# Predicate Calculus for Boolean Valued Functions. Part II 

Shunichi Kobayashi<br>Shinshu University<br>Nagano

Yatsuka Nakamura<br>Shinshu University<br>Nagano


#### Abstract

Summary. In this paper, we have proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.


MML Identifier: BVFUNC_4.

The terminology and notation used in this paper are introduced in the following articles: [8], [10], [11], [2], [3], [7], [6], [9], [1], [4], and [5].

## 1. Preliminaries

In this paper $Y$ denotes a non empty set.
Next we state a number of propositions:
(1) For all elements $a, b, c$ of $\operatorname{BVF}(Y)$ such that $a \Subset b \Rightarrow c$ holds $a \wedge b \Subset c$.
(2) For all elements $a, b, c$ of $\operatorname{BVF}(Y)$ such that $a \wedge b \Subset c$ holds $a \Subset b \Rightarrow c$.
(3) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \vee a \wedge b=a$.
(4) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \wedge(a \vee b)=a$.
(5) For every element $a$ of $\operatorname{BVF}(Y)$ holds $a \wedge \neg a=$ false $(Y)$.
(6) For every element $a$ of $\operatorname{BVF}(Y)$ holds $a \vee \neg a=\operatorname{true}(Y)$.
(7) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \Leftrightarrow b=(a \Rightarrow b) \wedge(b \Rightarrow a)$.
(8) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \Rightarrow b=\neg a \vee b$.
(9) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \oplus b=\neg a \wedge b \vee a \wedge \neg b$.
(10) For all elements $a, b$ of $\operatorname{BVF}(Y)$ holds $a \Leftrightarrow b=\operatorname{true}(Y)$ iff $a \Rightarrow b=$ $\operatorname{true}(Y)$ and $b \Rightarrow a=\operatorname{true}(Y)$.
(11) For all elements $a, b, c$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ and $b \Leftrightarrow c=\operatorname{true}(Y)$ holds $a \Leftrightarrow c=\operatorname{true}(Y)$.
(12) For all elements $a, b$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ holds $\neg a \Leftrightarrow \neg b=\operatorname{true}(Y)$.
(13) For all elements $a, b, c, d$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ and $c \Leftrightarrow d=\operatorname{true}(Y)$ holds $a \wedge c \Leftrightarrow b \wedge d=\operatorname{true}(Y)$.
(14) For all elements $a, b, c, d$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ and $c \Leftrightarrow d=\operatorname{true}(Y)$ holds $a \Rightarrow c \Leftrightarrow b \Rightarrow d=\operatorname{true}(Y)$.
(15) For all elements $a, b, c, d$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ and $c \Leftrightarrow d=\operatorname{true}(Y)$ holds $a \vee c \Leftrightarrow b \vee d=\operatorname{true}(Y)$.
(16) For all elements $a, b, c, d$ of $\operatorname{BVF}(Y)$ such that $a \Leftrightarrow b=\operatorname{true}(Y)$ and $c \Leftrightarrow d=\operatorname{true}(Y)$ holds $a \Leftrightarrow c \Leftrightarrow b \Leftrightarrow d=\operatorname{true}(Y)$.

## 2. Predicate Calculus

Next we state a number of propositions:
(17) Let $a, b$ be elements of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y)$, and $P_{1}$ be a partition of $Y$. If $G$ is a coordinate and $P_{1} \in G$, then $\forall_{a \Leftrightarrow b, P_{1}} G=$ $\forall_{a \Rightarrow b, P_{1}} G \wedge \forall_{b \Rightarrow a, P_{1}} G$.
(18) Let $a$ be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}, P_{2}$ be partitions of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $P_{2} \in G$. Then $\forall_{a, P_{1}} G \Subset \exists_{a, P_{1}} G$ and $\forall_{a, P_{1}} G \Subset \exists_{a, P_{2}} G$.
(19) Let $a, u$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $u$ is independent of $P_{1}, G$. If $a \Rightarrow u=\operatorname{true}(Y)$, then $\forall_{a, P_{1}} G \Rightarrow u=\operatorname{true}(Y)$.
(20) Let $u$ be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $u$ is independent of $P_{1}, G$. Then $\exists_{u, P_{1}} G \Subset u$.
(21) Let $u$ be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $u$ is independent of $P_{1}, G$. Then $u \Subset \forall_{u, P_{1}} G$.
(22) Let $u$ be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}, P_{2}$ be partitions of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $P_{2} \in G$ and $u$ is independent of $P_{2}, G$. Then $\forall_{u, P_{1}} G \Subset \forall_{u, P_{2}} G$.
(23) Let $u$ be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}, P_{2}$ be partitions of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $P_{2} \in G$ and $u$ is independent of $P_{1}, G$. Then $\exists_{u, P_{1}} G \Subset \exists_{u, P_{2}} G$.
(24) Let $a, b$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. If $G$ is a coordinate and $P_{1} \in G$, then $\forall_{a \Leftrightarrow b, P_{1}} G \Subset$ $\forall_{a, P_{1}} G \Leftrightarrow \forall_{b, P_{1}} G$.
(25) Let $a, b$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. If $G$ is a coordinate and $P_{1} \in G$, then $\forall_{a \wedge b, P_{1}} G \Subset$ $a \wedge \forall_{b, P_{1}} G$.
(26) Let $a, u$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS( $Y$ ), and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$ and $u$ is independent of $P_{1}, G$. Then $\forall_{a, P_{1}} G \Rightarrow u \Subset \exists_{a \Rightarrow u, P_{1}} G$.
(27) Let $a, b$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS $(Y)$, and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$. If $a \Leftrightarrow b=\operatorname{true}(Y)$, then $\forall_{a, P_{1}} G \Leftrightarrow \forall_{b, P_{1}} G=\operatorname{true}(Y)$.
(28) Let $a, b$ be elements of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS( $Y$ ), and $P_{1}$ be a partition of $Y$. Suppose $G$ is a coordinate and $P_{1} \in G$. If $a \Leftrightarrow b=\operatorname{true}(Y)$, then $\exists_{a, P_{1}} G \Leftrightarrow \exists_{b, P_{1}} G=\operatorname{true}(Y)$.

## References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[5] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

