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Summary. In the paper some auxiliary theorems are proved, needed in the
proof of the second part of the Jordan curve theorem for special polygons. They
deal mostly with characteristic points of plane non empty compacts introduced
in [5], operation mid introduced in [19] and the predicate “f is in the area of g”
(f and g : finite sequences of points of the plane) introduced in [28].

MML Identifier: SPRECT 3.

The notation and terminology used here are introduced in the following papers:

[21], [32], [6], [22], [24], [7], [2], [3], [30], [4], [27], [15], [16], [20], [26], [19], [9],

[18], [11], [12], [13], [1], [23], [5], [10], [14], [17], [29], [28], [31], [25], [8], and [33].

1. Preliminaries

In this paper i, j, k, n are natural numbers.

The following propositions are true:

(1) For all sets A, B, C such that A misses B holds A ∩ (B ∪ C) = A ∩ C.

(2) For all sets A, B, C, p such that A ⊆ B and B ∩ C = {p} and p ∈ A

holds A ∩ C = {p}.

(3) For all real numbers q, r, s, t such that t  0 and t ¬ 1 and s =

(1− t) · q + t · r and q ¬ s and r < s holds t = 0.

(4) For all real numbers q, r, s, t such that t  0 and t ¬ 1 and s =

(1− t) · q + t · r and q  s and r > s holds t = 0.

(5) If i−′ k ¬ j, then i ¬ j + k.
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(6) If i ¬ j + k, then i−′ k ¬ j.

(7) If i ¬ j −′ k and k ¬ j, then i + k ¬ j.

(8) If j + k ¬ i, then k ¬ i−′ j.

(9) If k ¬ i and i < j, then i−′ k < j −′ k.

(10) If i < j and k < j, then i−′ k < j −′ k.

(11) Let D be a non empty set, f be a non empty finite sequence of elements

of D, and g be a finite sequence of elements of D. Then πlen(gaf)(g
a f) =

πlen ff.

(12) For all sets a, b, c, d holds the indices of

(
a b

c d

)
= {〈〈1, 1〉〉, 〈〈1, 2〉〉, 〈〈2,

1〉〉, 〈〈2, 2〉〉}.

2. Euclidean Space

We now state four propositions:

(13) For all points p, q of En
T
and for every real number r such that 0 < r and

p = (1− r) · p + r · q holds p = q.

(14) For all points p, q of En
T
and for every real number r such that r < 1 and

p = (1− r) · q + r · p holds p = q.

(15) For all points p, q of En
T
such that p = 1

2 · (p + q) holds p = q.

(16) For all points p, q, r of En
T
such that q ∈ L(p, r) and r ∈ L(p, q) holds

q = r.

3. Euclidean Plane

One can prove the following propositions:

(17) Let A be a non empty subset of E2
T
, p be an element of the carrier of E2,

and r be a real number. If A = Ball(p, r), then A is connected.

(18) For all subsets A, B of E2
T
such that A is open and B is a component of

A holds B is open.

(19) For all points p, q, r of E2
T
such that L(p, q) is horizontal and r ∈ L(p, q)

holds p2 = r2.

(20) For all points p, q, r of E2
T
such that L(p, q) is vertical and r ∈ L(p, q)

holds p1 = r1.

(21) For all points p, q, r, s of E2
T
such that L(p, q) is horizontal and L(r, s)

is horizontal and L(p, q) meets L(r, s) holds p2 = r2.



some properties of special polygonal curves 267

(22) For all points p, q, r of E2
T
such that L(p, q) is vertical and L(q, r) is

horizontal holds L(p, q) ∩ L(q, r) = {q}.

(23) For all points p, q, r, s of E2
T
such that L(p, q) is horizontal and L(s, r)

is vertical and r ∈ L(p, q) holds L(p, q) ∩ L(s, r) = {r}.

4. Miscellaneous

In the sequel p, q denote points of E2
T
and G denotes a Go-board.

Next we state two propositions:

(24) If 1 ¬ j and j ¬ k and k ¬ widthG and 1 ¬ i and i ¬ lenG, then

(Gi,j)2 ¬ (Gi,k)2.

(25) If 1 ¬ j and j ¬ widthG and 1 ¬ i and i ¬ k and k ¬ lenG, then

(Gi,j)1 ¬ (Gk,j)1.

In the sequel C denotes a subset of E2
T
.

We now state a number of propositions:

(26) L(NW-cornerC,NE-cornerC) ⊆ L̃(SpStSeqC).

(27) N-mostC ⊆ L(NW-cornerC,NE-cornerC).

(28) For every non empty compact subset C of E2
T
holds N-minC ∈

L(NW-cornerC,NE-cornerC).

(29) L(NW-cornerC,NE-cornerC) is horizontal.

(30) Let f be a finite sequence of elements of E2
T
and i, j be natural numbers.

Suppose f is a special sequence and 1 ¬ i and i ¬ j and j ¬ len f. Then

LE πif, πjf, L̃(f), π1f, πlen ff.

(31) Let g be a finite sequence of elements of E2
T
and p be a point of E2

T
.

Suppose π1g 6= p and (π1g)1 = p1 or (π1g)2 = p2 and g is a special

sequence and L(p, π1g)∩L̃(g) = {π1g}. Then 〈p〉
a g is a special sequence.

(32) Let g be a finite sequence of elements of E2
T
and p be a point of E2

T
.

Suppose πlen gg 6= p and (πlen gg)1 = p1 or (πlen gg)2 = p2 and g is a

special sequence and L(p, πlen gg) ∩ L̃(g) = {πlen gg}. Then g a 〈p〉 is a

special sequence.

(33) Let f be a S-sequence in R
2 and p be a point of E2

T
. If 1 < j and j ¬ len f

and p ∈ L̃(mid(f, 1, j)), then LE p, πjf, L̃(f), π1f, πlen ff.

(34) For every finite sequence h of elements of E2
T
such that i ∈ domh and

j ∈ domh holds L̃(mid(h, i, j)) ⊆ L̃(h).

(35) If 1 ¬ i and i < j, then for every finite sequence f of elements of E2
T
such

that j ¬ len f holds L̃(mid(f, i, j)) = L(f, i) ∪ L̃(mid(f, i + 1, j)).

(36) Let f be a finite sequence of elements of E2
T
. If 1 ¬ i, then if i < j and

j ¬ len f, then L̃(mid(f, i, j)) = L̃(mid(f, i, j −′ 1)) ∪ L(f, j −′ 1).
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(37) Let g be a finite sequence of elements of E2
T
and p be a point of E2

T
.

Suppose g is a special sequence and p1 = (π1g)1 or p2 = (π1g)2 and

L(p, π1g) ∩ L̃(g) = {π1g} and p 6= π1g. Then 〈p〉 a g is a special sequence.

(38) Let f , g be finite sequences of elements of E2
T
. Suppose that

(i) f is a special sequence,

(ii) g is a special sequence,

(iii) (πlen ff)1 = (π1g)1 or (πlen ff)2 = (π1g)2,

(iv) L̃(f) misses L̃(g),

(v) L(πlen ff, π1g) ∩ L̃(f) = {πlen ff}, and

(vi) L(πlen ff, π1g) ∩ L̃(g) = {π1g}.

Then f a g is a special sequence.

(39) For every S-sequence f in R
2 and for every point p of E2

T
such that

p ∈ L̃(f) holds π1 ⇂ f, p = π1f.

(40) Let f be a S-sequence in R
2 and p, q be points of E2

T
. If 1 ¬ j and

j < len f and p ∈ L(f, j) and q ∈ L(πjf, p), then LE q, p, L̃(f), π1f,

πlen ff.

5. Special Circular Sequences

Next we state the proposition

(41) For every non constant standard special circular sequence f holds

LeftComp(f) is open and RightComp(f) is open.

Let f be a non constant standard special circular sequence. One can verify

the following observations:

∗ L̃(f) is non vertical and non horizontal,

∗ LeftComp(f) is region, and

∗ RightComp(f) is region.

One can prove the following propositions:

(42) For every non constant standard special circular sequence f holds

RightComp(f) misses L̃(f).

(43) For every non constant standard special circular sequence f holds

LeftComp(f) misses L̃(f).

(44) For every non constant standard special circular sequence f holds

iWN f < iEN f.

(45) Let f be a non constant standard special circular sequence. Then there

exists i such that 1 ¬ i and i < len the Go-board of f and N-min L̃(f) =

(the Go-board of f)i,width the Go-board of f .
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(46) Let f be a clockwise oriented non constant standard special circular

sequence. Suppose i ∈ dom the Go-board of f and π1f = (the Go-

board of f)i,width the Go-board of f and π1f = N-min L̃(f). Then π2f = (the

Go-board of f)i+1,width the Go-board of f and πlen f−′1f = (the Go-board of

f)i,width the Go-board of f−′1.

(47) Let f be a non constant standard special circular sequence. If 1 ¬ i and

i < j and j ¬ len f and π1f ∈ L̃(mid(f, i, j)), then i = 1 or j = len f.

(48) Let f be a clockwise oriented non constant standard special circular

sequence. If π1f = N-min L̃(f), then L(π1f, π2f) ⊆ L̃(SpStSeq L̃(f)).

6. Rectangular Sequences

We now state the proposition

(49) Let f be a rectangular finite sequence of elements of E2
T
and p be a point

of E2
T
. If p ∈ L̃(f), then p1 = W-bound L̃(f) or p1 = E-bound L̃(f) or

p2 = S-bound L̃(f) or p2 = N-bound L̃(f).

One can check that there exists a special circular sequence which is rectan-

gular.

The following propositions are true:

(50) Let f be a rectangular special circular sequence and g be a S-sequence in

R
2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then L̃(f) meets

L̃(g).

(51) For every rectangular special circular sequence f holds SpStSeq L̃(f) =

f.

(52) Let f be a rectangular special circular sequence. Then L̃(f) = {p; p

ranges over points of E2
T
: p1 =W-bound L̃(f) ∧ p2 ¬ N-bound L̃(f) ∧ p2 

S-bound L̃(f) ∨ p1 ¬ E-bound L̃(f) ∧ p1  W-bound L̃(f) ∧ p2 =

N-bound L̃(f) ∨ p1 ¬ E-bound L̃(f) ∧ p1  W-bound L̃(f) ∧ p2 =

S-bound L̃(f) ∨ p1 = E-bound L̃(f) ∧ p2 ¬ N-bound L̃(f) ∧ p2 

S-bound L̃(f)}.

(53) For every rectangular special circular sequence f holds the Go-board of

f =

(
π4f π1f

π3f π2f

)
.

(54) Let f be a rectangular special circular sequence. Then LeftComp(f) =

{p : W-bound L̃(f) 6¬ p1 ∨ p1 6¬ E-bound L̃(f) ∨ S-bound L̃(f) 6¬

p2 ∨ p2 6¬ N-bound L̃(f)} and RightComp(f) = {q : W-bound L̃(f) <

q1 ∧ q1 < E-bound L̃(f) ∧ S-bound L̃(f) < q2 ∧ q2 < N-bound L̃(f)}.

One can check that there exists a rectangular special circular sequence which

is clockwise oriented.
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One can check that every rectangular special circular sequence is clockwise

oriented.

Next we state four propositions:

(55) Let f be a rectangular special circular sequence and g be a S-sequence

in R
2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then

LPoint(L̃(g), π1g, πlen gg, L̃(f)) 6= NW-corner L̃(f).

(56) Let f be a rectangular special circular sequence and g be a S-sequence

in R
2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then

LPoint(L̃(g), π1g, πlen gg, L̃(f)) 6= SE-corner L̃(f).

(57) Let f be a rectangular special circular sequence and p be a point of E2
T
.

If W-bound L̃(f) > p1 or p1 > E-bound L̃(f) or S-bound L̃(f) > p2 or

p2 > N-bound L̃(f), then p ∈ LeftComp(f).

(58) For every clockwise oriented non constant standard special circular se-

quence f such that π1f = N-min L̃(f) holds LeftComp(SpStSeq L̃(f)) ⊆

LeftComp(f).

7. In the Area

Next we state a number of propositions:

(59) Let f be a finite sequence of elements of E2
T
and p, q be points of E2

T
.

Then 〈p, q〉 is in the area of f if and only if 〈p〉 is in the area of f and 〈q〉

is in the area of f .

(60) Let f be a rectangular finite sequence of elements of E2
T
and p be a

point of E2
T
. Suppose 〈p〉 is in the area of f but p1 = W-bound L̃(f) or

p1 = E-bound L̃(f) or p2 = S-bound L̃(f) or p2 = N-bound L̃(f). Then

p ∈ L̃(f).

(61) Let f be a finite sequence of elements of E2
T
, p, q be points of E2

T
, and r

be a real number. Suppose 0 ¬ r and r ¬ 1 and 〈p, q〉 is in the area of f .

Then 〈(1− r) · p + r · q〉 is in the area of f .

(62) Let f , g be finite sequences of elements of E2
T
. If g is in the area of f and

i ∈ dom g, then 〈πig〉 is in the area of f .

(63) Let f , g be finite sequences of elements of E2
T
and p be a point of E2

T
. If

g is in the area of f and p ∈ L̃(g), then 〈p〉 is in the area of f .

(64) Let f be a rectangular finite sequence of elements of E2
T
and p, q be points

of E2
T
. If q /∈ L̃(f) and 〈p, q〉 is in the area of f , then L(p, q)∩ L̃(f) ⊆ {p}.

(65) Let f be a rectangular finite sequence of elements of E2
T
and p, q be

points of E2
T
. If p ∈ L̃(f) and q /∈ L̃(f) and 〈q〉 is in the area of f , then

L(p, q) ∩ L̃(f) = {p}.
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(66) Let f be a non constant standard special circular sequence. Suppose 1 ¬ i

and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the Go-board of

f . Then 〈(the Go-board of f)i,j〉 is in the area of f .

(67) Let g be a finite sequence of elements of E2
T
and p, q be points of E2

T
. If

〈p, q〉 is in the area of g, then 〈12 · (p + q)〉 is in the area of g.

(68) For all finite sequences f , g of elements of E2
T
such that g is in the area

of f holds Rev(g) is in the area of f .

(69) Let f , g be finite sequences of elements of E2
T
and p be a point of E2

T
.

Suppose that

(i) g is in the area of f ,

(ii) 〈p〉 is in the area of f ,

(iii) g is a special sequence, and

(iv) there exists a natural number i such that 1 ¬ i and i + 1 ¬ len g and

p ∈ L(g, i).

Then ⇂ g, p is in the area of f .

(70) Let f be a non constant standard special circular sequence and g be a

finite sequence of elements of E2
T
. Then g is in the area of f if and only if

g is in the area of SpStSeq L̃(f).

(71) Let f be a rectangular special circular sequence and g be a S-sequence

in R
2 . If π1g ∈ LeftComp(f) and πlen gg ∈ RightComp(f), then

⇃LPoint(L̃(g), π1g, πlen gg, L̃(f)), g is in the area of f .

(72) Let f be a non constant standard special circular sequence. Suppose 1 ¬ i

and i < len the Go-board of f and 1 ¬ j and j < width the Go-board of

f . Then Int cell(the Go-board of f , i, j) misses L̃(SpStSeq L̃(f)).
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