Trigonometric Functions and Existence of Circle Ratio

Yuguang Yang Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article, we defined *sinus* and *cosine* as the real part and the imaginary part of the exponential function on complex, and also give their series expression. Then we proved the differentiablity of *sinus*, *cosine* and the exponential function of real. Finally, we showed the existence of the circle ratio, and some formulas of *sinus*, *cosine*.

MML Identifier: SIN_COS.

The papers [11], [3], [1], [10], [17], [14], [15], [4], [5], [2], [12], [16], [6], [20], [21], [8], [9], [7], [13], [18], and [19] provide the terminology and notation for this paper.

1. Some Definitions and Properties of Complex Sequence

For simplicity, we adopt the following rules: p, q, r, t_1, t_2, t_3 are elements of $\mathbb{R}, w, z, z_1, z_2$ are elements of \mathbb{C}, k, l, m, n are natural numbers, s_1 is a complex sequence, and r_1 is a sequence of real numbers.

Let m, k be natural numbers. Let us assume that $k \leq m$. The functor PN(m, k) yielding an element of \mathbb{N} is defined by:

(Def. 1) PN(m, k) = m - k.

Let m, k be natural numbers. The functor CHK(m, k) yields an element of \mathbb{C} and is defined by:

(Def. 2) CHK $(m, k) = \begin{cases} 1_{\mathbb{C}}, \text{ if } m \leq k, \\ 0_{\mathbb{C}}, \text{ otherwise.} \end{cases}$

C 1998 University of Białystok ISSN 1426-2630 The functor $\operatorname{RHK}(m, k)$ yields an element of \mathbb{R} and is defined as follows:

(Def. 3) RHK $(m, k) = \begin{cases} 1, \text{ if } m \leq k, \\ 0, \text{ otherwise.} \end{cases}$

In this article we present several logical schemes. The scheme ExComplex CASE deals with a binary functor \mathcal{F} yielding an element of \mathbb{C} , and states that:

For every k there exists s_1 such that for every n holds if $n \leq k$,

then $s_1(n) = \mathcal{F}(k, n)$ and if n > k, then $s_1(n) = 0_{\mathbb{C}}$

for all values of the parameter.

The scheme *ExReal CASE* deals with a binary functor \mathcal{F} yielding an element of \mathbb{R} , and states that:

For every k there exists r_1 such that for every n holds if $n \leq k$,

then $r_1(n) = \mathcal{F}(k, n)$ and if n > k, then $r_1(n) = 0$

for all values of the parameter.

The complex sequence Prod_complex_n is defined by:

(Def. 4) (Prod_complex_n)(0) = $1_{\mathbb{C}}$ and for every *n* holds (Prod_complex_n)(*n* + 1) = (Prod_complex_n)(*n*) \cdot ((*n* + 1) + 0*i*).

The sequence Prod_real_n of real numbers is defined by:

(Def. 5) (Prod_real_n)(0) = 1 and for every n holds (Prod_real_n) $(n + 1) = (Prod_real_n)(n) \cdot (n + 1)$.

Let n be a natural number. The functor n!c yields an element of \mathbb{C} and is defined as follows:

(Def. 6) $n!c = (Prod_complex_n)(n).$

Let n be a natural number. Then n! is a real number and it can be characterized by the condition:

(Def. 7) $n! = (Prod_real_n)(n).$

Let z be an element of \mathbb{C} . The functor z ExpSeq yields a complex sequence and is defined as follows:

(Def. 8) For every *n* holds $z \operatorname{ExpSeq}(n) = \frac{z_{\mathbb{N}}}{n!c}$.

Let a be an element of \mathbb{R} . The functor $a \operatorname{ExpSeq}$ yielding a sequence of real numbers is defined as follows:

(Def. 9) For every *n* holds $a \operatorname{ExpSeq}(n) = \frac{a_{\mathbb{N}}^n}{n!}$.

The following propositions are true:

- (1) If 0 < n, then $n + 0i \neq 0_{\mathbb{C}}$ and $0!c = 1_{\mathbb{C}}$ and $n!c \neq 0_{\mathbb{C}}$ and $n + 1!c = n!c \cdot ((n+1) + 0i)$.
- (2) $n! \neq 0$ and $(n+1)! = n! \cdot (n+1)$.
- (3) For every k such that 0 < k holds $PN(k, 1)!c \cdot (k+0i) = k!c$ and for all m, k such that $k \leq m$ holds $PN(m, k)!c \cdot (((m+1)-k)+0i) = PN(m+1, k)!c$.

Let n be a natural number. The functor Coef n yielding a complex sequence is defined by:

(Def. 10) For every natural number k holds if $k \leq n$, then $(\operatorname{Coef} n)(k) = \frac{n!c}{k!c \cdot \operatorname{PN}(n,k)!c}$ and if k > n, then $(\operatorname{Coef} n)(k) = 0_{\mathbb{C}}$.

Let n be a natural number. The functor Coef_e n yields a complex sequence and is defined as follows:

(Def. 11) For every natural number k holds if $k \leq n$, then $(\operatorname{Coef} n)(k) = \frac{1_{\mathbb{C}}}{k! c \cdot \operatorname{PN}(n,k)! c}$ and if k > n, then $(\operatorname{Coef} n)(k) = 0_{\mathbb{C}}$.

Let us consider s_1 . The functor Sift s_1 yielding a complex sequence is defined as follows:

(Def. 12) (Sift s_1)(0) = 0_C and for every natural number k holds (Sift s_1)(k + 1) = $s_1(k)$.

Let us consider n and let z, w be elements of \mathbb{C} . The functor Expan(n, z, w) yields a complex sequence and is defined as follows:

- (Def. 13) For every natural number k holds if $k \leq n$, then $(\text{Expan}(n, z, w))(k) = (\text{Coef } n)(k) \cdot z_{\mathbb{N}}^{k} \cdot w_{\mathbb{N}}^{\text{PN}(n,k)}$ and if n < k, then $(\text{Expan}(n, z, w))(k) = 0_{\mathbb{C}}$. Let us consider n and let z, w be elements of \mathbb{C} . The functor $\text{Expan}_{-}e(n, z, w)$ yielding a complex sequence is defined by:
- (Def. 14) For every natural number k holds if $k \leq n$, then $(\text{Expan}_e(n, z, w))(k) = (\text{Coef}_e n)(k) \cdot z_{\mathbb{N}}^k \cdot w_{\mathbb{N}}^{\text{PN}(n,k)}$ and if n < k, then $(\text{Expan}_e(n, z, w))(k) = 0_{\mathbb{C}}$. Let us consider n and let z, w be elements of \mathbb{C} . The functor Alfa(n, z, w) yielding a complex sequence is defined by:
- (Def. 15) For every natural number k holds if $k \leq n$, then $(Alfa(n, z, w))(k) = z \operatorname{ExpSeq}(k) \cdot (\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k))$ and if n < k, then $(Alfa(n, z, w))(k) = 0_{\mathbb{C}}$.

Let a, b be elements of \mathbb{R} and let n be a natural number. The functor $\operatorname{Conj}(n, a, b)$ yielding a sequence of real numbers is defined as follows:

(Def. 16) For every natural number k holds if $k \leq n$, then $(\operatorname{Conj}(n, a, b))(k) = a \operatorname{ExpSeq}(k) \cdot ((\sum_{\alpha=0}^{\kappa} b \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} b \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k)))$ and if n < k, then $(\operatorname{Conj}(n, a, b))(k) = 0$.

Let z, w be elements of \mathbb{C} and let n be a natural number. The functor $\operatorname{Conj}(n, z, w)$ yielding a complex sequence is defined by:

(Def. 17) For every natural number k holds if $k \leq n$, then $(\operatorname{Conj}(n, z, w))(k) = z \operatorname{ExpSeq}(k) \cdot ((\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(\operatorname{PN}(n, k)))$ and if n < k, then $(\operatorname{Conj}(n, z, w))(k) = 0_{\mathbb{C}}$.

The following propositions are true:

- (4) $z \operatorname{ExpSeq}(n + 1) = \frac{z \operatorname{ExpSeq}(n) \cdot z}{(n+1) + 0i}$ and $z \operatorname{ExpSeq}(0) = 1_{\mathbb{C}}$ and $|z \operatorname{ExpSeq}(n)| = |z| \operatorname{ExpSeq}(n).$
- (5) If 0 < k, then $(\text{Sift } s_1)(k) = s_1(\text{PN}(k, 1))$.
- (6) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Sift} s_1)(\alpha))_{\kappa \in \mathbb{N}}(k) + s_1(k).$
- (7) $(z+w)_{\mathbb{N}}^n = (\sum_{\alpha=0}^{\kappa} (\operatorname{Expan}(n,z,w))(\alpha))_{\kappa \in \mathbb{N}}(n).$

- (8) Expan_e(n, z, w) = $\frac{1_{\mathbb{C}}}{n!c}$ Expan(n, z, w).
- (9) $\frac{(z+w)_{\mathbb{N}}^n}{n!c} = (\sum_{\alpha=0}^{\kappa} (\operatorname{Expan_e}(n, z, w))(\alpha))_{\kappa \in \mathbb{N}}(n).$

(10) $0_{\mathbb{C}} \text{ExpSeq}$ is absolutely summable and $\sum (0_{\mathbb{C}} \text{ExpSeq}) = 1_{\mathbb{C}}$. Let us consider z. One can verify that z ExpSeq is absolutely summable. Next we state a number of propositions:

- (11) $z \operatorname{ExpSeq}(0) = 1_{\mathbb{C}} \text{ and } (\operatorname{Expan}(0, z, w))(0) = 1_{\mathbb{C}}.$
- (12) If $l \leq k$, then $(Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan_e(k + 1, z, w))(l)$.
- (13) $(\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(k+1,z,w))(\alpha))_{\kappa\in\mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(k,z,w))(\alpha))_{\kappa\in\mathbb{N}}(k) + (\sum_{\alpha=0}^{\kappa} (\operatorname{Expan_e}(k+1,z,w))(\alpha))_{\kappa\in\mathbb{N}}(k).$
- (14) $z \operatorname{ExpSeq}(k) = (\operatorname{Expan_e}(k, z, w))(k).$
- (15) $(\sum_{\alpha=0}^{\kappa} z + w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(n, z, w))(\alpha))_{\kappa \in \mathbb{N}}(n).$
- (16) $(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) \cdot (\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) (\sum_{\alpha=0}^{\kappa} z + w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Conj}(k, z, w))(\alpha))_{\kappa \in \mathbb{N}}(k).$
- (17) $\begin{aligned} |(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)| &\leq (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) \text{ and} \\ (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) &\leq \sum (|z| \operatorname{ExpSeq}) \text{ and} \\ |(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)| &\leq \sum (|z| \operatorname{ExpSeq}). \end{aligned}$
- (18) $1 \leq \sum (|z| \operatorname{ExpSeq}).$
- (19) $0 \leq |z| \operatorname{ExpSeq}(n).$
- $\begin{aligned} (20) \quad &|(\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n)| = (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) \text{ and if } n \leqslant \\ m, \text{ then } |(\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n)| = \\ &(\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n). \end{aligned}$
- (21) $|(\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha))_{\kappa \in \mathbb{N}}(n)| = (\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha))_{\kappa \in \mathbb{N}}(n).$
- (22) For every p such that p > 0 there exists n such that for every k such that $n \leq k$ holds $|(\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha))_{\kappa \in \mathbb{N}}(k)| < p$.
- (23) For every s_1 such that for every k holds $s_1(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Conj}(k, z, w))(\alpha))_{\kappa \in \mathbb{N}}(k)$ holds s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.
 - 2. Definition of Exponential Function on Complex

The partial function \exp from \mathbb{C} to \mathbb{C} is defined as follows:

(Def. 18) dom exp = \mathbb{C} and for every element z of \mathbb{C} holds $(\exp)(z) = \sum (z \operatorname{ExpSeq})$.

Let us consider z. The functor $\exp z$ yielding an element of \mathbb{C} is defined by: (Def. 19) $\exp z = (\exp)(z)$.

The following proposition is true

(24) For all z_1 , z_2 holds $\exp z_1 + z_2 = \exp z_1 \cdot \exp z_2$.

258

3. Definition of Sinus, Cosine, and Exponential Function on \mathbb{R}

The partial function \sin from \mathbb{R} to \mathbb{R} is defined as follows:

(Def. 20) dom sin = \mathbb{R} and for every real number d holds $(\sin)(d) = \Im(\sum (0 + d))$ $di \operatorname{ExpSeq})$).

Let us consider t_1 . The functor $\sin t_1$ yielding an element of \mathbb{R} is defined by: (Def. 21) $\sin t_1 = (\sin)(t_1)$.

Next we state the proposition

(25) sin is a function from \mathbb{R} into \mathbb{R} .

The partial function \cos from \mathbb{R} to \mathbb{R} is defined by:

(Def. 22) dom $\cos = \mathbb{R}$ and for every real number d holds $(\cos)(d) = \Re(\sum (0 + d))$ $di \operatorname{ExpSeq})).$

Let us consider t_1 . The functor $\cos t_1$ yields an element of \mathbb{R} and is defined by:

(Def. 23) $\cos t_1 = (\cos)(t_1).$

One can prove the following propositions:

- cos is a function from \mathbb{R} into \mathbb{R} . (26)
- (27) dom $\sin = \mathbb{R}$ and dom $\cos = \mathbb{R}$.
- (28) $\exp 0 + t_1 i = \cos t_1 + \sin t_1 i.$
- (29) $(\exp 0 + t_1 i)^* = \exp -(0 + t_1 i).$
- (30) $|\exp 0 + t_1 i| = 1$ and $|\sin t_1| \le 1$ and $|\cos t_1| \le 1$.
- (31) $(\cos)(t_1)^2 + (\sin)(t_1)^2 = 1$ and $(\cos)(t_1) \cdot (\cos)(t_1) + (\sin)(t_1) \cdot (\sin)(t_1) = 1$.
- (32) $(\cos t_1)^2 + (\sin t_1)^2 = 1$ and $\cos t_1 \cdot \cos t_1 + \sin t_1 \cdot \sin t_1 = 1$.
- (33) $(\cos)(0) = 1$ and $(\sin)(0) = 0$ and $(\cos)(-t_1) = (\cos)(t_1)$ and $(\sin)(-t_1) = -(\sin)(t_1)$
- (34) $\cos 0 = 1$ and $\sin 0 = 0$ and $\cos -t_1 = \cos t_1$ and $\sin -t_1 = -\sin t_1$.

Let t_1 be an element of \mathbb{R} . The functor $t_1 P$ is yielding a sequence of real numbers is defined by:

(Def. 24) For every *n* holds $t_1 \operatorname{P}_{sin}(n) = \frac{((-1)_{\mathbb{N}}^n) \cdot t_1^{2 \cdot n+1}}{(2 \cdot n+1)!}$. Let t_1 be an element of \mathbb{R} . The functor $t_1 P_{-}$ cos yielding a sequence of real

numbers is defined by: (Def. 25) For every *n* holds $t_1 \operatorname{P}_{-} \cos(n) = \frac{((-1)_{\mathbb{N}}^n) \cdot t_1^{2 \cdot n}}{(2 \cdot n)!}$.

The following propositions are true:

- (35) For all z, k holds $z_{\mathbb{N}}^{2\cdot k} = (z_{\mathbb{N}}^k)_{\mathbb{N}}^2$ and $z_{\mathbb{N}}^{2\cdot k} = (z_{\mathbb{N}}^2)_{\mathbb{N}}^k$. (36) For all k, t_1 holds $(0 + t_1 i)_{\mathbb{N}}^{2\cdot k} = ((-1)_{\mathbb{N}}^k) \cdot t_{1\mathbb{N}}^{2\cdot k} + 0i$ and $(0 + t_1 i)_{\mathbb{N}}^{2\cdot k+1} = 0 + (((-1)_{\mathbb{N}}^k) \cdot t_{1\mathbb{N}}^{2\cdot k+1})i$.
- (37) For every *n* holds n!c = n! + 0i.

- (38) For all t_1 , n holds $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P}_{\operatorname{sin}}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} \Im(0 + t_1 i \operatorname{ExpSeq})(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot n + 1)$ and $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P}_{\operatorname{cos}}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} \Re(0 + t_1 i \operatorname{ExpSeq})(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot n).$
- (39) For every t_1 holds $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P}_{\operatorname{sin}}(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\sum (t_1 \operatorname{P}_{\operatorname{sin}}) = \Im(\sum (0 + t_1 i \operatorname{ExpSeq}))$ and $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P}_{\operatorname{cos}}(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\sum (t_1 \operatorname{P}_{\operatorname{cos}}) = \Re(\sum (0 + t_1 i \operatorname{ExpSeq})).$
- (40) For every t_1 holds $(\cos)(t_1) = \sum (t_1 \operatorname{P_-cos})$ and $(\sin)(t_1) = \sum (t_1 \operatorname{P_-sin})$.
- (41) For all p, t_1 , r_1 such that r_1 is convergent and $\lim r_1 = t_1$ and for every n holds $r_1(n) \ge p$ holds $t_1 \ge p$.
- (42) For all n, k, m such that n < k holds m! > 0 and $n! \leq k!$.
- (43) For all t_1, n, k such that $0 \leq t_1$ and $t_1 \leq 1$ and $n \leq k$ holds $t_1^k \leq t_1^n$.
- (44) For all t_1 , *n* holds $(t_1 + 0i)_{\mathbb{N}}^n = (t_1_{\mathbb{N}}^n) + 0i$.
- (45) For all t_1 , n holds $\frac{(t_1+0i)_{\mathbb{N}}^n}{n!c} = \frac{t_1_{\mathbb{N}}^n}{n!} + 0i$.
- (46) $\Im(\sum(p+0i\operatorname{ExpSeq})) = 0.$
- (47) $(\cos)(1) > 0$ and $(\sin)(1) > 0$ and $(\cos)(1) < (\sin)(1)$.
- (48) For every t_1 holds $t_1 \operatorname{ExpSeq} = \Re(t_1 + 0i \operatorname{ExpSeq})$.
- (49) For every t_1 holds t_1 ExpSeq is summable and $\sum (t_1 \text{ExpSeq}) = \Re(\sum (t_1 + 0i \text{ExpSeq})).$
- (50) For all p, q holds $\sum (p + q \operatorname{ExpSeq}) = \sum (p \operatorname{ExpSeq}) \cdot \sum (q \operatorname{ExpSeq})$. The partial function exp from \mathbb{R} to \mathbb{R} is defined by:
- (Def. 26) dom exp = \mathbb{R} and for every real number d holds $(\exp)(d) = \sum (d \operatorname{ExpSeq})$.

Let us consider t_1 . The functor $\exp t_1$ yields an element of \mathbb{R} and is defined as follows:

(Def. 27) $\exp t_1 = (\exp)(t_1).$

We now state a number of propositions:

- (51) dom exp = \mathbb{R} .
- (52) For every element d of \mathbb{R} holds $(\exp)(d) = \sum (d \operatorname{ExpSeq})$.
- (53) For every t_1 holds $(\exp)(t_1) = \Re(\sum (t_1 + 0i \operatorname{ExpSeq})).$
- (54) $\exp t_1 + 0i = \exp t_1 + 0i.$
- (55) $\exp p + q = \exp p \cdot \exp q.$
- (56) $\exp 0 = 1.$
- (57) For every t_1 such that $t_1 > 0$ holds $(\exp)(t_1) \ge 1$.
- (58) For every t_1 such that $t_1 < 0$ holds $0 < (\exp)(t_1)$ and $(\exp)(t_1) \leq 1$.
- (59) For every t_1 holds $(\exp)(t_1) > 0$.
- (60) For every t_1 holds $\exp t_1 > 0$.

260

4. DIFFERENTIAL OF SINUS, COSINE, AND EXPONENTIAL FUNCTION

Let z be an element of \mathbb{C} . The functor $z P_{-}dt$ yields a complex sequence and is defined as follows:

(Def. 28) For every *n* holds $z \operatorname{P}_{-} \operatorname{dt}(n) = \frac{z_{\mathbb{N}}^{n+1}}{n+2!c}$.

Let z be an element of \mathbb{C} . The functor $z \operatorname{P}_{-t}$ yielding a complex sequence is defined by:

(Def. 29) For every *n* holds $z \operatorname{P}_{-t}(n) = \frac{z_{\mathbb{N}}^n}{n+2!c}$.

Next we state a number of propositions:

- (61) For every z holds $z P_{-}dt$ is absolutely summable.
- (62) For every z holds $z \cdot \sum (z \operatorname{P_dt}) = \sum (z \operatorname{ExpSeq}) 1_{\mathbb{C}} z$.
- (63) For every p such that p > 0 there exists r such that r > 0 and for every z such that |z| < r holds $|\sum (z P_d t)| < p$.
- (64) For all z, z_1 holds $\sum (z_1 + z \operatorname{ExpSeq}) \sum (z_1 \operatorname{ExpSeq}) = \sum (z_1 \operatorname{ExpSeq}) \cdot z + z \cdot \sum (z \operatorname{P_dt}) \cdot \sum (z_1 \operatorname{ExpSeq}).$
- (65) For all p, q holds $(\cos)(p+q) (\cos)(p) = -q \cdot (\sin)(p) q \cdot \Im(\sum(0+qi\operatorname{P_dt}) \cdot ((\cos)(p) + (\sin)(p)i)).$
- (66) For all p, q holds $(\sin)(p+q) (\sin)(p) = q \cdot (\cos)(p) + q \cdot \Re(\sum(0+qi P_dt) \cdot ((\cos)(p) + (\sin)(p)i)).$
- (67) For all p, q holds $(\exp)(p+q) (\exp)(p) = q \cdot (\exp)(p) + q \cdot (\exp)(p) \cdot \Re(\sum(q+0i \operatorname{P_dt})).$
- (68) For every p holds cos is differentiable in p and $(\cos)'(p) = -(\sin)(p)$.
- (69) For every p holds sin is differentiable in p and $(\sin)'(p) = (\cos)(p)$.
- (70) For every p holds exp is differentiable in p and $(\exp)'(p) = (\exp)(p)$.
- (71) exp is differentiable on \mathbb{R} and for every t_1 such that $t_1 \in \mathbb{R}$ holds $(\exp)'(t_1) = (\exp)(t_1)$.
- (72) cos is differentiable on \mathbb{R} and for every t_1 such that $t_1 \in \mathbb{R}$ holds $(\cos)'(t_1) = -(\sin)(t_1)$.
- (73) sin is differentiable on \mathbb{R} and for every t_1 holds $(\sin)'(t_1) = (\cos)(t_1)$.
- (74) For every t_1 such that $t_1 \in [0,1]$ holds $0 < (\cos)(t_1)$ and $(\cos)(t_1) \ge \frac{1}{2}$.
- (75) $[0,1] \subseteq \operatorname{dom}(\frac{\sin}{\cos})$ and $]0,1[\subseteq \operatorname{dom}(\frac{\sin}{\cos}).$
- (76) $\frac{\sin}{\cos}$ is continuous on [0, 1].
- (77) For all t_2, t_3 such that $t_2 \in [0, 1[$ and $t_3 \in [0, 1[$ and $(\frac{\sin}{\cos})(t_2) = (\frac{\sin}{\cos})(t_3)$ holds $t_2 = t_3$.

5. EXISTENCE OF CIRCLE RATIO

The element Pai of \mathbb{R} is defined as follows:

(Def. 30)
$$\left(\frac{\sin}{\cos}\right)\left(\frac{\operatorname{Pai}}{4}\right) = 1 \text{ and } \operatorname{Pai} \in \left]0, 4\right[.$$

We now state the proposition

(78) $(\sin)(\frac{\operatorname{Pai}}{4}) = (\cos)(\frac{\operatorname{Pai}}{4}).$

6. Formulas of Sinus, Cosine

Next we state several propositions:

- (79) $(\sin)(t_2+t_3) = (\sin)(t_2) \cdot (\cos)(t_3) + (\cos)(t_2) \cdot (\sin)(t_3)$ and $(\cos)(t_2+t_3) =$ $(\cos)(t_2) \cdot (\cos)(t_3) - (\sin)(t_2) \cdot (\sin)(t_3).$
- (80) $\sin t_2 + t_3 = \sin t_2 \cdot \cos t_3 + \cos t_2 \cdot \sin t_3$ and $\cos t_2 + t_3 = \cos t_2 \cdot \cos t_3 \cos t_3 \cos t_3 + \cos t_3 +$ $\sin t_2 \cdot \sin t_3$.
- (81) $(\cos)(\frac{\text{Pai}}{2}) = 0$ and $(\sin)(\frac{\text{Pai}}{2}) = 1$ and $(\cos)(\text{Pai}) = -1$ and $(\sin)(\text{Pai}) = 0$ and $(\cos)(\operatorname{Pai} + \frac{\operatorname{Pai}}{2}) = 0$ and $(\sin)(\operatorname{Pai} + \frac{\operatorname{Pai}}{2}) = -1$ and $(\cos)(2 \cdot \operatorname{Pai}) = 1$ and $(\sin)(2 \cdot \operatorname{Pai}) = 0$.
- (82) $\cos \frac{\text{Pai}}{2} = 0$ and $\sin \frac{\text{Pai}}{2} = 1$ and $\cos \text{Pai} = -1$ and $\sin \text{Pai} = 0$ and $\cos \text{Pai} + \frac{\text{Pai}}{2} = 0$ and $\sin \text{Pai} + \frac{\text{Pai}}{2} = -1$ and $\cos 2 \cdot \text{Pai} = 1$ and $\sin 2 \cdot \text{Pai} = -1$ 0.

(83)(i)
$$(\sin)(t_1 + 2 \cdot \operatorname{Pai}) = (\sin)(t_1),$$

- (ii) $(\cos)(t_1 + 2 \cdot \operatorname{Pai}) = (\cos)(t_1),$
- (iii) $(\sin)(\frac{\text{Pai}}{2} t_1) = (\cos)(t_1),$ (iv) $(\cos)(\frac{\text{Pai}}{2} t_1) = (\sin)(t_1),$
- $(\sin)(\frac{\mathrm{Pai}}{2} + t_1) = (\cos)(t_1),$ (v)
- $(\cos)(\frac{\tilde{P}_{ai}}{2}+t_1) = -(\sin)(t_1),$ (vi)
- $(\sin)(\text{Pai}+t_1) = -(\sin)(t_1)$, and (vii)
- $(\cos)(\operatorname{Pai}+t_1) = -(\cos)(t_1).$ (viii)
- (84) $\sin t_1 + 2 \cdot \operatorname{Pai} = \sin t_1$ and $\cos t_1 + 2 \cdot \operatorname{Pai} = \cos t_1$ and $\sin \frac{\operatorname{Pai}}{2} t_1 = \cos t_1$ and $\cos \frac{\operatorname{Pai}}{2} t_1 = \sin t_1$ and $\sin \frac{\operatorname{Pai}}{2} + t_1 = \cos t_1$ and $\cos \frac{\operatorname{Pai}}{2} + t_1 = -\sin t_1$ and $\sin \operatorname{Pai} + t_1 = -\sin t_1$ and $\cos \operatorname{Pai} + t_1 = -\cos t_1$.
- (85) For every t_1 such that $t_1 \in \left[0, \frac{\text{Pai}}{2}\right]$ holds $(\cos)(t_1) > 0$.
- (86) For every t_1 such that $t_1 \in \left[0, \frac{\text{Pai}}{2}\right]$ holds $\cos t_1 > 0$.

References

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [10] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [11] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [12] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [13] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449– 452, 1991.
- [14] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [15] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [17] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Serieses. Formalized Mathematics, 6(3):403–410, 1997.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received October 22, 1998