The Sequential Closure Operator in Sequential and Frechet Spaces

Bartłomiej Skorulski University of Białystok

MML Identifier: FRECHET2.

The articles [26], [30], [2], [21], [10], [3], [11], [29], [9], [31], [6], [7], [23], [8], [4], [13], [1], [20], [19], [24], [18], [17], [14], [16], [5], [12], [22], [28], [15], [27], and [25] provide the notation and terminology for this paper.

1. The Properties of Sequences and Subsequences

Let T be a non empty 1-sorted structure, let f be a function from \mathbb{N} into \mathbb{N} , and let S be a sequence of T. Then $S \cdot f$ is a sequence of T.

One can prove the following two propositions:

- (1) Let T be a non empty 1-sorted structure, S be a sequence of T, and N_1 be an increasing sequence of naturals. Then $S \cdot N_1$ is a sequence of T.
- (2) For every sequence R_1 of real numbers such that $R_1 = id_{\mathbb{N}}$ holds R_1 is an increasing sequence of naturals.

Let T be a non empty 1-sorted structure and let S be a sequence of T. A sequence of T is called a subsequence of S if:

- (Def. 1) There exists an increasing sequence N_1 of naturals such that it = $S \cdot N_1$. The following two propositions are true:
 - (3) For every non empty 1-sorted structure T holds every sequence S of T is a subsequence of S.
 - (4) For every non empty 1-sorted structure T and for every sequence S of T and for every subsequence S_1 of S holds rng $S_1 \subseteq$ rng S.

C 1999 University of Białystok ISSN 1426-2630 Let T be a non empty 1-sorted structure, let N_1 be an increasing sequence of naturals, and let S be a sequence of T. Then $S \cdot N_1$ is a subsequence of S.

One can prove the following proposition

(5) Let T be a non empty 1-sorted structure, S_1 be a sequence of T, and S_2 be a subsequence of S_1 . Then every subsequence of S_2 is a subsequence of S_1 .

In this article we present several logical schemes. The scheme SubSeqChoice deals with a non empty 1-sorted structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , and and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number n holds $\mathcal{P}[S_1(n)]$

provided the following requirement is met:

• For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \leq m$ and $x = \mathcal{B}(m)$ and $\mathcal{P}[x]$.

The scheme SubSeqChoice1 deals with a non empty topological structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , and and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number n holds $\mathcal{P}[S_1(n)]$

provided the parameters have the following property:

• For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \leq m$ and $x = \mathcal{B}(m)$ and $\mathcal{P}[x]$.

One can prove the following propositions:

- (6) Let T be a non empty 1-sorted structure, S be a sequence of T, and A be a subset of the carrier of T. Suppose that for every subsequence S_1 of S holds rng $S_1 \not\subseteq A$. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $S(m) \notin A$.
- (7) Let T be a non empty 1-sorted structure, S be a sequence of T, and A, B be subsets of the carrier of T. If $\operatorname{rng} S \subseteq A \cup B$, then there exists a subsequence S_1 of S such that $\operatorname{rng} S_1 \subseteq A$ or $\operatorname{rng} S_1 \subseteq B$.
- (8) Let T be a non empty topological space. Suppose that for every sequence S of T and for all points x_1, x_2 of T such that $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$ holds $x_1 = x_2$. Then T is a T_1 space.
- (9) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T and x_1, x_2 be points of T. If $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$, then $x_1 = x_2$.
- (10) Let T be a non empty topological space. Suppose T is first-countable. Then T is a T_2 space if and only if for every sequence S of T and for all points x_1, x_2 of T such that $x_1 \in \text{Lim } S$ and $x_2 \in \text{Lim } S$ holds $x_1 = x_2$.

48

- (11) For every non empty topological structure T and for every sequence S of T such that S is not convergent holds $\text{Lim } S = \emptyset$.
- (12) Let T be a non empty topological space and A be a subset of T. If A is closed, then for every sequence S of T such that $\operatorname{rng} S \subseteq A$ holds $\operatorname{Lim} S \subseteq A$.
- (13) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. Suppose S is not convergent to x. Then there exists a subsequence S_1 of S such that every subsequence of S_1 is not convergent to x.

2. The Continuous Maps

One can prove the following two propositions:

- (14) Let T_1 , T_2 be non empty topological spaces and f be a map from T_1 into T_2 . Suppose f is continuous. Let S_1 be a sequence of T_1 and S_2 be a sequence of T_2 . If $S_2 = f \cdot S_1$, then $f^{\circ} \lim S_1 \subseteq \lim S_2$.
- (15) Let T_1, T_2 be non empty topological spaces and f be a map from T_1 into T_2 . Suppose T_1 is sequential. Then f is continuous if and only if for every sequence S_1 of T_1 and for every sequence S_2 of T_2 such that $S_2 = f \cdot S_1$ holds $f^{\circ} \lim S_1 \subseteq \lim S_2$.
 - 3. The Sequential Closure Operator

Let T be a non empty topological structure and let A be a subset of the carrier of T. The functor $\operatorname{Cl}_{\operatorname{Seq}} A$ yielding a subset of T is defined by:

(Def. 2) For every point x of T holds $x \in \operatorname{Cl}_{\operatorname{Seq}} A$ iff there exists a sequence S of T such that $\operatorname{rng} S \subseteq A$ and $x \in \operatorname{Lim} S$.

The following propositions are true:

- (16) Let T be a non empty topological structure, A be a subset of T, S be a sequence of T, and x be a point of T. If $\operatorname{rng} S \subseteq A$ and $x \in \operatorname{Lim} S$, then $x \in \overline{A}$.
- (17) For every non empty topological structure T and for every subset A of T holds $\operatorname{Cl}_{\operatorname{Seq}} A \subseteq \overline{A}$.
- (18) Let T be a non empty topological structure, S be a sequence of T, S_1 be a subsequence of S, and x be a point of T. If S is convergent to x, then S_1 is convergent to x.
- (19) Let T be a non empty topological structure, S be a sequence of T, and S_1 be a subsequence of S. Then $\lim S \subseteq \lim S_1$.

BARTŁOMIEJ SKORULSKI

- (20) For every non empty topological structure T holds $\operatorname{Cl}_{\operatorname{Seq}}(\emptyset_T) = \emptyset$.
- (21) For every non empty topological structure T and for every subset A of T holds $A \subseteq \operatorname{Cl}_{\operatorname{Seq}} A$.
- (22) For every non empty topological structure T and for all subsets A, B of T holds $\operatorname{Cl}_{\operatorname{Seq}} A \cup \operatorname{Cl}_{\operatorname{Seq}} B = \operatorname{Cl}_{\operatorname{Seq}}(A \cup B)$.
- (23) Let T be a non empty topological structure. Then T is Frechet if and only if for every subset A of the carrier of T holds $\overline{A} = \operatorname{Cl}_{\operatorname{Seq}} A$.
- (24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B be subsets of T. Then $\operatorname{Cl}_{\operatorname{Seq}}(\emptyset_T) = \emptyset$ and $A \subseteq \operatorname{Cl}_{\operatorname{Seq}} A$ and $\operatorname{Cl}_{\operatorname{Seq}}(A \cup B) = \operatorname{Cl}_{\operatorname{Seq}} A \cup \operatorname{Cl}_{\operatorname{Seq}} B$ and $\operatorname{Cl}_{\operatorname{Seq}} \operatorname{Cl}_{\operatorname{Seq}} A = \operatorname{Cl}_{\operatorname{Seq}} A$.
- (25) Let T be a non empty topological space. Suppose T is sequential. If for every subset A of T holds $\operatorname{Cl}_{\operatorname{Seq}} \operatorname{Cl}_{\operatorname{Seq}} A = \operatorname{Cl}_{\operatorname{Seq}} A$, then T is Frechet.
- (26) Let T be a non empty topological space. Suppose T is sequential. Then T is Frechet if and only if for all subsets A, B of T holds $\operatorname{Cl}_{\operatorname{Seq}}(\emptyset_T) = \emptyset$ and $A \subseteq \operatorname{Cl}_{\operatorname{Seq}} A$ and $\operatorname{Cl}_{\operatorname{Seq}}(A \cup B) = \operatorname{Cl}_{\operatorname{Seq}} A \cup \operatorname{Cl}_{\operatorname{Seq}} B$ and $\operatorname{Cl}_{\operatorname{Seq}} \operatorname{Cl}_{\operatorname{Seq}} A = \operatorname{Cl}_{\operatorname{Seq}} A$.

4. The Limit

Let T be a non empty topological space and let S be a sequence of T. Let us assume that there exists a point x of T such that $\lim S = \{x\}$. The functor $\lim S$ yields a point of T and is defined as follows:

(Def. 3) S is convergent to $\lim S$.

The following propositions are true:

- (27) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T. If S is convergent, then there exists a point x of T such that $\text{Lim } S = \{x\}.$
- (28) Let T be a non empty topological space. Suppose T is a T_2 space. Let S be a sequence of T and x be a point of T. Then S is convergent to x if and only if S is convergent and $x = \lim S$.
- (29) For every metric structure M holds every sequence of M is a sequence of M_{top} .
- (30) For every non empty metric structure M holds every sequence of M_{top} is a sequence of M.
- (31) Let M be a non empty metric space, S be a sequence of M, x be a point of M, S' be a sequence of M_{top} , and x' be a point of M_{top} . Suppose S = S' and x = x'. Then S is convergent to x if and only if S' is convergent to x'.
- (32) Let M be a non empty metric space, S_3 be a sequence of M, and S_4 be a sequence of M_{top} . If $S_3 = S_4$, then S_3 is convergent iff S_4 is convergent.

(33) Let M be a non empty metric space, S_3 be a sequence of M, and S_4 be a sequence of M_{top} . If $S_3 = S_4$ and S_3 is convergent, then $\lim S_3 = \lim S_4$.

5. The Cluster Points

Let T be a topological structure, let S be a sequence of T, and let x be a point of T. We say that x is a cluster point of S if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let O be a subset of T and n be a natural number. Suppose O is open and $x \in O$. Then there exists a natural number m such that $n \leq m$ and $S(m) \in O$.

Next we state several propositions:

- (34) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If there exists a subsequence of S which is convergent to x, then x is a cluster point of S.
- (35) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If S is convergent to x, then x is a cluster point of S.
- (36) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and Y be a subset of the carrier of T. If $Y = \{y; y \text{ ranges over points of } T: x \in \overline{\{y\}}\}$ and $\operatorname{rng} S \subseteq Y$, then S is convergent to x.
- (37) Let T be a non empty topological structure, S be a sequence of T, and x, y be points of T. Suppose that for every natural number n holds S(n) = y and S is convergent to x. Then $x \in \overline{\{y\}}$.
- (38) Let T be a non empty topological structure, x be a point of T, Y be a subset of the carrier of T, and S be a sequence of T. Suppose $Y = \{y; y \text{ ranges over points of } T: x \in \overline{\{y\}}\}$ and $\operatorname{rng} S \cap Y = \emptyset$ and S is convergent to x. Then there exists a subsequence of S which is one-to-one.
- (39) Let T be a non empty topological structure and S_1 , S_2 be sequences of T. Suppose rng $S_2 \subseteq$ rng S_1 and S_2 is one-to-one. Then there exists a permutation P of N such that $S_2 \cdot P$ is a subsequence of S_1 .

Now we present two schemes. The scheme PermSeq deals with a non empty 1-sorted structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , a permutation \mathcal{C} of \mathbb{N} , and and states that:

There exists a natural number n such that for every natural number m such that $n \leq m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$

provided the following condition is satisfied:

• There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \leq m$ and $x = \mathcal{B}(m)$, then $\mathcal{P}[x]$.

The scheme PermSeq2 deals with a non empty topological structure \mathcal{A} , a sequence \mathcal{B} of \mathcal{A} , a permutation \mathcal{C} of \mathbb{N} , and and states that:

There exists a natural number n such that for every natural number m such that $n \leq m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$

provided the parameters meet the following condition:

• There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \leq m$ and $x = \mathcal{B}(m)$, then $\mathcal{P}[x]$.

We now state several propositions:

- (40) Let T be a non empty topological structure, S be a sequence of T, P be a permutation of \mathbb{N} , and x be a point of T. If S is convergent to x, then $S \cdot P$ is convergent to x.
- (41) Let n_0 be a natural number. Then there exists an increasing sequence N_1 of naturals such that for every natural number n holds $N_1(n) = n + n_0$.
- (42) Let T be a non empty 1-sorted structure, S be a sequence of T, and n_0 be a natural number. Then there exists a subsequence S_1 of S such that for every natural number n holds $S_1(n) = S(n + n_0)$.
- (43) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and S_1 be a subsequence of S. Suppose x is a cluster point of S and there exists a natural number n_0 such that for every natural number n holds $S_1(n) = S(n + n_0)$. Then x is a cluster point of S_1 .
- (44) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If x is a cluster point of S, then $x \in \overline{\operatorname{rng} S}$.
- (45) Let T be a non empty topological structure. Suppose T is Frechet. Let S be a sequence of T and x be a point of T. If x is a cluster point of S, then there exists a subsequence of S which is convergent to x.

6. Auxiliary Theorems

We now state several propositions:

- (46) Let T be a non empty topological space. Suppose T is first-countable. Let x be a point of T. Then there exists a basis B of x and there exists a function S such that dom $S = \mathbb{N}$ and rng S = B and for all natural numbers n, m such that $m \ge n$ holds $S(m) \subseteq S(n)$.
- (47) For every non empty topological space T holds T is a T_1 space iff for every point p of T holds $\overline{\{p\}} = \{p\}$.
- (48) For every non empty topological space T such that T is a T_2 space holds T is a T_1 space.

- (49) Let T be a non empty topological space. Suppose T is not a T_1 space. Then there exist points x_1 , x_2 of T and there exists a sequence S of T such that $S = \mathbb{N} \longrightarrow x_1$ and $x_1 \neq x_2$ and S is convergent to x_2 .
- (50) For every function f such that dom f is infinite and f is one-to-one holds rng f is infinite.
- (51) For every non empty finite subset X of \mathbb{N} and for every natural number x such that $x \in X$ holds $x \leq \max X$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65–69, 1991.
- [4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_4 topological spaces. Formalized Mathematics, 5(3):361–366, 1996.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
- [12] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562, 1991.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328, 1990.
- [15] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics, 2(5):657–661, 1991.
- [16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [19] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [20] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [23] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [25] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81–86, 1998.

BARTŁOMIEJ SKORULSKI

- [26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990. [27] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294,
- [28] Wojciech A. Trybulec. Binary operations on finite sequences. *Formalized Mathematics*,
- 1(5):979–981, 1990.
- [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 13, 1999

54