Trigonometric Functions and Existence of Circle Ratio

Yuguang Yang
Shinshu University
Nagano

Yasunari Shidama
Shinshu University
Nagano

Abstract

Summary. In this article, we defined sinus and cosine as the real part and the imaginary part of the exponential function on complex, and also give their series expression. Then we proved the differentiablity of sinus, cosine and the exponential function of real. Finally, we showed the existence of the circle ratio, and some formulas of sinus, cosine.

MML Identifier: SIN_COS.

The papers [11], [3], [1], [10], [17], [14], [15], [4], [5], [2], [12], [16], [6], [20], [21], [8], [9], [7], [13], [18], and [19] provide the terminology and notation for this paper.

1. Some Definitions and Properties of Complex Sequence

For simplicity, we adopt the following rules: $p, q, r, t_{1}, t_{2}, t_{3}$ are elements of $\mathbb{R}, w, z, z_{1}, z_{2}$ are elements of \mathbb{C}, k, l, m, n are natural numbers, s_{1} is a complex sequence, and r_{1} is a sequence of real numbers.

Let m, k be natural numbers. Let us assume that $k \leqslant m$. The functor $\mathrm{PN}(m, k)$ yielding an element of \mathbb{N} is defined by:
(Def. 1) $\operatorname{PN}(m, k)=m-k$.
Let m, k be natural numbers. The functor $\operatorname{CHK}(m, k)$ yields an element of \mathbb{C} and is defined by:
(Def. 2) $\operatorname{CHK}(m, k)=\left\{\begin{array}{l}1_{\mathbb{C}}, \text { if } m \leqslant k, \\ 0_{\mathbb{C}}, \text { otherwise. }\end{array}\right.$

The functor $\operatorname{RHK}(m, k)$ yields an element of \mathbb{R} and is defined as follows:
(Def. 3) $\operatorname{RHK}(m, k)=\left\{\begin{array}{l}1, \text { if } m \leqslant k, \\ 0, \text { otherwise. }\end{array}\right.$
In this article we present several logical schemes. The scheme ExComplex CASE deals with a binary functor \mathcal{F} yielding an element of \mathbb{C}, and states that: For every k there exists s_{1} such that for every n holds if $n \leqslant k$, then $s_{1}(n)=\mathcal{F}(k, n)$ and if $n>k$, then $s_{1}(n)=0_{\mathbb{C}}$
for all values of the parameter.
The scheme ExReal CASE deals with a binary functor \mathcal{F} yielding an element of \mathbb{R}, and states that:

For every k there exists r_{1} such that for every n holds if $n \leqslant k$, then $r_{1}(n)=\mathcal{F}(k, n)$ and if $n>k$, then $r_{1}(n)=0$
for all values of the parameter.
The complex sequence Prod_complex_n is defined by:
(Def. 4) (Prod_complex_n)(0) $=1_{\mathbb{C}}$ and for every n holds (Prod_complex_n) $(n+$ $1)=($ Prod_complex_n $)(n) \cdot((n+1)+0 i)$.
The sequence Prod_real_n of real numbers is defined by:
(Def. 5) (Prod_real_n)(0) $=1$ and for every n holds (Prod_real_n) $(n+1)=$ (Prod_real_n) $(n) \cdot(n+1)$.
Let n be a natural number. The functor $n!c$ yields an element of \mathbb{C} and is defined as follows:
(Def. 6) $n!c=($ Prod_complex_n) (n).
Let n be a natural number. Then $n!$ is a real number and it can be characterized by the condition:
(Def. 7) $n!=($ Prod_real_n) (n).
Let z be an element of \mathbb{C}. The functor z ExpSeq yields a complex sequence and is defined as follows:
(Def. 8) For every n holds $z \operatorname{ExpSeq}(n)=\frac{z_{n}^{n}}{n!c}$.
Let a be an element of \mathbb{R}. The functor a ExpSeq yielding a sequence of real numbers is defined as follows:
(Def. 9) For every n holds $a \operatorname{ExpSeq}(n)=\frac{a_{n}^{n}}{n!}$.
The following propositions are true:
(1) If $0<n$, then $n+0 i \neq 0_{\mathbb{C}}$ and $0!c=1_{\mathbb{C}}$ and $n!c \neq 0_{\mathbb{C}}$ and $n+1!c=$ $n!c \cdot((n+1)+0 i)$.
(2) $n!\neq 0$ and $(n+1)!=n!\cdot(n+1)$.
(3) For every k such that $0<k$ holds $\mathrm{PN}(k, 1)!c \cdot(k+0 i)=k!c$ and for all m, k such that $k \leqslant m$ holds $\mathrm{PN}(m, k)!c \cdot(((m+1)-k)+0 i)=\mathrm{PN}(m+1, k)!c$.
Let n be a natural number. The functor Coef n yielding a complex sequence is defined by:
(Def. 10) For every natural number k holds if $k \leqslant n$, then $($ Coef $n)(k)=$ $\frac{n!c}{k!c \cdot \operatorname{PN}(n, k)!c}$ and if $k>n$, then $(\operatorname{Coef} n)(k)=0_{\mathbb{C}}$.
Let n be a natural number. The functor Coef_e n yields a complex sequence and is defined as follows:
(Def. 11) For every natural number k holds if $k \leqslant n$, then (Coef_en) $(k)=$ $\frac{1_{\mathbb{C}}}{k!c \cdot \mathrm{PN}(n, k)!c}$ and if $k>n$, then $($ Coef_e $n)(k)=0_{\mathbb{C}}$.
Let us consider s_{1}. The functor Sift s_{1} yielding a complex sequence is defined as follows:
(Def. 12) $\quad\left(\operatorname{Sift} s_{1}\right)(0)=0_{\mathbb{C}}$ and for every natural number k holds $\left(\operatorname{Sift} s_{1}\right)(k+1)=$ $s_{1}(k)$.
Let us consider n and let z, w be elements of \mathbb{C}. The functor $\operatorname{Expan}(n, z, w)$ yields a complex sequence and is defined as follows:
(Def. 13) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Expan}(n, z, w))(k)=$ $($ Coef $n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{\mathrm{PN}(n, k)}$ and if $n<k$, then $(\operatorname{Expan}(n, z, w))(k)=0_{\mathbb{C}}$.
Let us consider n and let z, w be elements of \mathbb{C}. The functor Expan_e (n, z, w) yielding a complex sequence is defined by:
(Def. 14) For every natural number k holds if $k \leqslant n$, then (Expan_e $(n, z, w))(k)=$ $($ Coef_e $n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{\mathrm{PN}(n, k)}$ and if $n<k$, then (Expan_e $\left.(n, z, w)\right)(k)=0_{\mathbb{C}}$.
Let us consider n and let z, w be elements of \mathbb{C}. The functor $\operatorname{Alfa}(n, z, w)$ yielding a complex sequence is defined by:
(Def. 15) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Alfa}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k))$ and if $n<k$, then $(\operatorname{Alfa}(n, z, w))(k)=0_{\mathbb{C}}$.
Let a, b be elements of \mathbb{R} and let n be a natural number. The functor $\operatorname{Conj}(n, a, b)$ yielding a sequence of real numbers is defined as follows:
(Def. 16) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Conj}(n, a, b))(k)=$ $a \operatorname{ExpSeq}(k) \cdot\left(\left(\sum_{\alpha=0}^{\kappa} b \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa} b \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k))\right)$ and if $n<k$, then $(\operatorname{Conj}(n, a, b))(k)=0$.
Let z, w be elements of \mathbb{C} and let n be a natural number. The functor $\operatorname{Conj}(n, z, w)$ yielding a complex sequence is defined by:
(Def. 17) For every natural number k holds if $k \leqslant n$, then $(\operatorname{Conj}(n, z, w))(k)=$ $z \operatorname{ExpSeq}(k) \cdot\left(\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k))\right)$ and if $n<k$, then $(\operatorname{Conj}(n, z, w))(k)=0_{\mathbb{C}}$.
The following propositions are true:
(4) $z \operatorname{ExpSeq}(n+1)=\frac{z \operatorname{ExpSeq}(n) \cdot z}{(n+1)+0 i}$ and $z \operatorname{ExpSeq}(0)=1_{\mathbb{C}}$ and $|z \operatorname{ExpSeq}(n)|=|z| \operatorname{ExpSeq}(n)$.
(5) If $0<k$, then $\left(\operatorname{Sift} s_{1}\right)(k)=s_{1}(\operatorname{PN}(k, 1))$.
(6) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{Sift} s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+s_{1}(k)$.

$$
\begin{equation*}
(z+w)_{\mathbb{N}}^{n}=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Expan}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n) . \tag{7}
\end{equation*}
$$

(8) $\operatorname{Expan} \mathrm{e}(n, z, w)=\frac{1 \mathrm{c}}{n!c} \operatorname{Expan}(n, z, w)$.
(9) $\frac{(z+w)_{\mathbb{N}}^{n}}{n!c}=\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{Expan} _\mathrm{e}(n, z, w)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(10) $0_{\mathbb{C}}$ ExpSeq is absolutely summable and $\sum\left(0_{\mathbb{C}} \operatorname{ExpSeq}\right)=1_{\mathbb{C}}$.

Let us consider z. One can verify that $z \operatorname{ExpSeq}$ is absolutely summable.
Next we state a number of propositions:
(11) $z \operatorname{ExpSeq}(0)=1_{\mathbb{C}}$ and $(\operatorname{Expan}(0, z, w))(0)=1_{\mathbb{C}}$.
(12) If $l \leqslant k$, then $(\operatorname{Alfa}(k+1, z, w))(l)=(\operatorname{Alfa}(k, z, w))(l)+\left(\operatorname{Expan} _\mathrm{e}(k+\right.$ $1, z, w)(l)$.
(13) $\quad\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k+1, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)+$ $\left(\sum_{\alpha=0}^{\kappa}\left(\operatorname{Expan} _\mathrm{e}(k+1, z, w)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(14) $z \operatorname{ExpSeq}(k)=(\operatorname{Expan} \mathrm{e}(k, z, w))(k)$.
(15) $\left(\sum_{\alpha=0}^{\kappa} z+w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Alfa}(n, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(16) $\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \cdot\left(\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\left(\sum_{\alpha=0}^{\kappa} z+\right.$ $w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)=\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$.
(17) $\left|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right| \leqslant\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$ and $\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k) \leqslant \sum(|z| \operatorname{ExpSeq})$ and $\left|\left(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right| \leqslant \sum(|z| \operatorname{ExpSeq})$.
(18) $1 \leqslant \sum(|z|$ ExpSeq $)$.
(19) $0 \leqslant|z| \operatorname{ExpSeq}(n)$.
(20) $\left|\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$ and if $n \leqslant$ m, then $\left|\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=$ $\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(m)-\left(\sum_{\alpha=0}^{\kappa}|z| \operatorname{ExpSeq}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$. $\left|\left(\sum_{\alpha=0}^{\kappa}|\operatorname{Conj}(k, z, w)|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right|=\left(\sum_{\alpha=0}^{\kappa}|\operatorname{Conj}(k, z, w)|(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
(22) For every p such that $p>0$ there exists n such that for every k such that $n \leqslant k$ holds $\left|\left(\sum_{\alpha=0}^{\kappa}|\operatorname{Conj}(k, z, w)|(\alpha)\right)_{\kappa \in \mathbb{N}}(k)\right|<p$.
(23) For every s_{1} such that for every k holds $s_{1}(k)=$ $\left(\sum_{\alpha=0}^{\kappa}(\operatorname{Conj}(k, z, w))(\alpha)\right)_{\kappa \in \mathbb{N}}(k)$ holds s_{1} is convergent and $\lim s_{1}=0_{\mathbb{C}}$.

2. Definition of Exponential Function on Complex

The partial function exp from \mathbb{C} to \mathbb{C} is defined as follows:
(Def. 18) domexp $=\mathbb{C}$ and for every element z of \mathbb{C} holds $(\exp)(z)=$ $\sum(z$ ExpSeq $)$.
Let us consider z. The functor $\exp z$ yielding an element of \mathbb{C} is defined by:
(Def. 19) $\exp z=(\exp)(z)$.
The following proposition is true
(24) For all z_{1}, z_{2} holds $\exp z_{1}+z_{2}=\exp z_{1} \cdot \exp z_{2}$.

3. Definition of Sinus, Cosine, and Exponential Function on \mathbb{R}

The partial function sin from \mathbb{R} to \mathbb{R} is defined as follows:
(Def. 20) domsin $=\mathbb{R}$ and for every real number d holds $(\sin)(d)=\Im\left(\sum(0+\right.$ di ExpSeq)).
Let us consider t_{1}. The functor $\sin t_{1}$ yielding an element of \mathbb{R} is defined by:
(Def. 21) $\sin t_{1}=(\sin)\left(t_{1}\right)$.
Next we state the proposition
(25) \sin is a function from \mathbb{R} into \mathbb{R}.

The partial function \cos from \mathbb{R} to \mathbb{R} is defined by:
(Def. 22) dom $\cos =\mathbb{R}$ and for every real number d holds $(\cos)(d)=\Re\left(\sum(0+\right.$ di $\operatorname{ExpSeq})$).
Let us consider t_{1}. The functor $\cos t_{1}$ yields an element of \mathbb{R} and is defined by:
(Def. 23) $\quad \cos t_{1}=(\cos)\left(t_{1}\right)$.
One can prove the following propositions:
(26) cos is a function from \mathbb{R} into \mathbb{R}.
(27) $\operatorname{dom} \sin =\mathbb{R}$ and dom $\cos =\mathbb{R}$.
(28) $\exp 0+t_{1} i=\cos t_{1}+\sin t_{1} i$.
(29) $\left(\exp 0+t_{1} i\right)^{*}=\exp -\left(0+t_{1} i\right)$.
(30) $\left|\exp 0+t_{1} i\right|=1$ and $\left|\sin t_{1}\right| \leqslant 1$ and $\left|\cos t_{1}\right| \leqslant 1$.
(31) $(\cos)\left(t_{1}\right)^{2}+(\sin)\left(t_{1}\right)^{2}=1$ and $(\cos)\left(t_{1}\right) \cdot(\cos)\left(t_{1}\right)+(\sin)\left(t_{1}\right) \cdot(\sin)\left(t_{1}\right)=1$.
(32) $\left(\cos t_{1}\right)^{2}+\left(\sin t_{1}\right)^{2}=1$ and $\cos t_{1} \cdot \cos t_{1}+\sin t_{1} \cdot \sin t_{1}=1$.
(33) $(\cos)(0)=1$ and $(\sin)(0)=0$ and $(\cos)\left(-t_{1}\right)=(\cos)\left(t_{1}\right)$ and $(\sin)\left(-t_{1}\right)=-(\sin)\left(t_{1}\right)$.
(34) $\cos 0=1$ and $\sin 0=0$ and $\cos -t_{1}=\cos t_{1}$ and $\sin -t_{1}=-\sin t_{1}$.

Let t_{1} be an element of \mathbb{R}. The functor $t_{1} \mathrm{P}$ sin yielding a sequence of real numbers is defined by:
(Def. 24) For every n holds $t_{1} \mathrm{P}_{-} \sin (n)=\frac{\left((-1)_{\mathrm{N}}^{n} \cdot t_{1}^{2 \cdot n+1}\right.}{(2 \cdot n+1)!}$.
Let t_{1} be an element of \mathbb{R}. The functor $t_{1} \mathrm{P}$ _cos yielding a sequence of real numbers is defined by:
(Def. 25) For every n holds t_{1} P- $\cos (n)=\frac{\left((-1)^{n}\right) \cdot t_{1}^{2} \cdot n}{(2 \cdot n)!}$.
The following propositions are true:
(35) For all z, k holds $z_{\mathbb{N}}^{2 \cdot k}=\left(z_{\mathbb{N}}^{k}\right)_{\mathbb{N}}^{2}$ and $z_{\mathbb{N}}^{2 \cdot k}=\left(z_{\mathbb{N}}^{2}\right)_{\mathbb{N}}^{k}$.
(36) For all k, t_{1} holds $\left(0+t_{1} i\right)_{\mathbb{N}}^{2 \cdot k}=\left((-1)_{\mathbb{N}}^{k}\right) \cdot t_{1} 2_{\mathbb{N}}^{2 \cdot k}+0 i$ and $\left(0+t_{1} i\right)_{\mathbb{N}}^{2 \cdot k+1}=$ $0+\left(\left((-1)_{\mathbb{N}}^{k}\right) \cdot t_{1}^{2 \cdot k+1}\right) i$.
(37) For every n holds $n!c=n!+0 i$.
(38) For all t_{1}, n holds $\left(\sum_{\alpha=0}^{\kappa} t_{1} \mathrm{P} _\sin (\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\left(\sum_{\alpha=0}^{\kappa} \Im(0+\right.$ $\left.\left.t_{1} i \operatorname{ExpSeq}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot n+1)$ and $\left(\sum_{\alpha=0}^{\kappa} t_{1} \text { P_cos }(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=\left(\sum_{\alpha=0}^{\kappa} \Re(0+\right.$ $\left.\left.t_{1} i \operatorname{ExpSeq}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(2 \cdot n)$.
(39) For every t_{1} holds $\left(\sum_{\alpha=0}^{\kappa} t_{1} \mathrm{P}_{-} \sin (\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent and $\sum\left(t_{1} \mathrm{P}_{_} \sin \right)=$ $\Im\left(\sum\left(0+t_{1} i \operatorname{ExpSeq}\right)\right)$ and $\left(\sum_{\alpha=0}^{\kappa} t_{1} \mathrm{P}_{-} \cos (\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent and $\sum\left(t_{1} \mathrm{P} _\cos \right)=\Re\left(\sum\left(0+t_{1} i\right.\right.$ ExpSeq $\left.)\right)$.
(40) For every t_{1} holds $(\cos)\left(t_{1}\right)=\sum\left(t_{1} \mathrm{P} _\cos \right)$ and $(\sin)\left(t_{1}\right)=\sum\left(t_{1} \mathrm{P}_{-} \sin \right)$.
(41) For all p, t_{1}, r_{1} such that r_{1} is convergent and $\lim r_{1}=t_{1}$ and for every n holds $r_{1}(n) \geqslant p$ holds $t_{1} \geqslant p$.
(42) For all n, k, m such that $n<k$ holds m ! >0 and $n!\leqslant k!$.
(43) For all t_{1}, n, k such that $0 \leqslant t_{1}$ and $t_{1} \leqslant 1$ and $n \leqslant k$ holds $t_{1} k \leqslant t_{1} n$.
(44) For all t_{1}, n holds $\left(t_{1}+0 i\right)_{\mathbb{N}}^{n}=\left(t_{1} n\right)+0 i$.
(45) For all t_{1}, n holds $\frac{\left(t_{1}+0 i\right)^{n}}{n!c}=\frac{t_{1}^{n}}{n!}+0 i$.
(46) $\Im\left(\sum(p+0 i\right.$ ExpSeq $\left.)\right)=0$.
(47) $(\cos)(1)>0$ and $(\sin)(1)>0$ and $(\cos)(1)<(\sin)(1)$.
(48) For every t_{1} holds t_{1} ExpSeq $=\Re\left(t_{1}+0 i\right.$ ExpSeq).
(49) For every t_{1} holds t_{1} ExpSeq is summable and $\sum\left(t_{1} \operatorname{ExpSeq}\right)=\Re\left(\sum\left(t_{1}+\right.\right.$ $0 i$ ExpSeq)).
(50) For all p, q holds $\sum(p+q \operatorname{ExpSeq})=\sum(p \operatorname{ExpSeq}) \cdot \sum(q \operatorname{ExpSeq})$.

The partial function \exp from \mathbb{R} to \mathbb{R} is defined by:
(Def. 26) domexp $=\mathbb{R}$ and for every real number d holds $(\exp)(d)=$ $\sum(d \operatorname{ExpSeq})$.
Let us consider t_{1}. The functor $\exp t_{1}$ yields an element of \mathbb{R} and is defined as follows:
(Def. 27) $\exp t_{1}=(\exp)\left(t_{1}\right)$.
We now state a number of propositions:
(51) $\operatorname{dom} \exp =\mathbb{R}$.
(52) For every element d of \mathbb{R} holds $(\exp)(d)=\sum(d \operatorname{ExpSeq})$.
(53) For every t_{1} holds $(\exp)\left(t_{1}\right)=\Re\left(\sum\left(t_{1}+0 i \operatorname{ExpSeq}\right)\right)$.
(54) $\exp t_{1}+0 i=\exp t_{1}+0 i$.
(55) $\exp p+q=\exp p \cdot \exp q$.
(56) $\exp 0=1$.
(57) For every t_{1} such that $t_{1}>0$ holds $(\exp)\left(t_{1}\right) \geqslant 1$.
(58) For every t_{1} such that $t_{1}<0$ holds $0<(\exp)\left(t_{1}\right)$ and $(\exp)\left(t_{1}\right) \leqslant 1$.
(59) For every t_{1} holds $(\exp)\left(t_{1}\right)>0$.
(60) For every t_{1} holds $\exp t_{1}>0$.

4. Differential of Sinus, Cosine, and Exponential Function

Let z be an element of \mathbb{C}. The functor $z \mathrm{P}_{-} \mathrm{dt}$ yields a complex sequence and is defined as follows:
(Def. 28) For every n holds $z \operatorname{P} \operatorname{dt}(n)=\frac{z_{\mathrm{N}}^{n+1}}{n+2!c}$.
Let z be an element of \mathbb{C}. The functor $z \mathrm{P} _\mathrm{t}$ yielding a complex sequence is defined by:
(Def. 29) For every n holds $z \mathrm{P}_{-} \mathrm{t}(n)=\frac{z_{\mathrm{N}}^{n}}{n+2!c}$.
Next we state a number of propositions:
(61) For every z holds $z \mathrm{P}$ _dt is absolutely summable.
(62) For every z holds $z \cdot \sum\left(z \mathrm{P}_{-} \mathrm{dt}\right)=\sum(z \operatorname{ExpSeq})-1_{\mathbb{C}}-z$.
(63) For every p such that $p>0$ there exists r such that $r>0$ and for every z such that $|z|<r$ holds $\left|\sum\left(z \mathrm{P}_{-} \mathrm{dt}\right)\right|<p$.
(64) For all z, z_{1} holds $\sum\left(z_{1}+z \operatorname{ExpSeq}\right)-\sum\left(z_{1} \operatorname{ExpSeq}\right)=\sum\left(z_{1} \operatorname{ExpSeq}\right) \cdot$ $z+z \cdot \sum(z$ P_dt $) \cdot \sum\left(z_{1}\right.$ ExpSeq $)$.
(65) For all p, q holds $(\cos)(p+q)-(\cos)(p)=-q \cdot(\sin)(p)-q \cdot \Im\left(\sum(0+\right.$ $\left.\left.q i \mathrm{P} _\mathrm{dt}\right) \cdot((\cos)(p)+(\sin)(p) i)\right)$.
(66) For all p, q holds $(\sin)(p+q)-(\sin)(p)=q \cdot(\cos)(p)+q \cdot \Re\left(\sum(0+\right.$ $\left.\left.q i \mathrm{P} _\mathrm{dt}\right) \cdot((\cos)(p)+(\sin)(p) i)\right)$.
(67) For all p, q holds $(\exp)(p+q)-(\exp)(p)=q \cdot(\exp)(p)+q \cdot(\exp)(p)$. $\Re\left(\sum(q+0 i\right.$ P_dt $\left.)\right)$.
(68) For every p holds cos is differentiable in p and $(\cos)^{\prime}(p)=-(\sin)(p)$.
(69) For every p holds sin is differentiable in p and $(\sin)^{\prime}(p)=(\cos)(p)$.
(70) For every p holds exp is differentiable in p and $(\exp)^{\prime}(p)=(\exp)(p)$.
(71) \exp is differentiable on \mathbb{R} and for every t_{1} such that $t_{1} \in \mathbb{R}$ holds $(\exp)^{\prime}\left(t_{1}\right)=(\exp)\left(t_{1}\right)$.
(72) cos is differentiable on \mathbb{R} and for every t_{1} such that $t_{1} \in \mathbb{R}$ holds $(\cos)^{\prime}\left(t_{1}\right)=-(\sin)\left(t_{1}\right)$.
(73) \sin is differentiable on \mathbb{R} and for every t_{1} holds $(\sin)^{\prime}\left(t_{1}\right)=(\cos)\left(t_{1}\right)$.
(74) For every t_{1} such that $t_{1} \in[0,1]$ holds $0<(\cos)\left(t_{1}\right)$ and $(\cos)\left(t_{1}\right) \geqslant \frac{1}{2}$.
(75) $[0,1] \subseteq \operatorname{dom}\left(\frac{\sin }{\cos }\right)$ and $] 0,1\left[\subseteq \operatorname{dom}\left(\frac{\sin }{\cos }\right)\right.$.
(76) $\frac{\sin }{\cos }$ is continuous on $[0,1]$.
(77) For all t_{2}, t_{3} such that $\left.t_{2} \in\right] 0,1\left[\right.$ and $\left.t_{3} \in\right] 0,1\left[\right.$ and $\left(\frac{\sin }{\cos }\right)\left(t_{2}\right)=\left(\frac{\sin }{\cos }\right)\left(t_{3}\right)$ holds $t_{2}=t_{3}$.

5. Existence of Circle Ratio

The element Pai of \mathbb{R} is defined as follows:
$($ Def. 30$) \quad\left(\frac{\sin }{\cos }\right)\left(\frac{\text { Pai }}{4}\right)=1$ and Pai $\left.\in\right] 0,4[$.
We now state the proposition

$$
\begin{equation*}
(\sin)\left(\frac{\mathrm{Pai}}{4}\right)=(\cos)\left(\frac{\mathrm{Pai}}{4}\right) \tag{78}
\end{equation*}
$$

6. Formulas of Sinus, Cosine

Next we state several propositions:
(79) $\quad(\sin)\left(t_{2}+t_{3}\right)=(\sin)\left(t_{2}\right) \cdot(\cos)\left(t_{3}\right)+(\cos)\left(t_{2}\right) \cdot(\sin)\left(t_{3}\right)$ and $(\cos)\left(t_{2}+t_{3}\right)=$ $(\cos)\left(t_{2}\right) \cdot(\cos)\left(t_{3}\right)-(\sin)\left(t_{2}\right) \cdot(\sin)\left(t_{3}\right)$.
(80) $\sin t_{2}+t_{3}=\sin t_{2} \cdot \cos t_{3}+\cos t_{2} \cdot \sin t_{3}$ and $\cos t_{2}+t_{3}=\cos t_{2} \cdot \cos t_{3}-$ $\sin t_{2} \cdot \sin t_{3}$.
(81) $\quad(\cos)\left(\frac{\text { Pai }}{2}\right)=0$ and $(\sin)\left(\frac{\mathrm{Pai}}{2}\right)=1$ and $(\cos)($ Pai $)=-1$ and $(\sin)($ Pai $)=0$ and $(\cos)\left(\right.$ Pai $\left.+\frac{\text { Pai }}{2}\right)=0$ and $(\sin)\left(\right.$ Pai $\left.+\frac{\text { Pai }}{2}\right)=-1$ and $(\cos)(2 \cdot \mathrm{Pai})=1$ and $(\sin)(2 \cdot$ Pai $)=0$.
(82) $\cos \frac{\mathrm{Pai}}{2}=0$ and $\sin \frac{\mathrm{Pai}}{2}=1$ and \cos Pai $=-1$ and \sin Pai $=0$ and $\cos \mathrm{Pai}+\frac{\mathrm{Pai}}{2}=0$ and $\sin \mathrm{Pai}+\frac{\mathrm{Pai}}{2}=-1$ and $\cos 2 \cdot \mathrm{Pai}=1$ and $\sin 2 \cdot \mathrm{Pai}=$ 0.
(83)(i) $\quad(\sin)\left(t_{1}+2 \cdot\right.$ Pai $)=(\sin)\left(t_{1}\right)$,
(ii) $(\cos)\left(t_{1}+2 \cdot\right.$ Pai $)=(\cos)\left(t_{1}\right)$,
(iii) $(\sin)\left(\frac{\mathrm{Pai}}{2}-t_{1}\right)=(\cos)\left(t_{1}\right)$,
(iv) $(\cos)\left(\frac{\text { Pai }}{2}-t_{1}\right)=(\sin)\left(t_{1}\right)$,
(v) $(\sin)\left(\frac{\text { Pai }}{2}+t_{1}\right)=(\cos)\left(t_{1}\right)$,
(vi) $\quad(\cos)\left(\frac{\text { Pai }}{2}+t_{1}\right)=-(\sin)\left(t_{1}\right)$,
(vii) $\quad(\sin)\left(\mathrm{Pai}+t_{1}\right)=-(\sin)\left(t_{1}\right)$, and
(viii) $\quad(\cos)\left(\mathrm{Pai}+t_{1}\right)=-(\cos)\left(t_{1}\right)$.
(84) $\sin t_{1}+2 \cdot$ Pai $=\sin t_{1}$ and $\cos t_{1}+2 \cdot$ Pai $=\cos t_{1}$ and $\sin \frac{\mathrm{Pai}}{2}-t_{1}=\cos t_{1}$ and $\cos \frac{\mathrm{Pai}}{2}-t_{1}=\sin t_{1}$ and $\sin \frac{\mathrm{Pai}}{2}+t_{1}=\cos t_{1}$ and $\cos \frac{\mathrm{Pai}}{2}+t_{1}=-\sin t_{1}$ and $\sin \mathrm{Pai}+t_{1}=-\sin t_{1}$ and $\cos \mathrm{Pai}+t_{1}=-\cos t_{1}$.
(85) For every t_{1} such that $\left.t_{1} \in\right] 0, \frac{\text { Pai }}{2}\left[\right.$ holds $(\cos)\left(t_{1}\right)>0$.
(86) For every t_{1} such that $\left.t_{1} \in\right] 0, \frac{\mathrm{Pai}}{2}\left[\right.$ holds $\cos t_{1}>0$.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
[11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[12] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[13] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449452, 1991.
[14] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[15] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[17] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Serieses. Formalized Mathematics, 6(3):403-410, 1997.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

