Predicate Calculus for Boolean Valued Functions. Part II

Shunichi Kobayashi Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this paper, we have proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{BVFUNC_4}.$

The terminology and notation used in this paper are introduced in the following articles: [8], [10], [11], [2], [3], [7], [6], [9], [1], [4], and [5].

1. Preliminaries

In this paper Y denotes a non empty set.

Next we state a number of propositions:

- (1) For all elements a, b, c of BVF(Y) such that $a \in b \Rightarrow c$ holds $a \land b \in c$.
- (2) For all elements a, b, c of BVF(Y) such that $a \wedge b \in c$ holds $a \in b \Rightarrow c$.
- (3) For all elements a, b of BVF(Y) holds $a \lor a \land b = a$.
- (4) For all elements a, b of BVF(Y) holds $a \land (a \lor b) = a$.
- (5) For every element a of BVF(Y) holds $a \wedge \neg a = false(Y)$.
- (6) For every element a of BVF(Y) holds $a \vee \neg a = true(Y)$.
- (7) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b = (a \Rightarrow b) \land (b \Rightarrow a)$.
- (8) For all elements a, b of BVF(Y) holds $a \Rightarrow b = \neg a \lor b$.
- (9) For all elements a, b of BVF(Y) holds $a \oplus b = \neg a \land b \lor a \land \neg b$.

C 1999 University of Białystok ISSN 1426-2630

- (10) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b = true(Y)$ iff $a \Rightarrow b = true(Y)$ and $b \Rightarrow a = true(Y)$.
- (11) For all elements a, b, c of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ and $b \Leftrightarrow c = true(Y)$ holds $a \Leftrightarrow c = true(Y)$.
- (12) For all elements a, b of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ holds $\neg a \Leftrightarrow \neg b = true(Y)$.
- (13) For all elements a, b, c, d of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ and $c \Leftrightarrow d = true(Y)$ holds $a \land c \Leftrightarrow b \land d = true(Y)$.
- (14) For all elements a, b, c, d of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ and $c \Leftrightarrow d = true(Y)$ holds $a \Rightarrow c \Leftrightarrow b \Rightarrow d = true(Y)$.
- (15) For all elements a, b, c, d of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ and $c \Leftrightarrow d = true(Y)$ holds $a \lor c \Leftrightarrow b \lor d = true(Y)$.
- (16) For all elements a, b, c, d of BVF(Y) such that $a \Leftrightarrow b = true(Y)$ and $c \Leftrightarrow d = true(Y)$ holds $a \Leftrightarrow c \Leftrightarrow b \Leftrightarrow d = true(Y)$.

2. Predicate Calculus

Next we state a number of propositions:

- (17) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. If G is a coordinate and $P_1 \in G$, then $\forall_{a \Leftrightarrow b, P_1} G = \forall_{a \Rightarrow b, P_1} G \land \forall_{b \Rightarrow a, P_1} G$.
- (18) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and P_1 , P_2 be partitions of *Y*. Suppose *G* is a coordinate and $P_1 \in G$ and $P_2 \in G$. Then $\forall_{a,P_1} G \Subset \exists_{a,P_1} G$ and $\forall_{a,P_1} G \Subset \exists_{a,P_2} G$.
- (19) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$ and uis independent of P_1, G . If $a \Rightarrow u = true(Y)$, then $\forall_{a,P_1}G \Rightarrow u = true(Y)$.
- (20) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$ and uis independent of P_1 , G. Then $\exists_{u,P_1} G \Subset u$.
- (21) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$ and uis independent of P_1 , G. Then $u \in \forall_{u,P_1}G$.
- (22) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 , P_2 be partitions of Y. Suppose G is a coordinate and $P_1 \in G$ and $P_2 \in G$ and u is independent of P_2 , G. Then $\forall_{u,P_1} G \Subset \forall_{u,P_2} G$.
- (23) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 , P_2 be partitions of Y. Suppose G is a coordinate and $P_1 \in G$ and $P_2 \in G$ and u is independent of P_1 , G. Then $\exists_{u,P_1} G \Subset \exists_{u,P_2} G$.

108

- (24) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. If G is a coordinate and $P_1 \in G$, then $\forall_{a \Leftrightarrow b, P_1} G \Subset$ $\forall_{a,P_1}G \Leftrightarrow \forall_{b,P_1}G.$
- (25) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. If G is a coordinate and $P_1 \in G$, then $\forall_{a \wedge b, P_1} G \Subset$ $a \wedge \forall_{b,P_1} G.$
- (26) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$ and u is independent of P_1 , G. Then $\forall_{a,P_1} G \Rightarrow u \in \exists_{a \Rightarrow u,P_1} G$.
- (27) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$. If $a \Leftrightarrow b = true(Y)$, then $\forall_{a,P_1} G \Leftrightarrow \forall_{b,P_1} G = true(Y)$.
- (28) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and P_1 be a partition of Y. Suppose G is a coordinate and $P_1 \in G$. If $a \Leftrightarrow b = true(Y)$, then $\exists_{a,P_1} G \Leftrightarrow \exists_{b,P_1} G = true(Y)$.

References

- [1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-[2]65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [3]1990
- [4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [5] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
- Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, [6] 4(1):83-86, 1993.
- [7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, [8] 1990.[9]
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [10] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.[11] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*,
- 1(1):73-83, 1990.

Received March 13, 1999