The Sequential Closure Operator in Sequential and Frechet Spaces

Bartłomiej Skorulski
University of Białystok

MML Identifier: FRECHET2.

The articles [26], [30], [2], [21], [10], [3], [11], [29], [9], [31], [6], [7], [23], [8], [4], [13], [1], [20], [19], [24], [18], [17], [14], [16], [5], [12], [22], [28], [15], [27], and [25] provide the notation and terminology for this paper.

1. The Properties of Sequences and Subsequences

Let T be a non empty 1 -sorted structure, let f be a function from \mathbb{N} into \mathbb{N}, and let S be a sequence of T. Then $S \cdot f$ is a sequence of T.

One can prove the following two propositions:
(1) Let T be a non empty 1-sorted structure, S be a sequence of T, and N_{1} be an increasing sequence of naturals. Then $S \cdot N_{1}$ is a sequence of T.
(2) For every sequence R_{1} of real numbers such that $R_{1}=\operatorname{id}_{\mathbb{N}}$ holds R_{1} is an increasing sequence of naturals.
Let T be a non empty 1 -sorted structure and let S be a sequence of T. A sequence of T is called a subsequence of S if:
(Def. 1) There exists an increasing sequence N_{1} of naturals such that it $=S \cdot N_{1}$. The following two propositions are true:
(3) For every non empty 1 -sorted structure T holds every sequence S of T is a subsequence of S.
(4) For every non empty 1-sorted structure T and for every sequence S of T and for every subsequence S_{1} of S holds $\operatorname{rng} S_{1} \subseteq \operatorname{rng} S$.

Let T be a non empty 1-sorted structure, let N_{1} be an increasing sequence of naturals, and let S be a sequence of T. Then $S \cdot N_{1}$ is a subsequence of S.

One can prove the following proposition
(5) Let T be a non empty 1-sorted structure, S_{1} be a sequence of T, and S_{2} be a subsequence of S_{1}. Then every subsequence of S_{2} is a subsequence of S_{1}.
In this article we present several logical schemes. The scheme SubSeqChoice deals with a non empty 1 -sorted structure \mathcal{A}, a sequence \mathcal{B} of \mathcal{A}, and and states that:

There exists a subsequence S_{1} of \mathcal{B} such that for every natural number n holds $\mathcal{P}\left[S_{1}(n)\right]$
provided the following requirement is met:

- For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \leqslant m$ and $x=\mathcal{B}(m)$ and $\mathcal{P}[x]$.
The scheme SubSeqChoice1 deals with a non empty topological structure \mathcal{A}, a sequence \mathcal{B} of \mathcal{A}, and and states that:

There exists a subsequence S_{1} of \mathcal{B} such that for every natural number n holds $\mathcal{P}\left[S_{1}(n)\right.$]
provided the parameters have the following property:

- For every natural number n there exists a natural number m and there exists a point x of \mathcal{A} such that $n \leqslant m$ and $x=\mathcal{B}(m)$ and $\mathcal{P}[x]$.
One can prove the following propositions:
(6) Let T be a non empty 1 -sorted structure, S be a sequence of T, and A be a subset of the carrier of T. Suppose that for every subsequence S_{1} of S holds $\operatorname{rng} S_{1} \nsubseteq A$. Then there exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $S(m) \notin A$.
(7) Let T be a non empty 1-sorted structure, S be a sequence of T, and A, B be subsets of the carrier of T. If $\operatorname{rng} S \subseteq A \cup B$, then there exists a subsequence S_{1} of S such that rng $S_{1} \subseteq A$ or rng $S_{1} \subseteq B$.
(8) Let T be a non empty topological space. Suppose that for every sequence S of T and for all points x_{1}, x_{2} of T such that $x_{1} \in \operatorname{Lim} S$ and $x_{2} \in \operatorname{Lim} S$ holds $x_{1}=x_{2}$. Then T is a T_{1} space.
(9) Let T be a non empty topological space. Suppose T is a T_{2} space. Let S be a sequence of T and x_{1}, x_{2} be points of T. If $x_{1} \in \operatorname{Lim} S$ and $x_{2} \in \operatorname{Lim} S$, then $x_{1}=x_{2}$.
(10) Let T be a non empty topological space. Suppose T is first-countable. Then T is a T_{2} space if and only if for every sequence S of T and for all points x_{1}, x_{2} of T such that $x_{1} \in \operatorname{Lim} S$ and $x_{2} \in \operatorname{Lim} S$ holds $x_{1}=x_{2}$.
(11) For every non empty topological structure T and for every sequence S of T such that S is not convergent holds $\operatorname{Lim} S=\emptyset$.
(12) Let T be a non empty topological space and A be a subset of T. If A is closed, then for every sequence S of T such that rng $S \subseteq A$ holds $\operatorname{Lim} S \subseteq A$.
(13) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. Suppose S is not convergent to x. Then there exists a subsequence S_{1} of S such that every subsequence of S_{1} is not convergent to x.

2. The Continuous Maps

One can prove the following two propositions:
(14) Let T_{1}, T_{2} be non empty topological spaces and f be a map from T_{1} into T_{2}. Suppose f is continuous. Let S_{1} be a sequence of T_{1} and S_{2} be a sequence of T_{2}. If $S_{2}=f \cdot S_{1}$, then $f^{\circ} \operatorname{Lim} S_{1} \subseteq \operatorname{Lim} S_{2}$.
(15) Let T_{1}, T_{2} be non empty topological spaces and f be a map from T_{1} into T_{2}. Suppose T_{1} is sequential. Then f is continuous if and only if for every sequence S_{1} of T_{1} and for every sequence S_{2} of T_{2} such that $S_{2}=f \cdot S_{1}$ holds $f^{\circ} \operatorname{Lim} S_{1} \subseteq \operatorname{Lim} S_{2}$.

3. The Sequential Closure Operator

Let T be a non empty topological structure and let A be a subset of the carrier of T. The functor $\mathrm{Cl}_{\text {Seq }} A$ yielding a subset of T is defined by:
(Def. 2) For every point x of T holds $x \in \mathrm{Cl}_{\text {Seq }} A$ iff there exists a sequence S of T such that $\operatorname{rng} S \subseteq A$ and $x \in \operatorname{Lim} S$.
The following propositions are true:
(16) Let T be a non empty topological structure, A be a subset of T, S be a sequence of T, and x be a point of T. If $\operatorname{rng} S \subseteq A$ and $x \in \operatorname{Lim} S$, then $x \in \bar{A}$.
(17) For every non empty topological structure T and for every subset A of T holds $\mathrm{Cl}_{\text {Seq }} A \subseteq \bar{A}$.
(18) Let T be a non empty topological structure, S be a sequence of T, S_{1} be a subsequence of S, and x be a point of T. If S is convergent to x, then S_{1} is convergent to x.
(19) Let T be a non empty topological structure, S be a sequence of T, and S_{1} be a subsequence of S. Then $\operatorname{Lim} S \subseteq \operatorname{Lim} S_{1}$.
(20) For every non empty topological structure T holds $\mathrm{Cl}_{\text {Seq }}\left(\emptyset_{T}\right)=\emptyset$.
(21) For every non empty topological structure T and for every subset A of T holds $A \subseteq \mathrm{Cl}_{\text {Seq }} A$.
(22) For every non empty topological structure T and for all subsets A, B of T holds $\mathrm{Cl}_{\text {Seq }} A \cup \mathrm{Cl}_{\text {Seq }} B=\mathrm{Cl}_{\text {Seq }}(A \cup B)$.
(23) Let T be a non empty topological structure. Then T is Frechet if and only if for every subset A of the carrier of T holds $\bar{A}=\mathrm{Cl}_{\text {Seq }} A$.
(24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B be subsets of T. Then $\mathrm{Cl}_{\mathrm{Seq}}\left(\emptyset_{T}\right)=\emptyset$ and $A \subseteq \mathrm{Cl}_{\mathrm{Seq}} A$ and $\mathrm{Cl}_{\mathrm{Seq}}(A \cup B)=$ $\mathrm{Cl}_{\text {Seq }} A \cup \mathrm{Cl}_{\text {Seq }} B$ and $\mathrm{Cl}_{\text {Seq }} \mathrm{Cl}_{\text {Seq }} A=\mathrm{Cl}_{\text {Seq }} A$.
(25) Let T be a non empty topological space. Suppose T is sequential. If for every subset A of T holds $\mathrm{Cl}_{\text {Seq }} \mathrm{Cl}_{\text {Seq }} A=\mathrm{Cl}_{\text {Seq }} A$, then T is Frechet.
(26) Let T be a non empty topological space. Suppose T is sequential. Then T is Frechet if and only if for all subsets A, B of T holds $\mathrm{Cl}_{\mathrm{Seq}}\left(\emptyset_{T}\right)=\emptyset$ and $A \subseteq \mathrm{Cl}_{\text {Seq }} A$ and $\mathrm{Cl}_{\text {Seq }}(A \cup B)=\mathrm{Cl}_{\text {Seq }} A \cup \mathrm{Cl}_{\text {Seq }} B$ and $\mathrm{Cl}_{\text {Seq }} \mathrm{Cl}_{\text {Seq }} A=$ $\mathrm{Cl}_{\text {Seq }} A$.

4. The Limit

Let T be a non empty topological space and let S be a sequence of T. Let us assume that there exists a point x of T such that $\operatorname{Lim} S=\{x\}$. The functor $\lim S$ yields a point of T and is defined as follows:
(Def. 3) S is convergent to $\lim S$.
The following propositions are true:
(27) Let T be a non empty topological space. Suppose T is a T_{2} space. Let S be a sequence of T. If S is convergent, then there exists a point x of T such that $\operatorname{Lim} S=\{x\}$.
(28) Let T be a non empty topological space. Suppose T is a T_{2} space. Let S be a sequence of T and x be a point of T. Then S is convergent to x if and only if S is convergent and $x=\lim S$.
(29) For every metric structure M holds every sequence of M is a sequence of M_{top}.
(30) For every non empty metric structure M holds every sequence of $M_{\text {top }}$ is a sequence of M.
(31) Let M be a non empty metric space, S be a sequence of M, x be a point of M, S^{\prime} be a sequence of M_{top}, and x^{\prime} be a point of M_{top}. Suppose $S=S^{\prime}$ and $x=x^{\prime}$. Then S is convergent to x if and only if S^{\prime} is convergent to x^{\prime}.
(32) Let M be a non empty metric space, S_{3} be a sequence of M, and S_{4} be a sequence of $M_{\text {top }}$. If $S_{3}=S_{4}$, then S_{3} is convergent iff S_{4} is convergent.
(33) Let M be a non empty metric space, S_{3} be a sequence of M, and S_{4} be a sequence of M_{top}. If $S_{3}=S_{4}$ and S_{3} is convergent, then $\lim S_{3}=\lim S_{4}$.

5. The Cluster Points

Let T be a topological structure, let S be a sequence of T, and let x be a point of T. We say that x is a cluster point of S if and only if the condition (Def. 4) is satisfied.
(Def. 4) Let O be a subset of T and n be a natural number. Suppose O is open and $x \in O$. Then there exists a natural number m such that $n \leqslant m$ and $S(m) \in O$.
Next we state several propositions:
(34) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If there exists a subsequence of S which is convergent to x, then x is a cluster point of S.
(35) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If S is convergent to x, then x is a cluster point of S.
(36) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and Y be a subset of the carrier of T. If $Y=\{y ; y$ ranges over points of $T: x \in \overline{\{y\}}\}$ and $\operatorname{rng} S \subseteq Y$, then S is convergent to x.
(37) Let T be a non empty topological structure, S be a sequence of T, and x, y be points of T. Suppose that for every natural number n holds $S(n)=y$ and S is convergent to x. Then $x \in \overline{\{y\}}$.
(38) Let T be a non empty topological structure, x be a point of T, Y be a subset of the carrier of T, and S be a sequence of T. Suppose $Y=\{y ; y$ ranges over points of $T: x \in \overline{\{y\}}\}$ and $\mathrm{rng} S \cap Y=\emptyset$ and S is convergent to x. Then there exists a subsequence of S which is one-to-one.
(39) Let T be a non empty topological structure and S_{1}, S_{2} be sequences of T. Suppose $\operatorname{rng} S_{2} \subseteq \operatorname{rng} S_{1}$ and S_{2} is one-to-one. Then there exists a permutation P of \mathbb{N} such that $S_{2} \cdot P$ is a subsequence of S_{1}.
Now we present two schemes. The scheme PermSeq deals with a non empty 1 -sorted structure \mathcal{A}, a sequence \mathcal{B} of \mathcal{A}, a permutation \mathcal{C} of \mathbb{N}, and and states that:

There exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$
provided the following condition is satisfied:

- There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \leqslant m$ and $x=\mathcal{B}(m)$, then $\mathcal{P}[x]$.

The scheme PermSeq2 deals with a non empty topological structure \mathcal{A}, a sequence \mathcal{B} of \mathcal{A}, a permutation \mathcal{C} of \mathbb{N}, and and states that:

There exists a natural number n such that for every natural number m such that $n \leqslant m$ holds $\mathcal{P}[(\mathcal{B} \cdot \mathcal{C})(m)]$
provided the parameters meet the following condition:

- There exists a natural number n such that for every natural number m and for every point x of \mathcal{A} if $n \leqslant m$ and $x=\mathcal{B}(m)$, then $\mathcal{P}[x]$.
We now state several propositions:
(40) Let T be a non empty topological structure, S be a sequence of T, P be a permutation of \mathbb{N}, and x be a point of T. If S is convergent to x, then $S \cdot P$ is convergent to x.
(41) Let n_{0} be a natural number. Then there exists an increasing sequence N_{1} of naturals such that for every natural number n holds $N_{1}(n)=n+n_{0}$.
(42) Let T be a non empty 1 -sorted structure, S be a sequence of T, and n_{0} be a natural number. Then there exists a subsequence S_{1} of S such that for every natural number n holds $S_{1}(n)=S\left(n+n_{0}\right)$.
(43) Let T be a non empty topological structure, S be a sequence of T, x be a point of T, and S_{1} be a subsequence of S. Suppose x is a cluster point of S and there exists a natural number n_{0} such that for every natural number n holds $S_{1}(n)=S\left(n+n_{0}\right)$. Then x is a cluster point of S_{1}.
(44) Let T be a non empty topological structure, S be a sequence of T, and x be a point of T. If x is a cluster point of S, then $x \in \overline{\operatorname{rng} S}$.
(45) Let T be a non empty topological structure. Suppose T is Frechet. Let S be a sequence of T and x be a point of T. If x is a cluster point of S, then there exists a subsequence of S which is convergent to x.

6. Auxiliary Theorems

We now state several propositions:
(46) Let T be a non empty topological space. Suppose T is first-countable. Let x be a point of T. Then there exists a basis B of x and there exists a function S such that $\operatorname{dom} S=\mathbb{N}$ and $\operatorname{rng} S=B$ and for all natural numbers n, m such that $m \geqslant n$ holds $S(m) \subseteq S(n)$.
(47) For every non empty topological space T holds T is a T_{1} space iff for every point p of T holds $\overline{\{p\}}=\{p\}$.
(48) For every non empty topological space T such that T is a T_{2} space holds T is a T_{1} space.
(49) Let T be a non empty topological space. Suppose T is not a T_{1} space. Then there exist points x_{1}, x_{2} of T and there exists a sequence S of T such that $S=\mathbb{N} \longmapsto x_{1}$ and $x_{1} \neq x_{2}$ and S is convergent to x_{2}.
(50) For every function f such that $\operatorname{dom} f$ is infinite and f is one-to-one holds $\operatorname{rng} f$ is infinite.
(51) For every non empty finite subset X of \mathbb{N} and for every natural number x such that $x \in X$ holds $x \leqslant \max X$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[12] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.
[15] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics, 2(5):657-661, 1991.
[16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[19] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[20] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[23] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[25] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
[26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[27] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294, 1997.
[28] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

Received February 13, 1999

