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The notation and terminology used in this paper are introduced in the following

articles: [11], [5], [9], [2], [3], [8], [13], [14], [10], [16], [15], [17], [6], [18], [1], [7],

[12], and [4].

1. Preliminaries

For simplicity, we follow the rules: S denotes a 1-sorted structure, R denotes

a non empty 1-sorted structure,X denotes a subset of the carrier of R, T denotes

a non empty topological structure, and x denotes a set.

Let X, Y be sets. One can verify that every function from X into Y which

is bijective is also one-to-one and onto and every function from X into Y which

is one-to-one and onto is also bijective.

Let X be a set. Observe that there exists a function from X into X which

is one-to-one and onto.

Next we state the proposition

(1) rng(idS) = ΩS .

Let R be a non empty 1-sorted structure. Note that (idR)−1 is one-to-one.

We now state two propositions:

(2) (idR)−1 = idR.

(3) (idR)−1(X) = X.

Let S be a 1-sorted structure. One can check that there exists a map from

S into S which is one-to-one and onto.
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2. On the Groups

We use the following convention:H denotes a non empty groupoid, P , Q, P1,

Q1 denote subsets of the carrier of H, and h denotes an element of the carrier

of H.

The following propositions are true:

(4) If P ⊆ P1 and Q ⊆ Q1, then P ·Q ⊆ P1 ·Q1.

(5) If P ⊆ Q, then P · h ⊆ Q · h.

(6) If P ⊆ Q, then h · P ⊆ h ·Q.

In the sequel G denotes a group, A, B denote subsets of the carrier of G,

and a denotes an element of the carrier of G.

One can prove the following propositions:

(7) a ∈ A−1 iff a−1 ∈ A.

(8) (A−1)−1 = A.

(9) A ⊆ B iff A−1 ⊆ B−1.

(10) ·−1

G

◦

A = A−1.

(11) ·−1

G

−1(A) = A−1.

(12) ·−1

G
is one-to-one.

(13) rng ·−1

G
= the carrier of G.

Let G be a group. Observe that ·−1

G
is one-to-one and onto.

Next we state two propositions:

(14) ·−1

G

−1 = ·−1

G
.

(15) (The multiplication of H)◦[:P, Q :] = P ·Q.

Let G be a non empty groupoid and let a be an element of the carrier of G.

The functor a ·¤ yielding a map from G into G is defined by:

(Def. 1) For every element x of the carrier of G holds (a ·¤)(x) = a · x.

The functor ¤ · a yields a map from G into G and is defined as follows:

(Def. 2) For every element x of the carrier of G holds (¤ · a)(x) = x · a.

Let G be a group and let a be an element of the carrier of G. One can verify

that a ·¤ is one-to-one and onto and ¤ · a is one-to-one and onto.

Next we state four propositions:

(16) (h ·¤)◦P = h · P.

(17) (¤ · h)◦P = P · h.

(18) (a ·¤)−1 = a−1 ·¤.

(19) (¤ · a)−1 = ¤ · a−1.
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3. On the Topological Spaces

Let T be a non empty topological structure. Observe that (idT )−1 is conti-

nuous.

Next we state the proposition

(20) idT is a homeomorphism.

Let T be a non empty topological space and let p be a point of T . Observe

that every neighbourhood of p is non empty.

Next we state the proposition

(21) For every non empty topological space T and for every point p of T holds

ΩT is a neighbourhood of p.

Let T be a non empty topological space and let p be a point of T . One can

check that there exists a neighbourhood of p which is non empty and open.

One can prove the following propositions:

(22) Let S, T be non empty topological spaces and f be a map from S into

T . Suppose f is open. Let p be a point of S and P be a neighbourhood of

p. Then there exists an open neighbourhood R of f(p) such that R ⊆ f◦P.

(23) Let S, T be non empty topological spaces and f be a map from S into

T . Suppose that for every point p of S and for every open neighbourhood

P of p there exists a neighbourhood R of f(p) such that R ⊆ f◦P. Then

f is open.

(24) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions

are satisfied:

(i) dom f = ΩS ,

(ii) rng f = ΩT ,

(iii) f is one-to-one, and

(iv) for every subset P of T holds P is closed iff f−1(P ) is closed.

(25) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions

are satisfied:

(i) dom f = ΩS ,

(ii) rng f = ΩT ,

(iii) f is one-to-one, and

(iv) for every subset P of S holds P is open iff f◦P is open.

(26) Let S, T be non empty topological structures and f be a map from S

into T . Then f is a homeomorphism if and only if the following conditions

are satisfied:

(i) dom f = ΩS ,
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(ii) rng f = ΩT ,

(iii) f is one-to-one, and

(iv) for every subset P of T holds P is open iff f−1(P ) is open.

(27) Let S be a topological space, T be a non empty topological space, and

f be a map from S into T . Then f is continuous if and only if for every

subset P of the carrier of T holds f−1(IntP ) ⊆ Int(f−1(P )).

Let T be a non empty topological space. One can verify that there exists a

subset of T which is non empty and dense.

The following two propositions are true:

(28) Let S, T be non empty topological spaces, f be a map from S into T ,

and A be a dense subset of S. If f is a homeomorphism, then f◦A is dense.

(29) Let S, T be non empty topological spaces, f be a map from S into T ,

and A be a dense subset of T . If f is a homeomorphism, then f−1(A) is

dense.

Let S, T be non empty topological structures. Observe that every map from

S into T which is homeomorphism is also onto, one-to-one, continuous, and

open.

Let T be a non empty topological structure. Observe that there exists a map

from T into T which is homeomorphism.

Let T be a non empty topological structure and let f be homeomorphism

map from T into T . Note that f−1 is homeomorphism.

4. The Group of Homoemorphisms

Let T be a non empty topological structure. A map from T into T is said to

be a homeomorphism of T if:

(Def. 3) It is a homeomorphism.

Let T be a non empty topological structure. Then idT is a homeomorphism

of T .

Let T be a non empty topological structure. One can check that every ho-

meomorphism of T is homeomorphism.

We now state two propositions:

(30) For every homeomorphism f of T holds f−1 is a homeomorphism of T .

(31) For all homeomorphisms f , g of T holds f · g is a homeomorphism of T .

Let T be a non empty topological structure. The group of homeomorphisms

of T is a strict groupoid and is defined by the conditions (Def. 4).

(Def. 4)(i) x ∈ the carrier of the group of homeomorphisms of T iff x is a

homeomorphism of T , and
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(ii) for all homeomorphisms f , g of T holds (the multiplication of the group

of homeomorphisms of T )(f, g) = g · f.

Let T be a non empty topological structure. Note that the group of home-

omorphisms of T is non empty.

We now state the proposition

(32) Let f , g be homeomorphisms of T and a, b be elements of the group of

homeomorphisms of T . If f = a and g = b, then a · b = g · f.

Let T be a non empty topological structure. Note that the group of home-

omorphisms of T is group-like and associative.

The following two propositions are true:

(33) idT = 1the group of homeomorphisms of T .

(34) Let f be a homeomorphism of T and a be an element of the group of

homeomorphisms of T . If f = a, then a−1 = f−1.

Let T be a non empty topological structure. We say that T is homogeneous

if and only if:

(Def. 5) For all points p, q of T there exists a homeomorphism f of T such that

f(p) = q.

Let us note that every non empty topological structure which is trivial is

also homogeneous.

Let us note that there exists a topological space which is strict, trivial, and

non empty.

One can prove the following two propositions:

(35) Let T be a homogeneous non empty topological space. If there exists a

point p of T such that {p} is closed, then T is a T1 space.

(36) Let T be a homogeneous non empty topological space. Given a point p

of T such that let A be a subset of T . Suppose A is open and p ∈ A. Then

there exists a subset B of T such that p ∈ B and B is open and B ⊆ A.

Then T is a T3 space.

5. On the Topological Groups

We consider topological group structures as extensions of groupoid and to-

pological structure as systems

〈 a carrier, a multiplication, a topology 〉,

where the carrier is a set, the multiplication is a binary operation on the carrier,

and the topology is a family of subsets of the carrier.

Let A be a non empty set, let R be a binary operation on A, and let T be a

family of subsets of A. Note that 〈A,R, T 〉 is non empty.
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Let x be a set, let R be a binary operation on {x}, and let T be a family of

subsets of {x}. One can verify that 〈{x}, R, T 〉 is trivial.

Let us observe that every non empty groupoid which is trivial is also group-

like, associative, and commutative.

Let a be a set. Observe that {a}top is trivial.

Let us note that there exists a topological group structure which is strict

and non empty.

One can verify that there exists a non empty topological group structure

which is strict, topological space-like, and trivial.

Let G be a group-like associative non empty topological group structure.

Then ·−1

G
is a map from G into G.

Let G be a group-like associative non empty topological group structure. We

say that G is inverse-continuous if and only if:

(Def. 6) ·−1

G
is continuous.

Let G be a topological space-like topological group structure. We say that

G is continuous if and only if:

(Def. 7) For every map f from [:G, G :] into G such that f = the multiplication

of G holds f is continuous.

One can verify that there exists a topological space-like group-like associative

non empty topological group structure which is strict, commutative, trivial,

inverse-continuous, and continuous.

A semi topological group is a topological space-like group-like associative

non empty topological group structure.

A topological group is an inverse-continuous continuous semi topological

group.

Next we state several propositions:

(37) Let T be a continuous non empty topological space-like topological group

structure, a, b be elements of the carrier of T , and W be a neighbourhood

of a · b. Then there exists an open neighbourhood A of a and there exists

an open neighbourhood B of b such that A ·B ⊆W.

(38) Let T be a topological space-like non empty topological group structure.

Suppose that for all elements a, b of the carrier of T and for every neigh-

bourhood W of a · b there exists a neighbourhood A of a and there exists

a neighbourhood B of b such that A ·B ⊆W. Then T is continuous.

(39) Let T be an inverse-continuous semi topological group, a be an element

of the carrier of T , and W be a neighbourhood of a−1. Then there exists

an open neighbourhood A of a such that A−1 ⊆W.

(40) Let T be a semi topological group. Suppose that for every element a

of the carrier of T and for every neighbourhood W of a−1 there exists a

neighbourhood A of a such that A−1 ⊆W. Then T is inverse-continuous.
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(41) Let T be a topological group, a, b be elements of the carrier of T , andW

be a neighbourhood of a ·b−1. Then there exists an open neighbourhood A

of a and there exists an open neighbourhood B of b such that A·B−1 ⊆W.

(42) Let T be a semi topological group. Suppose that for all elements a, b of

the carrier of T and for every neighbourhood W of a · b−1 there exists a

neighbourhood A of a and there exists a neighbourhood B of b such that

A ·B−1 ⊆W. Then T is a topological group.

Let G be a continuous non empty topological space-like topological group

structure and let a be an element of the carrier of G. One can check that a ·¤

is continuous and ¤ · a is continuous.

Next we state two propositions:

(43) Let G be a continuous semi topological group and a be an element of

the carrier of G. Then a ·¤ is a homeomorphism of G.

(44) Let G be a continuous semi topological group and a be an element of

the carrier of G. Then ¤ · a is a homeomorphism of G.

The following proposition is true

(45) For every inverse-continuous semi topological group G holds ·−1

G
is a

homeomorphism of G.

One can verify that every semi topological group which is continuous is also

homogeneous.

The following two propositions are true:

(46) Let G be a continuous semi topological group, F be a closed subset of

G, and a be an element of the carrier of G. Then F · a is closed.

(47) Let G be a continuous semi topological group, F be a closed subset of

G, and a be an element of the carrier of G. Then a · F is closed.

We now state the proposition

(48) For every inverse-continuous semi topological group G and for every

closed subset F of G holds F−1 is closed.

The following two propositions are true:

(49) Let G be a continuous semi topological group, O be an open subset of

G, and a be an element of the carrier of G. Then O · a is open.

(50) Let G be a continuous semi topological group, O be an open subset of

G, and a be an element of the carrier of G. Then a ·O is open.

We now state the proposition

(51) For every inverse-continuous semi topological groupG and for every open

subset O of G holds O−1 is open.

The following two propositions are true:

(52) For every continuous semi topological group G and for all subsets A, O

of G such that O is open holds O ·A is open.
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(53) For every continuous semi topological group G and for all subsets A, O

of G such that O is open holds A ·O is open.

One can prove the following propositions:

(54) Let G be an inverse-continuous semi topological group, a be a point of

G, and A be a neighbourhood of a. Then A−1 is a neighbourhood of a−1.

(55) Let G be a topological group, a be a point of G, and A be a neighbo-

urhood of a · a−1. Then there exists an open neighbourhood B of a such

that B ·B−1 ⊆ A.

(56) For every inverse-continuous semi topological group G and for every

dense subset A of G holds A−1 is dense.

We now state two propositions:

(57) Let G be a continuous semi topological group, A be a dense subset of G,

and a be a point of G. Then a ·A is dense.

(58) Let G be a continuous semi topological group, A be a dense subset of G,

and a be a point of G. Then A · a is dense.

We now state two propositions:

(59) Let G be a topological group, B be a basis of 1G, and M be a dense

subset of G. Then {V · x; V ranges over subsets of the carrier of G, x

ranges over points of G: V ∈ B ∧ x ∈M} is a basis of G.

(60) Every topological group is a T3 space.
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