Some Properties of Cells on Go-Board

Czesław Byliński
University of Białystok

MML Identifier: GOBRD13.

The terminology and notation used in this paper have been introduced in the following articles: [23], [9], [13], [3], [20], [22], [25], [26], [7], [8], [2], [1], [5], [6], [24], [10], [19], [4], [15], [14], [21], [11], [12], [16], [17], and [18].

We use the following convention: $i, i_{1}, i_{2}, j, j_{1}, j_{2}, k, n$ are natural numbers, D is a non empty set, and f is a finite sequence of elements of D.

Let E be a non empty set, let S be a non empty set of finite sequences of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, let F be a function from E into S, and let e be an element of E. Then $F(e)$ is a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$.

Let F be a function. The functor Values F yielding a set is defined by:
(Def. 1) Values $F=$ Union $\left(\mathrm{rng}_{\kappa} F(\kappa)\right)$.
We now state three propositions:
(1) Let M be a finite sequence of elements of D^{*}. If $i \in \operatorname{dom} M$, then $M(i)$ is a finite sequence of elements of D.
(2) For every finite sequence M of elements of D^{*} holds dom $\left(\operatorname{rng}_{\kappa} M(\kappa)\right)=$ dom M.
(3) For every finite sequence M of elements of D^{*} holds Values $M=$ $\bigcup\left\{\operatorname{rng} f ; f\right.$ ranges over elements of $\left.D^{*}: f \in \operatorname{rng} M\right\}$.
Let D be a non empty set and let M be a finite sequence of elements of D^{*}. Note that Values M is finite.

The following propositions are true:
(4) For every matrix M over D such that $i \in \operatorname{dom} M$ and $M(i)=f$ holds $\operatorname{len} f=$ width M.
(5) For every matrix M over D such that $i \in \operatorname{dom} M$ and $M(i)=f$ and $j \in \operatorname{dom} f$ holds $\langle i, j\rangle \in$ the indices of M.
(6) For every matrix M over D such that $\langle i, j\rangle \in$ the indices of M and $M(i)=f$ holds len $f=$ width M and $j \in \operatorname{dom} f$.
(7) For every matrix M over D holds Values $M=\left\{M_{i, j}:\langle i, j\rangle \in\right.$ the indices of $M\}$.
(8) For every non empty set D and for every matrix M over D holds card Values $M \leqslant \operatorname{len} M \cdot$ width M.
In the sequel f, f_{1}, f_{2} are finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and G is a Go-board.

Next we state a number of propositions:
(9) If f is a sequence which elements belong to G, then $\operatorname{rng} f \subseteq \operatorname{Values} G$.
(10) For all Go-boards G_{1}, G_{2} such that Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G_{1} and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{1, j_{2}}$ holds $i_{1}=1$.
(11) For all Go-boards G_{1}, G_{2} such that Values $G_{1} \subseteq$ Values G_{2} and $\left\langle i_{1}\right.$, $\left.j_{1}\right\rangle \in$ the indices of G_{1} and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=$ $\left(G_{2}\right)_{\operatorname{len} G_{2}, j_{2}}$ holds $i_{1}=\operatorname{len} G_{1}$.
(12) For all Go-boards G_{1}, G_{2} such that Values $G_{1} \subseteq$ Values G_{2} and $\left\langle i_{1}\right.$, $\left.j_{1}\right\rangle \in$ the indices of G_{1} and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} G_{2}$ and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, 1}$ holds $j_{1}=1$.
(13) For all Go-boards G_{1}, G_{2} such that Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G_{1} and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} G_{2}$ and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, \text { width } G_{2}}$ holds $j_{1}=$ width G_{1}.
(14) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $1 \leqslant i_{1}$ and $i_{1}<\operatorname{len} G_{1}$ and $1 \leqslant j_{1}$ and $j_{1} \leqslant$ width G_{1} and $1 \leqslant i_{2}$ and $i_{2}<$ len G_{2} and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\left(\left(G_{2}\right)_{i_{2}+1, j_{2}}\right)_{\mathbf{1}} \leqslant\left(\left(G_{1}\right)_{i_{1}+1, j_{1}}\right)_{1}$.
(15) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $1<i_{1}$ and $i_{1} \leqslant \operatorname{len} G_{1}$ and $1 \leqslant j_{1}$ and $j_{1} \leqslant$ width G_{1} and $1<i_{2}$ and $i_{2} \leqslant$ len G_{2} and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\left(\left(G_{1}\right)_{i_{1}-^{\prime} 1, j_{1}}\right)_{\mathbf{1}} \leqslant\left(\left(G_{2}\right)_{i_{2}-^{\prime} 1, j_{2}}\right)_{\mathbf{1}}$.
(16) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} G_{1}$ and $1 \leqslant j_{1}$ and $j_{1}<$ width G_{1} and $1 \leqslant i_{2}$ and $i_{2} \leqslant$ len G_{2} and $1 \leqslant j_{2}$ and $j_{2}<$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\left(\left(G_{2}\right)_{i_{2}, j_{2}+1}\right)_{\mathbf{2}} \leqslant\left(\left(G_{1}\right)_{i_{1}, j_{1}+1}\right)_{\mathbf{2}}$.
(17) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} G_{1}$ and $1<j_{1}$ and $j_{1} \leqslant$ width G_{1} and $1 \leqslant i_{2}$ and $i_{2} \leqslant$ len G_{2} and $1<j_{2}$ and $j_{2} \leqslant$ width G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\left(\left(G_{1}\right)_{i_{1}, j_{1}-^{\prime} 1}\right)_{\mathbf{2}} \leqslant\left(\left(G_{2}\right)_{i_{2}, j_{2}-^{\prime} 1}\right)_{\mathbf{2}}$.
(18) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G_{1} and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\operatorname{cell}\left(G_{2}, i_{2}, j_{2}\right) \subseteq \operatorname{cell}\left(G_{1}, i_{1}, j_{1}\right)$.
(19) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $\left\langle i_{1}, j_{1}\right\rangle \in$
the indices of G_{1} and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\operatorname{cell}\left(G_{2}, i_{2}-^{\prime} 1, j_{2}\right) \subseteq \operatorname{cell}\left(G_{1}, i_{1}-^{\prime} 1, j_{1}\right)$.
(20) Let G_{1}, G_{2} be Go-boards. Suppose Values $G_{1} \subseteq \operatorname{Values} G_{2}$ and $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G_{1} and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G_{2} and $\left(G_{1}\right)_{i_{1}, j_{1}}=\left(G_{2}\right)_{i_{2}, j_{2}}$. Then $\operatorname{cell}\left(G_{2}, i_{2}, j_{2}-^{\prime} 1\right) \subseteq \operatorname{cell}\left(G_{1}, i_{1}, j_{1}-^{\prime} 1\right)$.
(21) Let f be a standard special circular sequence. Suppose f is a sequence which elements belong to G. Then Values the Go-board of $f \subseteq$ Values G.
Let us consider f, G, k. Let us assume that $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. The functor right cell (f, k, G) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the condition (Def. 2).
(Def. 2) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and right_cell $(f, k, G)=\operatorname{cell}\left(G, i_{1}, j_{1}\right)$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\operatorname{right} _\operatorname{cell}(f, k, G)=\operatorname{cell}\left(G, i_{1}, j_{1}-^{\prime} 1\right)$, or
(iii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\operatorname{right} _c e l l(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}\right)$, or
(iv) $\quad i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and right cell $(f, k, G)=\operatorname{cell}\left(G, i_{1}-^{\prime} 1, j_{2}\right)$.

The functor left_cell (f, k, G) yields a subset of $\mathcal{E}_{\text {T }}^{2}$ and is defined by the condition (Def. 3).
(Def. 3) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{1}-^{\prime} 1, j_{1}\right)$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{1}, j_{1}\right)$, or
(iii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}-^{\prime} 1\right)$, or
(iv) $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{1}, j_{2}\right)$.

We now state a number of propositions:
(22) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i, j+1}$. Then left_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j\right)$.
(23) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i, j+1}$. Then right_cell $(f, k, G)=\operatorname{cell}(G, i, j)$.
(24) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i+1, j}$. Then left_cell $(f, k, G)=\operatorname{cell}(G, i, j)$.
(25) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$
and $\pi_{k+1} f=G_{i+1, j}$. Then $\operatorname{right_ cell}(f, k, G)=\operatorname{cell}\left(G, i, j-^{\prime} 1\right)$.
(26) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i+1, j}$ and $\pi_{k+1} f=G_{i, j}$. Then left_cell $(f, k, G)=\operatorname{cell}\left(G, i, j-^{\prime} 1\right)$.
(27) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i+1, j}$ and $\pi_{k+1} f=G_{i, j}$. Then right_cell $(f, k, G)=\operatorname{cell}(G, i, j)$.
(28) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j+1\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j+1}$ and $\pi_{k+1} f=G_{i, j}$. Then left_cell $(f, k, G)=\operatorname{cell}(G, i, j)$.
(29) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j+1\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j+1}$ and $\pi_{k+1} f=G_{i, j}$. Then right_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j\right)$.
(30) If $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G, then left_cell $(f, k, G) \cap \operatorname{right}$ _cell $(f, k, G)=\mathcal{L}(f, k)$.
(31) If $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G, then right_cell (f, k, G) is closed.
(32) Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $k+1 \leqslant n$. Then left_cell $\left.(f, k, G)=\operatorname{left_ cell(~} f \upharpoonright n, k, G\right)$ and right_cell $(f, k, G)=\operatorname{right_ cell}(f \mid n, k, G)$.
(33) Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len}\left(f_{\ln }\right)$ and $n \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. Then left_cell $(f, k+n, G)=\operatorname{left}$ _cell $\left(f_{\downharpoonright n}, k, G\right)$ and right cell $(f, k+n, G)=\operatorname{right} _c e l l\left(f_{\lfloor n}, k, G\right)$.
(34) Let G be a Go-board and f be a standard special circular sequence. Suppose $1 \leqslant n$ and $n+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. Then left_cell $(f, n, G) \subseteq$ leftcell (f, n) and $\operatorname{right_ cell~}(f, n, G) \subseteq$ rightcell (f, n).
Let us consider f, G, k. Let us assume that $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G. The functor front_right_cell (f, k, G) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by the condition (Def. 4).
(Def. 4) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}\right)$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}-^{\prime} 1\right)$, or
(iii) $\quad i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}-^{\prime} 1, j_{2}\right)$, or
(iv) $\quad i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}-^{\prime} 1, j_{2}-^{\prime}\right.$ 1).

The functor front_left_cell (f, k, G) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the condition (Def. 5).
(Def. 5) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $\quad i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}-^{\prime} 1, j_{2}\right)$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}\right)$, or
(iii) $\quad i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}-^{\prime} 1, j_{2}-^{\prime} 1\right)$, or
(iv) $\quad i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i_{2}, j_{2}-^{\prime} 1\right)$.

Next we state several propositions:
(35) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i, j+1}$. Then front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j+1\right)$.
(36) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i, j+1\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i, j+1}$. Then front_right_cell $(f, k, G)=\operatorname{cell}(G, i, j+1)$.
(37) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i+1, j}$. Then front_left_cell $(f, k, G)=\operatorname{cell}(G, i+1, j)$.
(38) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j}$ and $\pi_{k+1} f=G_{i+1, j}$. Then front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i+1, j-^{\prime} 1\right)$.
(39) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and
$\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i+1, j}$ and $\pi_{k+1} f=G_{i, j}$. Then front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j-^{\prime} 1\right)$.
(40) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j\rangle \in$ the indices of G and $\langle i+1, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i+1, j}$ and $\pi_{k+1} f=G_{i, j}$. Then front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j\right)$.
(41) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j+1\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j+1}$ and $\pi_{k+1} f=G_{i, j}$. Then front_left_cell $(f, k, G)=\operatorname{cell}\left(G, i, j-^{\prime} 1\right)$.
(42) Suppose that
$1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $\langle i, j+1\rangle \in$ the indices of G and $\langle i, j\rangle \in$ the indices of G and $\pi_{k} f=G_{i, j+1}$ and $\pi_{k+1} f=G_{i, j}$. Then front_right_cell $(f, k, G)=\operatorname{cell}\left(G, i-^{\prime} 1, j-^{\prime} 1\right)$.
(43) Suppose $1 \leqslant k$ and $k+1 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $k+1 \leqslant n$. Then front_left_cell $(f, k, G)=$ front_left_cell $(f\lceil n, k, G)$ and front_right_cell $(f, k, G)=$ front_right_cell $(f \backslash n, k, G)$.
Let us consider f, G, k. We say that f turns right k, G if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and $\left\langle i_{2}+1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}+1, j_{2}}$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\left\langle i_{2}, j_{2}-^{\prime} 1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}-^{\prime} 1}$, or
(iii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\left\langle i_{2}, j_{2}+1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}+1}$, or
(iv) $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and $\left\langle i_{2}-^{\prime} 1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}-{ }^{\prime} 1, j_{2}}$.
We say that f turns left k, G if and only if the condition (Def. 7) is satisfied.
(Def. 7) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and $\left\langle i_{2}-^{\prime} 1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}-{ }^{\prime} 1, j_{2}}$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\left\langle i_{2}, j_{2}+1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}+1}$, or
(iii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\left\langle i_{2}, j_{2}-^{\prime} 1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}-^{\prime} 1}$, or
(iv) $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and $\left\langle i_{2}+1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}+1, j_{2}}$.
We say that f goes straight k, G if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let $i_{1}, j_{1}, i_{2}, j_{2}$ be natural numbers. Suppose $\left\langle i_{1}, j_{1}\right\rangle \in$ the indices of G and $\left\langle i_{2}, j_{2}\right\rangle \in$ the indices of G and $\pi_{k} f=G_{i_{1}, j_{1}}$ and $\pi_{k+1} f=G_{i_{2}, j_{2}}$. Then
(i) $i_{1}=i_{2}$ and $j_{1}+1=j_{2}$ and $\left\langle i_{2}, j_{2}+1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}+1}$, or
(ii) $i_{1}+1=i_{2}$ and $j_{1}=j_{2}$ and $\left\langle i_{2}+1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}+1, j_{2}}$, or
(iii) $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and $\left\langle i_{2}-^{\prime} 1, j_{2}\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}-^{\prime} 1, j_{2}}$, or
(iv) $i_{1}=i_{2}$ and $j_{1}=j_{2}+1$ and $\left\langle i_{2}, j_{2}-^{\prime} 1\right\rangle \in$ the indices of G and $\pi_{k+2} f=G_{i_{2}, j_{2}-^{\prime} 1}$.
One can prove the following propositions:
(44) Suppose $1 \leqslant k$ and $k+2 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $k+2 \leqslant n$ and $f\lceil n$ turns right k, G. Then f turns right k, G.
(45) Suppose $1 \leqslant k$ and $k+2 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $k+2 \leqslant n$ and $f\lceil n$ turns left k, G. Then f turns left k, G.
(46) Suppose $1 \leqslant k$ and $k+2 \leqslant \operatorname{len} f$ and f is a sequence which elements belong to G and $k+2 \leqslant n$ and $f\lceil n$ goes straight k, G. Then f goes straight k, G.
(47) Suppose that
$1<k$ and $k+1 \leqslant \operatorname{len} f_{1}$ and $k+1 \leqslant \operatorname{len} f_{2}$ and f_{1} is a sequence which elements belong to G and f_{2} is a sequence which elements belong to G and $f_{1} \upharpoonright k=f_{2} \upharpoonright k$ and f_{1} turns right $k-^{\prime} 1, G$ and f_{2} turns right $k-^{\prime} 1, G$. Then $f_{1} \upharpoonright(k+1)=f_{2} \upharpoonright(k+1)$.
(48) Suppose that
$1<k$ and $k+1 \leqslant \operatorname{len} f_{1}$ and $k+1 \leqslant \operatorname{len} f_{2}$ and f_{1} is a sequence which elements belong to G and f_{2} is a sequence which elements belong to G and $f_{1} \upharpoonright k=f_{2} \upharpoonright k$ and f_{1} turns left $k-^{\prime} 1, G$ and f_{2} turns left $k-^{\prime} 1, G$. Then $f_{1} \upharpoonright(k+1)=f_{2} \upharpoonright(k+1)$.
(49) Suppose that
$1<k$ and $k+1 \leqslant \operatorname{len} f_{1}$ and $k+1 \leqslant \operatorname{len} f_{2}$ and f_{1} is a sequence which elements belong to G and f_{2} is a sequence which elements belong to G and $f_{1} \upharpoonright k=f_{2} \upharpoonright k$ and f_{1} goes straight $k-^{\prime} 1, G$ and f_{2} goes straight $k-^{\prime} 1$, G. Then $f_{1} \upharpoonright(k+1)=f_{2} \upharpoonright(k+1)$.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[19] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[22] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

