Hilbert Positive Propositional Calculus

Adam Grabowski University of Białystok

MML Identifier: HILBERT1.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper.

1. Definition of the Language

Let D be a set. We say that D has VERUM if and only if:

(Def. 1) $\langle 0 \rangle \in D$.

Let D be a set. We say that D has implication if and only if:

(Def. 2) For all finite sequences p, q such that $p \in D$ and $q \in D$ holds $\langle 1 \rangle ^p q \in D$.

Let D be a set. We say that D has conjunction if and only if:

(Def. 3) For all finite sequences p, q such that $p \in D$ and $q \in D$ holds $\langle 2 \rangle ^p q \in D$.

Let D be a set. We say that D has propositional variables if and only if:

(Def. 4) For every natural number n holds $\langle 3+n \rangle \in D$.

Let D be a set. We say that D is HP-closed if and only if:

(Def. 5) $D \subseteq \mathbb{N}^*$ and D has VERUM, implication, conjunction, and propositional variables.

Let us note that every set which is HP-closed is also non empty and has VERUM, implication, conjunction, and propositional variables and every subset of \mathbb{N}^* which has VERUM, implication, conjunction, and propositional variables is HP-closed.

The set HP-WFF is defined as follows:

C 1999 University of Białystok ISSN 1426-2630 (Def. 6) HP-WFF is HP-closed and for every set D such that D is HP-closed holds HP-WFF $\subseteq D$.

Let us note that HP-WFF is HP-closed.

Let us mention that there exists a set which is HP-closed and non empty.

One can verify that every element of HP-WFF is relation-like and function-like.

Let us mention that every element of HP-WFF is finite sequence-like. A HP-formula is an element of HP-WFF.

The HP-formula VERUM is defined by:

(Def. 7) VERUM = $\langle 0 \rangle$.

Let p, q be elements of HP-WFF. The functor $p \Rightarrow q$ yielding a HP-formula is defined by:

(Def. 8) $p \Rightarrow q = \langle 1 \rangle \cap p \cap q$.

The functor $p \wedge q$ yielding a HP-formula is defined as follows:

(Def. 9) $p \wedge q = \langle 2 \rangle \cap p \cap q$.

We follow the rules: T, X, Y denote subsets of HP-WFF and p, q, r, s denote elements of HP-WFF.

Let T be a subset of HP-WFF. We say that T is Hilbert theory if and only if the conditions (Def. 10) are satisfied.

- (Def. 10)(i) VERUM $\in T$, and
 - (ii) for all elements p, q, r of HP-WFF holds $p \Rightarrow (q \Rightarrow p) \in T$ and $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) \in T$ and $p \wedge q \Rightarrow p \in T$ and $p \wedge q \Rightarrow q \in T$ and $p \Rightarrow (q \Rightarrow p \wedge q) \in T$ and if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$.

Let us consider X. The functor $\operatorname{CnPos} X$ yields a subset of HP-WFF and is defined by:

(Def. 11) $r \in \operatorname{CnPos} X$ iff for every T such that T is Hilbert theory and $X \subseteq T$ holds $r \in T$.

The subset HP_TAUT of HP-WFF is defined by:

(Def. 12) $HP_TAUT = CnPos \emptyset_{HP-WFF}$.

The following propositions are true:

- (1) VERUM \in CnPos X.
- (2) $p \Rightarrow (q \Rightarrow p \land q) \in \operatorname{CnPos} X.$
- (3) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) \in \operatorname{CnPos} X.$
- (4) $p \Rightarrow (q \Rightarrow p) \in \operatorname{CnPos} X.$
- (5) $p \wedge q \Rightarrow p \in \operatorname{CnPos} X.$
- (6) $p \wedge q \Rightarrow q \in \operatorname{CnPos} X.$
- (7) If $p \in \operatorname{CnPos} X$ and $p \Rightarrow q \in \operatorname{CnPos} X$, then $q \in \operatorname{CnPos} X$.
- (8) If T is Hilbert theory and $X \subseteq T$, then $\operatorname{CnPos} X \subseteq T$.

70

- (9) $X \subseteq \operatorname{CnPos} X$.
- (10) If $X \subseteq Y$, then $\operatorname{CnPos} X \subseteq \operatorname{CnPos} Y$.
- (11) $\operatorname{CnPos} \operatorname{CnPos} X = \operatorname{CnPos} X.$

Let X be a subset of HP-WFF. One can verify that $\operatorname{CnPos} X$ is Hilbert theory.

We now state two propositions:

- (12) T is Hilbert theory iff CnPos T = T.
- (13) If T is Hilbert theory, then HP_TAUT $\subseteq T$.

Let us mention that HP_TAUT is Hilbert theory.

2. The Tautologies of the Hilbert Calculus - Implicational Part

We now state a number of propositions:

- (14) $p \Rightarrow p \in \text{HP}_{\text{-}}\text{TAUT}$.
- (15) If $q \in \text{HP}_{\text{TAUT}}$, then $p \Rightarrow q \in \text{HP}_{\text{TAUT}}$.
- (16) $p \Rightarrow \text{VERUM} \in \text{HP}_\text{TAUT}$.
- (17) $(p \Rightarrow q) \Rightarrow (p \Rightarrow p) \in \text{HP}_{-}\text{TAUT}.$
- (18) $(q \Rightarrow p) \Rightarrow (p \Rightarrow p) \in \text{HP}_{-}\text{TAUT}$.
- (19) $(q \Rightarrow r) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) \in \text{HP}_\text{TAUT}.$
- (20) If $p \Rightarrow (q \Rightarrow r) \in \text{HP}_{-}\text{TAUT}$, then $q \Rightarrow (p \Rightarrow r) \in \text{HP}_{-}\text{TAUT}$.
- (21) $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r)) \in \text{HP}_{-}\text{TAUT}.$
- (22) If $p \Rightarrow q \in \text{HP}_{\text{TAUT}}$, then $(q \Rightarrow r) \Rightarrow (p \Rightarrow r) \in \text{HP}_{\text{TAUT}}$.
- (23) If $p \Rightarrow q \in \text{HP}_{\text{TAUT}}$ and $q \Rightarrow r \in \text{HP}_{\text{TAUT}}$, then $p \Rightarrow r \in \text{HP}_{\text{TAUT}}$.
- (24) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((s \Rightarrow q) \Rightarrow (p \Rightarrow (s \Rightarrow r))) \in HP_TAUT.$
- (25) $((p \Rightarrow q) \Rightarrow r) \Rightarrow (q \Rightarrow r) \in HP_{-}TAUT$.
- (26) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow (q \Rightarrow (p \Rightarrow r)) \in HP_{-}TAUT$.
- (27) $(p \Rightarrow (p \Rightarrow q)) \Rightarrow (p \Rightarrow q) \in HP_TAUT.$
- (28) $q \Rightarrow ((q \Rightarrow p) \Rightarrow p) \in \text{HP}_\text{-}\text{TAUT}$.
- (29) If $s \Rightarrow (q \Rightarrow p) \in \text{HP}_{\text{TAUT}}$ and $q \in \text{HP}_{\text{TAUT}}$, then $s \Rightarrow p \in \text{HP}_{\text{TAUT}}$.

3. Conjunctional Part of the Calculus

The following propositions are true: (30) $p \Rightarrow p \land p \in \text{HP}_\text{TAUT}$.

(31)
$$p \land q \in \text{HP}_{\text{TAUT}}$$
 iff $p \in \text{HP}_{\text{TAUT}}$ and $q \in \text{HP}_{\text{TAUT}}$

- (32) $p \wedge q \in \text{HP}_{-}\text{TAUT} \text{ iff } q \wedge p \in \text{HP}_{-}\text{TAUT}.$
- (33) $(p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r)) \in \text{HP}_{-}\text{TAUT}.$
- $(34) \quad (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r) \in \mathrm{HP}_{-}\mathrm{TAUT}\,.$
- (35) $(r \Rightarrow p) \Rightarrow ((r \Rightarrow q) \Rightarrow (r \Rightarrow p \land q)) \in \text{HP}_{\text{-}}\text{TAUT}.$
- (36) $(p \Rightarrow q) \land p \Rightarrow q \in \text{HP}_{-}\text{TAUT}$.
- (37) $(p \Rightarrow q) \land p \land s \Rightarrow q \in \text{HP}_{\text{-}}\text{TAUT}.$
- (38) $(q \Rightarrow s) \Rightarrow (p \land q \Rightarrow s) \in \text{HP}_{-}\text{TAUT}.$
- (39) $(q \Rightarrow s) \Rightarrow (q \land p \Rightarrow s) \in \text{HP}_{\text{-}}\text{TAUT}.$
- (40) $(p \land s \Rightarrow q) \Rightarrow (p \land s \Rightarrow q \land s) \in \text{HP}_{-}\text{TAUT}.$
- (41) $(p \Rightarrow q) \Rightarrow (p \land s \Rightarrow q \land s) \in \text{HP}_\text{TAUT}.$
- (42) $(p \Rightarrow q) \land (p \land s) \Rightarrow q \land s \in \text{HP}_{-}\text{TAUT}.$
- (43) $p \wedge q \Rightarrow q \wedge p \in \text{HP}_{-}\text{TAUT}$.
- (44) $(p \Rightarrow q) \land (p \land s) \Rightarrow s \land q \in HP_TAUT$.
- (45) $(p \Rightarrow q) \Rightarrow (p \land s \Rightarrow s \land q) \in HP_TAUT$.
- (46) $(p \Rightarrow q) \Rightarrow (s \land p \Rightarrow s \land q) \in \text{HP}_\text{TAUT}.$
- (47) $p \land (s \land q) \Rightarrow p \land (q \land s) \in HP_TAUT$.
- (48) $(p \Rightarrow q) \land (p \Rightarrow s) \Rightarrow (p \Rightarrow q \land s) \in \text{HP}_{\text{TAUT}}.$
- (49) $p \wedge q \wedge s \Rightarrow p \wedge (q \wedge s) \in \text{HP}_{\text{TAUT}}.$
- (50) $p \land (q \land s) \Rightarrow p \land q \land s \in \text{HP}_{\text{TAUT}}.$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [5] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 20, 1999