that
(i) R is connected and open,
(ii) $p \in R$, and
(iii) $\quad P=\left\{q: q=p \vee \bigvee_{f: \text { map from } \mathbb{I} \text { into } \mathcal{E}_{\mathrm{T}}^{n}}(f\right.$ is continuous $\wedge \operatorname{rng} f \subseteq$ $R \wedge f(0)=p \wedge f(1)=q)\}$.
Then $R \subseteq P$.
(87) Let R be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$ and p, q be points of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose R is connected and open and $p \in R$ and $q \in R$ and $p \neq q$. Then there exists a map f from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ such that f is continuous and $\operatorname{rng} f \subseteq R$ and $f(0)=p$ and $f(1)=q$.
(88) For every subset A of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every real number a such that $A=\{q$: $|q|=a\}$ holds $-A$ is open and A is closed.
(89) For every non empty subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is open holds $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright B$ is locally connected.
(90) Let B be a non empty subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}, A$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$, and a be a real number. If $A=\{q:|q|=a\}$ and $A^{\mathrm{c}}=B$, then $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright B$ is locally connected.
(91) For every map f from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$ such that for every q holds $f(q)=|q|$ holds f is continuous.
(92) There exists a map f from $\mathcal{E}_{\mathrm{T}}^{n}$ into $\mathbb{R}^{\mathbf{1}}$ such that for every q holds $f(q)=$ $|q|$ and f is continuous.
Let X, Y be non empty 1 -sorted structures, let f be a map from X into Y, and let x be a set. Let us assume that x is a point of X. The functor $\pi_{x} f$ yielding a point of Y is defined as follows:
(Def. 10) $\pi_{x} f=f(x)$.
We now state four propositions:
(93) Let g be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose g is continuous. Then there exists a map f from \mathbb{I} into \mathbb{R}^{1} such that for every point t of \mathbb{I} holds $f(t)=|g(t)|$ and f is continuous.
(94) Let g be a map from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{n}$ and a be a real number. Suppose g is continuous and $\left|\pi_{0} g\right| \leqslant a$ and $a \leqslant\left|\pi_{1} g\right|$. Then there exists a point s of \mathbb{I} such that $\left|\pi_{s} g\right|=a$.
(95) If $q=\langle r\rangle$, then $|q|=|r|$.
(96) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and a be a real number. Suppose $n \geqslant 1$ and $a>0$ and $A=\{q:|q|=a\}$. Then there exists a subset B of $\mathcal{E}_{\mathrm{T}}^{n}$ such that B is inside component of A and $B=\operatorname{BDD} A$.

2. Bounded and Unbounded Domains of Rectangles

In the sequel D is a non vertical non horizontal non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

Next we state several propositions:
(97) len the Go-board of $\operatorname{SpStSeq} D=2$ and width the Go-board of $\operatorname{SpStSeq} D=2$ and $\pi_{1} \operatorname{SpStSeq} D=(\text { the Go-board of } \operatorname{SpStSeq} D)_{1,2}$ and $\pi_{2} \operatorname{SpStSeq} D=(\text { the Go-board of } \operatorname{SpStSeq} D)_{2,2}$ and $\pi_{3} \operatorname{SpStSeq} D=$ (the Go-board of $\operatorname{SpStSeq} D)_{2,1}$ and $\pi_{4} \operatorname{SpStSeq} D=$ (the Go-board of $\operatorname{SpStSeq} D)_{1,1}$ and $\pi_{5} \operatorname{SpStSeq} D=(\text { the Go-board of } \operatorname{SpStSeq} D)_{1,2}$.
(98) LeftComp $(\operatorname{SpStSeq} D)$ is not Bounded.
(99) $\quad \operatorname{LeftComp}(\operatorname{SpStSeq} D) \subseteq \operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$.
(100) Let G be a topological space and A, B, C be subsets of G. Suppose A is a component of G and B is a component of G and C is connected and $A \cap C \neq \emptyset$ and $B \cap C \neq \emptyset$. Then $A=B$.
(101) For every subset B of $\mathcal{E}_{\mathrm{T}}^{2}$ such that B is a component of $(\widetilde{\mathcal{L}}(\operatorname{SpStSeq} D))^{\text {c }}$ and B is not Bounded holds $B=\operatorname{LeftComp}(\operatorname{SpStSeq} D)$.
(102) $\operatorname{RightComp}(\operatorname{SpStSeq} D) \subseteq \operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and $\operatorname{RightComp}(\operatorname{SpStSeq} D)$ is Bounded.
(103) $\operatorname{LeftComp}(\operatorname{SpStSeq} D)=\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and $\operatorname{RightComp}(\operatorname{SpStSeq} D)=\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$.
(104) UBD $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} D) \neq \emptyset$ and $\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ is outside component of $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and $\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D) \neq \emptyset$ and $\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ is inside component of $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$.

3. Jordan Property and Boundary Property

One can prove the following propositions:
(105) Let G be a non empty topological space and A be a subset of G. Suppose $A^{\mathrm{c}} \neq \emptyset$. Then A is boundary if and only if for every set x and for every subset V of G such that $x \in A$ and $x \in V$ and V is open there exists a subset B of the carrier of G such that B is a component of A^{c} and $V \cap B \neq \emptyset$.
(106) Let A be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $A^{\mathrm{c}} \neq \emptyset$. Then A is boundary and Jordan if and only if there exist subsets A_{1}, A_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $A^{\mathrm{c}}=A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}=\emptyset$ and $\overline{A_{1}} \backslash A_{1}=\overline{A_{2}} \backslash A_{2}$ and $A=\overline{A_{1}} \backslash A_{1}$ and for all subsets C_{1}, C_{2} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright A^{\mathrm{c}}$ such that $C_{1}=A_{1}$ and $C_{2}=A_{2}$ holds C_{1} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright A^{\mathrm{c}}$ and C_{2} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright A^{\mathrm{c}}$.
(107) For every point p of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $n \geqslant 1$ and $P=\{p\}$ holds P is boundary.
(108) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every r such that $p_{1}=q_{2}$ and $-p_{2}=q_{1}$ and $p=r \cdot q$ holds $p_{\mathbf{1}}=0$ and $p_{\mathbf{2}}=0$ and $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$.
(109) For all points q_{1}, q_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathcal{L}\left(q_{1}, q_{2}\right)$ is boundary.

Let q_{1}, q_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Observe that $\mathcal{L}\left(q_{1}, q_{2}\right)$ is boundary.
One can prove the following proposition
(110) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\widetilde{\mathcal{L}}(f)$ is boundary.

Let f be a finite sequence of elements of $\mathcal{E}_{\text {T }}^{2}$. Note that $\widetilde{\mathcal{L}}(f)$ is boundary.
We now state several propositions:
(111) For every point e_{1} of \mathcal{E}^{n} and for all points p, q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $p=e_{1}$ and $q \in \operatorname{Ball}\left(e_{1}, r\right)$ holds $|p-q|<r$ and $|q-p|<r$.
(112) Let a be a real number and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $a>0$ and $p \in \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$. Then there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in \operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and $|p-q|<a$.
(113) $\mathcal{R}^{0}=\left\{0_{\mathcal{E}_{\mathrm{T}}^{0}}\right\}$.
(114) For every subset A of $\mathcal{E}_{\mathrm{T}}^{n}$ such that A is Bounded holds $\operatorname{BDD} A$ is Bounded.
(115) Let G be a non empty topological space and A, B, C, D be subsets of G. Suppose A is a component of G and B is a component of G and C is a component of G and $A \cup B=$ the carrier of G and $C \cap A=\emptyset$. Then $C=B$.
(116) For every subset A of $\mathcal{E}_{\text {T }}^{2}$ such that A is Bounded and Jordan holds $\operatorname{BDD} A$ is inside component of A.
(117) Let a be a real number and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $a>0$ and $p \in \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$. Then there exists a point q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $q \in \operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and $|p-q|<a$.

4. Points in LeftComp

In the sequel f denotes a clockwise oriented non constant standard special circular sequence.

Next we state four propositions:
(118) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $p_{1}<$ W-bound $\widetilde{\mathcal{L}}(f)$ holds $p \in \operatorname{Left} \operatorname{Comp}(f)$.
(119) For every point p of \mathcal{E}_{T}^{2} such that $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $p_{1}>$ E-bound $\widetilde{\mathcal{L}}(f)$ holds $p \in \operatorname{LeftComp}(f)$.
(120) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $p_{2}<$ S-bound $\widetilde{\mathcal{L}}(f)$ holds $p \in \operatorname{Left} \operatorname{Comp}(f)$.
(121) For every point p of \mathcal{E}_{T}^{2} such that $\pi_{1} f=\mathrm{N}$-min $\widetilde{\mathcal{L}}(f)$ and $p_{2}>$ N-bound $\widetilde{\mathcal{L}}(f)$ holds $p \in \operatorname{LeftComp}(f)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353-359, 1996.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[14] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[17] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[18] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[19] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[20] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
[21] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
[22] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[23] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[24] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[25] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.
[26] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[27] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[28] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[29] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[30] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[31] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Formalized Mathematics, 6(4):505-509, 1997.
[32] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193-201, 1998.
[33] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[34] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[35] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Formalized Mathematics, 5(4):513-517, 1996.
[36] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[37] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[38] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[39] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[40] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[41] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[42] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[43] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[44] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[45] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[46] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[47] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[48] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. Formalized Mathematics, 6(4):531-539, 1997.
[49] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[50] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[51] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[52] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathematics, 3(1):85-88, 1992.
[53] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[54] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received January 7, 1999

