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Summary. In this article, we defined sinus and cosine as the real part and
the imaginary part of the exponential function on complex, and also give their

series expression. Then we proved the differentiablity of sinus, cosine and the

exponential function of real. Finally, we showed the existence of the circle ratio,

and some formulas of sinus, cosine.

MML Identifier: SIN COS.

The papers [11], [3], [1], [10], [17], [14], [15], [4], [5], [2], [12], [16], [6], [20], [21],

[8], [9], [7], [13], [18], and [19] provide the terminology and notation for this

paper.

1. Some Definitions and Properties of Complex Sequence

For simplicity, we adopt the following rules: p, q, r, t1, t2, t3 are elements of

R, w, z, z1, z2 are elements of C, k, l, m, n are natural numbers, s1 is a complex

sequence, and r1 is a sequence of real numbers.

Let m, k be natural numbers. Let us assume that k ¬ m. The functor

PN(m, k) yielding an element of N is defined by:

(Def. 1) PN(m, k) = m− k.

Let m, k be natural numbers. The functor CHK(m, k) yields an element of

C and is defined by:

(Def. 2) CHK(m, k) =

{

1C, if m ¬ k,

0C, otherwise.

255
c© 1998 University of Białystok

ISSN 1426–2630



256 yuguang yang and yasunari shidama

The functor RHK(m, k) yields an element of R and is defined as follows:

(Def. 3) RHK(m, k) =

{

1, if m ¬ k,

0, otherwise.

In this article we present several logical schemes. The scheme ExComplex

CASE deals with a binary functor F yielding an element of C, and states that:

For every k there exists s1 such that for every n holds if n ¬ k,

then s1(n) = F(k, n) and if n > k, then s1(n) = 0C

for all values of the parameter.

The scheme ExReal CASE deals with a binary functor F yielding an element

of R, and states that:

For every k there exists r1 such that for every n holds if n ¬ k,

then r1(n) = F(k, n) and if n > k, then r1(n) = 0

for all values of the parameter.

The complex sequence Prod complex n is defined by:

(Def. 4) (Prod complex n)(0) = 1C and for every n holds (Prod complex n)(n +

1) = (Prod complex n)(n) · ((n + 1) + 0i).

The sequence Prod real n of real numbers is defined by:

(Def. 5) (Prod real n)(0) = 1 and for every n holds (Prod real n)(n + 1) =

(Prod real n)(n) · (n + 1).

Let n be a natural number. The functor n!c yields an element of C and is

defined as follows:

(Def. 6) n!c = (Prod complex n)(n).

Let n be a natural number. Then n! is a real number and it can be charac-

terized by the condition:

(Def. 7) n! = (Prod real n)(n).

Let z be an element of C. The functor z ExpSeq yields a complex sequence

and is defined as follows:

(Def. 8) For every n holds z ExpSeq(n) =
zn

N

n!c .

Let a be an element of R. The functor aExpSeq yielding a sequence of real

numbers is defined as follows:

(Def. 9) For every n holds aExpSeq(n) =
an

N

n! .

The following propositions are true:

(1) If 0 < n, then n + 0i 6= 0C and 0!c = 1C and n!c 6= 0C and n + 1!c =

n!c · ((n + 1) + 0i).

(2) n! 6= 0 and (n + 1)! = n! · (n + 1).

(3) For every k such that 0 < k holds PN(k, 1)!c ·(k+0i) = k!c and for allm,

k such that k ¬ m holds PN(m, k)!c ·(((m+1)−k)+0i) = PN(m+1, k)!c.

Let n be a natural number. The functor Coef n yielding a complex sequence

is defined by:
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(Def. 10) For every natural number k holds if k ¬ n, then (Coef n)(k) =
n!c

k!c·PN(n,k)!c and if k > n, then (Coef n)(k) = 0C.

Let n be a natural number. The functor Coef en yields a complex sequence

and is defined as follows:

(Def. 11) For every natural number k holds if k ¬ n, then (Coef en)(k) =
1C

k!c·PN(n,k)!c and if k > n, then (Coef en)(k) = 0C.

Let us consider s1. The functor Sift s1 yielding a complex sequence is defined

as follows:

(Def. 12) (Sift s1)(0) = 0C and for every natural number k holds (Sift s1)(k +1) =

s1(k).

Let us consider n and let z, w be elements of C. The functor Expan(n, z, w)

yields a complex sequence and is defined as follows:

(Def. 13) For every natural number k holds if k ¬ n, then (Expan(n, z, w))(k) =

(Coef n)(k) · zk
N
· w
PN(n,k)
N

and if n < k, then (Expan(n, z, w))(k) = 0C.

Let us consider n and let z, w be elements of C. The functor Expan e(n, z, w)

yielding a complex sequence is defined by:

(Def. 14) For every natural number k holds if k ¬ n, then (Expan e(n, z, w))(k) =

(Coef en)(k) · zk
N
·w
PN(n,k)
N

and if n < k, then (Expan e(n, z, w))(k) = 0C.

Let us consider n and let z, w be elements of C. The functor Alfa(n, z, w)

yielding a complex sequence is defined by:

(Def. 15) For every natural number k holds if k ¬ n, then (Alfa(n, z, w))(k) =

z ExpSeq(k) · (
∑κ

α=0 wExpSeq(α))κ∈N(PN(n, k)) and if n < k, then

(Alfa(n, z, w))(k) = 0C.

Let a, b be elements of R and let n be a natural number. The functor

Conj(n, a, b) yielding a sequence of real numbers is defined as follows:

(Def. 16) For every natural number k holds if k ¬ n, then (Conj(n, a, b))(k) =

aExpSeq(k)·((
∑κ

α=0 bExpSeq(α))κ∈N(n)−(
∑κ

α=0 bExpSeq(α))κ∈N(PN(n, k)))

and if n < k, then (Conj(n, a, b))(k) = 0.

Let z, w be elements of C and let n be a natural number. The functor

Conj(n, z, w) yielding a complex sequence is defined by:

(Def. 17) For every natural number k holds if k ¬ n, then (Conj(n, z, w))(k) =

z ExpSeq(k)·((
∑κ

α=0 wExpSeq(α))κ∈N(n)−(
∑κ

α=0 wExpSeq(α))κ∈N(PN(n, k)))

and if n < k, then (Conj(n, z, w))(k) = 0C.

The following propositions are true:

(4) z ExpSeq(n + 1) = z ExpSeq(n)·z
(n+1)+0i

and z ExpSeq(0) = 1C and

|z ExpSeq(n)| = |z|ExpSeq(n).

(5) If 0 < k, then (Sift s1)(k) = s1(PN(k, 1)).

(6) (
∑κ

α=0(s1)(α))κ∈N(k) = (
∑κ

α=0(Sift s1)(α))κ∈N(k) + s1(k).

(7) (z + w)n
N

= (
∑κ

α=0(Expan(n, z, w))(α))κ∈N(n).
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(8) Expan e(n, z, w) = 1C

n!c Expan(n, z, w).

(9)
(z+w)n

N

n!c = (
∑κ

α=0(Expan e(n, z, w))(α))κ∈N(n).

(10) 0C ExpSeq is absolutely summable and
∑

(0C ExpSeq) = 1C.

Let us consider z. One can verify that z ExpSeq is absolutely summable.

Next we state a number of propositions:

(11) z ExpSeq(0) = 1C and (Expan(0, z, w))(0) = 1C.

(12) If l ¬ k, then (Alfa(k + 1, z, w))(l) = (Alfa(k, z, w))(l) + (Expan e(k +

1, z, w))(l).

(13) (
∑κ

α=0(Alfa(k +1, z, w))(α))κ∈N(k) = (
∑κ

α=0(Alfa(k, z, w))(α))κ∈N(k)+

(
∑κ

α=0(Expan e(k + 1, z, w))(α))κ∈N(k).

(14) z ExpSeq(k) = (Expan e(k, z, w))(k).

(15) (
∑κ

α=0 z + wExpSeq(α))κ∈N(n) = (
∑κ

α=0(Alfa(n, z, w))(α))κ∈N(n).

(16) (
∑κ

α=0 z ExpSeq(α))κ∈N(k) · (
∑κ

α=0 wExpSeq(α))κ∈N(k) − (
∑κ

α=0 z +

wExpSeq(α))κ∈N(k) = (
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k).

(17) |(
∑κ

α=0 z ExpSeq(α))κ∈N(k)| ¬ (
∑κ

α=0 |z|ExpSeq(α))κ∈N(k) and

(
∑κ

α=0 |z|ExpSeq(α))κ∈N(k) ¬
∑

(|z|ExpSeq) and

|(
∑κ

α=0 z ExpSeq(α))κ∈N(k)| ¬
∑

(|z|ExpSeq).

(18) 1 ¬
∑

(|z|ExpSeq).

(19) 0 ¬ |z|ExpSeq(n).

(20) |(
∑κ

α=0 |z|ExpSeq(α))κ∈N(n)| = (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n) and if n ¬

m, then |(
∑κ

α=0 |z|ExpSeq(α))κ∈N(m) − (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n)| =

(
∑κ

α=0 |z|ExpSeq(α))κ∈N(m)− (
∑κ

α=0 |z|ExpSeq(α))κ∈N(n).

(21) |(
∑κ

α=0 |Conj(k, z, w)|(α))κ∈N(n)| = (
∑κ

α=0 |Conj(k, z, w)|(α))κ∈N(n).

(22) For every p such that p > 0 there exists n such that for every k such

that n ¬ k holds |(
∑κ

α=0 |Conj(k, z, w)|(α))κ∈N(k)| < p.

(23) For every s1 such that for every k holds s1(k) =

(
∑κ

α=0(Conj(k, z, w))(α))κ∈N(k) holds s1 is convergent and lim s1 = 0C.

2. Definition of Exponential Function on Complex

The partial function exp from C to C is defined as follows:

(Def. 18) dom exp = C and for every element z of C holds (exp)(z) =
∑

(z ExpSeq).

Let us consider z. The functor exp z yielding an element of C is defined by:

(Def. 19) exp z = (exp)(z).

The following proposition is true

(24) For all z1, z2 holds exp z1 + z2 = exp z1 · exp z2.
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3. Definition of Sinus, Cosine, and Exponential Function on R

The partial function sin from R to R is defined as follows:

(Def. 20) dom sin = R and for every real number d holds (sin)(d) = ℑ(
∑

(0 +

diExpSeq)).

Let us consider t1. The functor sin t1 yielding an element of R is defined by:

(Def. 21) sin t1 = (sin)(t1).

Next we state the proposition

(25) sin is a function from R into R.

The partial function cos from R to R is defined by:

(Def. 22) dom cos = R and for every real number d holds (cos)(d) = ℜ(
∑

(0 +

diExpSeq)).

Let us consider t1. The functor cos t1 yields an element of R and is defined

by:

(Def. 23) cos t1 = (cos)(t1).

One can prove the following propositions:

(26) cos is a function from R into R.

(27) dom sin = R and domcos = R.

(28) exp 0 + t1i = cos t1 + sin t1i.

(29) (exp 0 + t1i)
∗ = exp−(0 + t1i).

(30) | exp 0 + t1i| = 1 and | sin t1| ¬ 1 and | cos t1| ¬ 1.

(31) (cos)(t1)
2+(sin)(t1)

2 = 1 and (cos)(t1)·(cos)(t1)+(sin)(t1)·(sin)(t1) = 1.

(32) (cos t1)
2 + (sin t1)

2 = 1 and cos t1 · cos t1 + sin t1 · sin t1 = 1.

(33) (cos)(0) = 1 and (sin)(0) = 0 and (cos)(−t1) = (cos)(t1) and

(sin)(−t1) = −(sin)(t1).

(34) cos 0 = 1 and sin 0 = 0 and cos−t1 = cos t1 and sin−t1 = −sin t1.

Let t1 be an element of R. The functor t1 P sin yielding a sequence of real

numbers is defined by:

(Def. 24) For every n holds t1 P sin(n) =
((−1)n

N
)·t1

2·n+1

N

(2·n+1)! .

Let t1 be an element of R. The functor t1 P cos yielding a sequence of real

numbers is defined by:

(Def. 25) For every n holds t1 P cos(n) =
((−1)n

N
)·t12·n

N

(2·n)! .

The following propositions are true:

(35) For all z, k holds z2·k
N

= (zk
N
)2
N
and z2·k

N
= (z2

N
)k
N
.

(36) For all k, t1 holds (0 + t1i)
2·k
N

= ((−1)k
N
) · t1

2·k
N

+ 0i and (0 + t1i)
2·k+1
N

=

0 + (((−1)k
N
) · t1

2·k+1
N

)i.

(37) For every n holds n!c = n! + 0i.
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(38) For all t1, n holds (
∑κ

α=0 t1 P sin(α))κ∈N(n) = (
∑κ

α=0ℑ(0 +

t1iExpSeq)(α))κ∈N(2·n+1) and (
∑κ

α=0 t1 P cos(α))κ∈N(n) = (
∑κ

α=0ℜ(0+

t1iExpSeq)(α))κ∈N(2 · n).

(39) For every t1 holds (
∑κ

α=0 t1 P sin(α))κ∈N is convergent and
∑

(t1 P sin) =

ℑ(
∑

(0 + t1iExpSeq)) and (
∑κ

α=0 t1 P cos(α))κ∈N is convergent and
∑

(t1 P cos) = ℜ(
∑

(0 + t1iExpSeq)).

(40) For every t1 holds (cos)(t1) =
∑

(t1 P cos) and (sin)(t1) =
∑

(t1 P sin).

(41) For all p, t1, r1 such that r1 is convergent and lim r1 = t1 and for every

n holds r1(n) ­ p holds t1 ­ p.

(42) For all n, k, m such that n < k holds m! > 0 and n! ¬ k!.

(43) For all t1, n, k such that 0 ¬ t1 and t1 ¬ 1 and n ¬ k holds t1
k
N
¬ t1

n
N
.

(44) For all t1, n holds (t1 + 0i)n
N

= (t1
n
N
) + 0i.

(45) For all t1, n holds
(t1+0i)n

N

n!c =
t1

n

N

n! + 0i.

(46) ℑ(
∑

(p + 0iExpSeq)) = 0.

(47) (cos)(1) > 0 and (sin)(1) > 0 and (cos)(1) < (sin)(1).

(48) For every t1 holds t1 ExpSeq = ℜ(t1 + 0iExpSeq).

(49) For every t1 holds t1 ExpSeq is summable and
∑

(t1 ExpSeq) = ℜ(
∑

(t1+

0iExpSeq)).

(50) For all p, q holds
∑

(p + qExpSeq) =
∑

(pExpSeq) ·
∑

(qExpSeq).

The partial function exp from R to R is defined by:

(Def. 26) dom exp = R and for every real number d holds (exp)(d) =
∑

(dExpSeq).

Let us consider t1. The functor exp t1 yields an element of R and is defined

as follows:

(Def. 27) exp t1 = (exp)(t1).

We now state a number of propositions:

(51) domexp = R.

(52) For every element d of R holds (exp)(d) =
∑

(dExpSeq).

(53) For every t1 holds (exp)(t1) = ℜ(
∑

(t1 + 0iExpSeq)).

(54) exp t1 + 0i = exp t1 + 0i.

(55) exp p + q = exp p · exp q.

(56) exp 0 = 1.

(57) For every t1 such that t1 > 0 holds (exp)(t1) ­ 1.

(58) For every t1 such that t1 < 0 holds 0 < (exp)(t1) and (exp)(t1) ¬ 1.

(59) For every t1 holds (exp)(t1) > 0.

(60) For every t1 holds exp t1 > 0.
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4. Differential of Sinus, Cosine, and Exponential Function

Let z be an element of C. The functor z P dt yields a complex sequence and

is defined as follows:

(Def. 28) For every n holds z P dt(n) =
z

n+1

N

n+2!c .

Let z be an element of C. The functor z P t yielding a complex sequence is

defined by:

(Def. 29) For every n holds z P t(n) =
zn

N

n+2!c .

Next we state a number of propositions:

(61) For every z holds z P dt is absolutely summable.

(62) For every z holds z ·
∑

(z P dt) =
∑

(z ExpSeq)− 1C − z.

(63) For every p such that p > 0 there exists r such that r > 0 and for every

z such that |z| < r holds |
∑

(z P dt)| < p.

(64) For all z, z1 holds
∑

(z1 + z ExpSeq)−
∑

(z1 ExpSeq) =
∑

(z1 ExpSeq) ·

z + z ·
∑

(z P dt) ·
∑

(z1 ExpSeq).

(65) For all p, q holds (cos)(p + q) − (cos)(p) = −q · (sin)(p) − q · ℑ(
∑

(0 +

qiP dt) · ((cos)(p) + (sin)(p)i)).

(66) For all p, q holds (sin)(p + q) − (sin)(p) = q · (cos)(p) + q · ℜ(
∑

(0 +

qiP dt) · ((cos)(p) + (sin)(p)i)).

(67) For all p, q holds (exp)(p + q) − (exp)(p) = q · (exp)(p) + q · (exp)(p) ·

ℜ(
∑

(q + 0iP dt)).

(68) For every p holds cos is differentiable in p and (cos)′(p) = −(sin)(p).

(69) For every p holds sin is differentiable in p and (sin)′(p) = (cos)(p).

(70) For every p holds exp is differentiable in p and (exp)′(p) = (exp)(p).

(71) exp is differentiable on R and for every t1 such that t1 ∈ R holds

(exp)′(t1) = (exp)(t1).

(72) cos is differentiable on R and for every t1 such that t1 ∈ R holds

(cos)′(t1) = −(sin)(t1).

(73) sin is differentiable on R and for every t1 holds (sin)′(t1) = (cos)(t1).

(74) For every t1 such that t1 ∈ [0, 1] holds 0 < (cos)(t1) and (cos)(t1) ­
1
2 .

(75) [0, 1] ⊆ dom( sin
cos

) and ]0, 1[ ⊆ dom( sin
cos

).

(76) sin
cos
is continuous on [0, 1].

(77) For all t2, t3 such that t2 ∈ ]0, 1[ and t3 ∈ ]0, 1[ and ( sin
cos

)(t2) = ( sin
cos

)(t3)

holds t2 = t3.
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5. Existence of Circle Ratio

The element Pai of R is defined as follows:

(Def. 30) ( sin
cos

)(Pai4 ) = 1 and Pai ∈ ]0, 4[.

We now state the proposition

(78) (sin)(Pai4 ) = (cos)(Pai4 ).

6. Formulas of Sinus, Cosine

Next we state several propositions:

(79) (sin)(t2+t3) = (sin)(t2)·(cos)(t3)+(cos)(t2)·(sin)(t3) and (cos)(t2+t3) =

(cos)(t2) · (cos)(t3)− (sin)(t2) · (sin)(t3).

(80) sin t2 + t3 = sin t2 · cos t3 + cos t2 · sin t3 and cos t2 + t3 = cos t2 · cos t3 −

sin t2 · sin t3.

(81) (cos)(Pai2 ) = 0 and (sin)(Pai2 ) = 1 and (cos)(Pai) = −1 and (sin)(Pai) = 0

and (cos)(Pai+Pai2 ) = 0 and (sin)(Pai+Pai2 ) = −1 and (cos)(2 · Pai) = 1

and (sin)(2 · Pai) = 0.

(82) cos Pai2 = 0 and sin Pai2 = 1 and cosPai = −1 and sinPai = 0 and

cosPai+Pai2 = 0 and sinPai+Pai2 = −1 and cos 2 ·Pai = 1 and sin 2 ·Pai =

0.

(83)(i) (sin)(t1 + 2 · Pai) = (sin)(t1),

(ii) (cos)(t1 + 2 · Pai) = (cos)(t1),

(iii) (sin)(Pai2 − t1) = (cos)(t1),

(iv) (cos)(Pai2 − t1) = (sin)(t1),

(v) (sin)(Pai2 + t1) = (cos)(t1),

(vi) (cos)(Pai2 + t1) = −(sin)(t1),

(vii) (sin)(Pai+t1) = −(sin)(t1), and

(viii) (cos)(Pai+t1) = −(cos)(t1).

(84) sin t1 +2 ·Pai = sin t1 and cos t1 +2 ·Pai = cos t1 and sin
Pai
2 − t1 = cos t1

and cos Pai2 − t1 = sin t1 and sin
Pai
2 + t1 = cos t1 and cos

Pai
2 + t1 = −sin t1

and sinPai+t1 = −sin t1 and cosPai+t1 = −cos t1.

(85) For every t1 such that t1 ∈ ]0, Pai2 [ holds (cos)(t1) > 0.

(86) For every t1 such that t1 ∈ ]0, Pai2 [ holds cos t1 > 0.
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