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Summary. In this paper, we have proved some elementary predicate calcu-
lus formulae containing the quantifiers of Boolean valued functions with respect

to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC 4.

The terminology and notation used in this paper are introduced in the following

articles: [8], [10], [11], [2], [3], [7], [6], [9], [1], [4], and [5].

1. Preliminaries

In this paper Y denotes a non empty set.

Next we state a number of propositions:

(1) For all elements a, b, c of BVF(Y ) such that a ⋐ b⇒ c holds a ∧ b ⋐ c.

(2) For all elements a, b, c of BVF(Y ) such that a ∧ b ⋐ c holds a ⋐ b⇒ c.

(3) For all elements a, b of BVF(Y ) holds a ∨ a ∧ b = a.

(4) For all elements a, b of BVF(Y ) holds a ∧ (a ∨ b) = a.

(5) For every element a of BVF(Y ) holds a ∧ ¬a = false(Y ).

(6) For every element a of BVF(Y ) holds a ∨ ¬a = true(Y ).

(7) For all elements a, b of BVF(Y ) holds a⇔ b = (a⇒ b) ∧ (b⇒ a).

(8) For all elements a, b of BVF(Y ) holds a⇒ b = ¬a ∨ b.

(9) For all elements a, b of BVF(Y ) holds a⊕ b = ¬a ∧ b ∨ a ∧ ¬b.
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(10) For all elements a, b of BVF(Y ) holds a ⇔ b = true(Y ) iff a ⇒ b =

true(Y ) and b⇒ a = true(Y ).

(11) For all elements a, b, c of BVF(Y ) such that a ⇔ b = true(Y ) and

b⇔ c = true(Y ) holds a⇔ c = true(Y ).

(12) For all elements a, b of BVF(Y ) such that a ⇔ b = true(Y ) holds

¬a⇔ ¬b = true(Y ).

(13) For all elements a, b, c, d of BVF(Y ) such that a ⇔ b = true(Y ) and

c⇔ d = true(Y ) holds a ∧ c⇔ b ∧ d = true(Y ).

(14) For all elements a, b, c, d of BVF(Y ) such that a ⇔ b = true(Y ) and

c⇔ d = true(Y ) holds a⇒ c⇔ b⇒ d = true(Y ).

(15) For all elements a, b, c, d of BVF(Y ) such that a ⇔ b = true(Y ) and

c⇔ d = true(Y ) holds a ∨ c⇔ b ∨ d = true(Y ).

(16) For all elements a, b, c, d of BVF(Y ) such that a ⇔ b = true(Y ) and

c⇔ d = true(Y ) holds a⇔ c⇔ b⇔ d = true(Y ).

2. Predicate Calculus

Next we state a number of propositions:

(17) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a⇔b,P1
G =

∀a⇒b,P1
G ∧ ∀b⇒a,P1

G.

(18) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and

P2 ∈ G. Then ∀a,P1
G ⋐ ∃a,P1

G and ∀a,P1
G ⋐ ∃a,P2

G.

(19) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. If a⇒ u = true(Y ), then ∀a,P1
G⇒ u = true(Y ).

(20) Let u be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃u,P1
G ⋐ u.

(21) Let u be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then u ⋐ ∀u,P1
G.

(22) Let u be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and

P2 ∈ G and u is independent of P2, G. Then ∀u,P1
G ⋐ ∀u,P2

G.

(23) Let u be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and

P2 ∈ G and u is independent of P1, G. Then ∃u,P1
G ⋐ ∃u,P2

G.
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(24) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a⇔b,P1
G ⋐

∀a,P1
G⇔ ∀b,P1

G.

(25) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ), and

P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a∧b,P1
G ⋐

a ∧ ∀b,P1
G.

(26) Let a, u be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a,P1
G⇒ u ⋐ ∃a⇒u,P1

G.

(27) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G. If

a⇔ b = true(Y ), then ∀a,P1
G⇔ ∀b,P1

G = true(Y ).

(28) Let a, b be elements of BVF(Y ), G be a subset of PARTITIONS(Y ),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G. If

a⇔ b = true(Y ), then ∃a,P1
G⇔ ∃b,P1

G = true(Y ).
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