A Theory of Partitions. Part I

Shunichi Kobayashi
Shinshu University
Nagano

Kui Jia
Shinshu University
Nagano

Abstract

Summary. In this paper, we define join and meet operations between partitions. The properties of these operations are proved. Then we introduce the correspondence between partitions and equivalence relations which preserve join and meet operations. The properties of these relationships are proved.

MML Identifier: PARTIT1.

The notation and terminology used in this paper have been introduced in the following articles: [9], [6], [5], [2], [3], [1], [10], [4], [8], and [7].

1. Preliminaries

For simplicity, we use the following convention: Y is a non empty set, P_{1}, P_{2} are partitions of Y, A, B are subsets of Y, i is a natural number, x, y, x_{1}, x_{2}, z_{0} are sets, and X, V, d, t, S_{1}, S_{2} are sets.

The following proposition is true
(1) If $X \in P_{1}$ and $V \in P_{1}$ and $X \subseteq V$, then $X=V$.

Let us consider S_{1}, S_{2}. We introduce $S_{1} \Subset S_{2}$ and $S_{2} \ni S_{1}$ as synonyms of S_{1} is finer than S_{2}.

We now state several propositions:
(2) For every partition P_{1} of Y holds $P_{1} \ni P_{1}$.
(3) $\bigcup\left(S_{1} \backslash\{\emptyset\}\right)=\bigcup S_{1}$.
(4) For all partitions P_{1}, P_{2} of Y such that $P_{1} \ni P_{2}$ and $P_{2} \ni P_{1}$ holds $P_{2} \subseteq P_{1}$.
(5) For all partitions P_{1}, P_{2} of Y such that $P_{1} \ni P_{2}$ and $P_{2} \ni P_{1}$ holds $P_{1}=P_{2}$.
(7) ${ }^{1}$ For all partitions P_{1}, P_{2} of Y such that $P_{1} \ni P_{2}$ holds P_{1} is coarser than P_{2}.
Let us consider Y, let P_{1} be a partition of Y, and let b be a set. We say that b is a dependent set of P_{1} if and only if:
(Def. 1) There exists a set B such that $B \subseteq P_{1}$ and $B \neq \emptyset$ and $b=\bigcup B$.
Let us consider Y, let P_{1}, P_{2} be partitions of Y, and let b be a set. We say that b is a minimal dependent set of P_{1} and P_{2} if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad b$ is a dependent set of P_{1} and a dependent set of P_{2}, and
(ii) for every set d such that $d \subseteq b$ and d is a dependent set of P_{1} and a dependent set of P_{2} holds $d=b$.
We now state several propositions:
(8) For all partitions P_{1}, P_{2} of Y such that $P_{1} \ni P_{2}$ and for every set b such that $b \in P_{1}$ holds b is a dependent set of P_{2}.
(9) For every partition P_{1} of Y holds Y is a dependent set of P_{1}.
(10) Let F be a family of subsets of Y. Suppose $\operatorname{Intersect}(F) \neq \emptyset$ and for every X such that $X \in F$ holds X is a dependent set of P_{1}. Then $\operatorname{Intersect}(F)$ is a dependent set of P_{1}.
(11) Let X_{0}, X_{1} be subsets of Y. Suppose X_{0} is a dependent set of P_{1} and X_{1} is a dependent set of P_{1} and X_{0} meets X_{1}. Then $X_{0} \cap X_{1}$ is a dependent set of P_{1}.
(12) For every subset X of Y such that X is a dependent set of P_{1} and $X \neq Y$ holds X^{c} is a dependent set of P_{1}.
(13) For every element y of Y there exists a subset X of Y such that $y \in X$ and X is a minimal dependent set of P_{1} and P_{2}.
(14) For every partition P of Y and for every element y of Y there exists a subset A of Y such that $y \in A$ and $A \in P$.
Let Y be a non empty set. One can verify that every partition of Y is non empty.

Let Y be a set. The functor PARTITIONS (Y) is defined by:
(Def. 3) For every set x holds $x \in \operatorname{PARTITIONS}(Y)$ iff x is a partition of Y.
Let Y be a set. One can check that PARTITIONS (Y) is non empty.

2. Join and Meet Operation Between Partitions

Let us consider Y and let P_{1}, P_{2} be partitions of Y. The functor $P_{1} \wedge P_{2}$ yielding a partition of Y is defined by:

[^0](Def. 4) $\quad P_{1} \wedge P_{2}=P_{1} \cap P_{2} \backslash\{\emptyset\}$.
Let us observe that the functor $P_{1} \wedge P_{2}$ is commutative.
One can prove the following propositions:
(15) For every partition P_{1} of Y holds $P_{1} \wedge P_{1}=P_{1}$.
(16) For all partitions P_{1}, P_{2}, P_{3} of Y holds $P_{1} \wedge P_{2} \wedge P_{3}=P_{1} \wedge P_{2} \wedge P_{3}$.
(17) For all partitions P_{1}, P_{2} of Y holds $P_{1} \ni P_{1} \wedge P_{2}$.
(18) For all partitions P_{1}, P_{2}, P_{3} of Y such that $P_{1} \ni P_{2}$ and $P_{2} \ni P_{3}$ holds $P_{1} \supseteq P_{3}$.
Let us consider Y and let P_{1}, P_{2} be partitions of Y. The functor $P_{1} \vee P_{2}$ yielding a partition of Y is defined by:
(Def. 5) For every d holds $d \in P_{1} \vee P_{2}$ iff d is a minimal dependent set of P_{1} and P_{2}.
Let us observe that the functor $P_{1} \vee P_{2}$ is commutative.
One can prove the following propositions:
(19) For all partitions P_{1}, P_{2} of Y holds $P_{1} \Subset P_{1} \vee P_{2}$.
(20) For every partition P_{1} of Y holds $P_{1} \vee P_{1}=P_{1}$.
(21) For all partitions P_{1}, P_{3} of Y such that $P_{1} \Subset P_{3}$ and $x \in P_{3}$ and $z_{0} \in P_{1}$ and $t \in x$ and $t \in z_{0}$ holds $z_{0} \subseteq x$.
(22) For all partitions P_{1}, P_{2} of Y such that $x \in P_{1} \vee P_{2}$ and $z_{0} \in P_{1}$ and $t \in x$ and $t \in z_{0}$ holds $z_{0} \subseteq x$.

3. Partitions and Equivalence Relations

We now state the proposition
(23) Let P_{1} be a partition of Y. Then there exists an equivalence relation R_{1} of Y such that for all x, y holds $\langle x, y\rangle \in R_{1}$ if and only if the following conditions are satisfied:
(i) $x \in Y$,
(ii) $y \in Y$, and
(iii) there exists A such that $A \in P_{1}$ and $x \in A$ and $y \in A$.

Let us consider Y. The functor $\operatorname{Rel}(Y)$ yields a function and is defined by the conditions (Def. 6).
(Def. 6)(i) dom $\operatorname{Rel}(Y)=\operatorname{PARTITIONS}(Y)$, and
(ii) for every x such that $x \in \operatorname{PARTITIONS}(Y)$ there exists an equivalence relation R_{1} of Y such that $(\operatorname{Rel}(Y))(x)=R_{1}$ and for all sets x_{1}, x_{2} holds $\left\langle x_{1}, x_{2}\right\rangle \in R_{1}$ iff $x_{1} \in Y$ and $x_{2} \in Y$ and there exists A such that $A \in x$ and $x_{1} \in A$ and $x_{2} \in A$.

Let Y be a non empty set and let P_{1} be a partition of Y. The functor $\equiv{ }_{\left(P_{1}\right)}$ yielding an equivalence relation of Y is defined as follows:
$($ Def. 7$) \quad \equiv{ }_{\left(P_{1}\right)}=(\operatorname{Rel}(Y))\left(P_{1}\right)$.
The following propositions are true:
(24) For all partitions P_{1}, P_{2} of Y holds $P_{1} \Subset P_{2}$ iff $\equiv_{\left(P_{1}\right)} \subseteq \equiv_{\left(P_{2}\right)}$.
(25) Let P_{1}, P_{2} be partitions of Y, p_{0}, x, y be sets, and f be a finite sequence of elements of Y. Suppose that
(i) $p_{0} \subseteq Y$,
(ii) $x \in p_{0}$,
(iii) $f(1)=x$,
(iv) $f(\operatorname{len} f)=y$,
(v) $1 \leqslant \operatorname{len} f$
(vi) for every i such that $1 \leqslant i$ and $i<\operatorname{len} f$ there exist sets p_{2}, p_{3}, u such that $p_{2} \in P_{1}$ and $p_{3} \in P_{2}$ and $f(i) \in p_{2}$ and $u \in p_{2}$ and $u \in p_{3}$ and $f(i+1) \in p_{3}$, and
(vii) $\quad p_{0}$ is a dependent set of P_{1} and a dependent set of P_{2}. Then $y \in p_{0}$.
(26) Let R_{2}, R_{3} be equivalence relations of Y, f be a finite sequence of elements of Y, and x, y be sets. Suppose that
(i) $x \in Y$,
(ii) $y \in Y$,
(iii) $f(1)=x$,
(iv) $f(\operatorname{len} f)=y$,
(v) $1 \leqslant \operatorname{len} f$, and
(vi) for every i such that $1 \leqslant i$ and $i<\operatorname{len} f$ there exists a set u such that $u \in Y$ and $\langle f(i), u\rangle \in R_{2} \cup R_{3}$ and $\langle u, f(i+1)\rangle \in R_{2} \cup R_{3}$.
Then $\langle x, y\rangle \in R_{2} \sqcup R_{3}$.
(27) For all partitions P_{1}, P_{2} of Y holds $\equiv_{P_{1} \vee P_{2}}=\equiv_{\left(P_{1}\right)} \sqcup \equiv{ }_{\left(P_{2}\right)}$.
(28) For all partitions P_{1}, P_{2} of Y holds $\equiv_{P_{1} \wedge P_{2}}=\equiv_{\left(P_{1}\right)} \cap \equiv_{\left(P_{2}\right)}$.
(29) For all partitions P_{1}, P_{2} of Y such that $\equiv_{\left(P_{1}\right)}=\equiv_{\left(P_{2}\right)}$ holds $P_{1}=P_{2}$.
(30) For all partitions P_{1}, P_{2}, P_{3} of Y holds $P_{1} \vee P_{2} \vee P_{3}=P_{1} \vee P_{2} \vee P_{3}$.
(31) For all partitions P_{1}, P_{2} of Y holds $P_{1} \wedge P_{1} \vee P_{2}=P_{1}$.
(32) For all partitions P_{1}, P_{2} of Y holds $P_{1} \vee P_{1} \wedge P_{2}=P_{1}$.
(33) For all partitions P_{1}, P_{2}, P_{3} of Y such that $P_{1} \Subset P_{3}$ and $P_{2} \Subset P_{3}$ holds $P_{1} \vee P_{2} \Subset P_{3}$.
(34) For all partitions P_{1}, P_{2}, P_{3} of Y such that $P_{1} \ni P_{3}$ and $P_{2} \supseteq P_{3}$ holds $P_{1} \wedge P_{2} \ni P_{3}$.
Let us consider Y. The functor $\mathcal{I}(Y)$ yielding a partition of Y is defined as follows:
(Def. 8) $\mathcal{I}(Y)=\operatorname{SmallestPartition}(Y)$.

Let us consider Y. The functor $\mathcal{O}(Y)$ yielding a partition of Y is defined by: (Def. 9) $\mathcal{O}(Y)=\{Y\}$.

The following propositions are true:
(35) $\mathcal{I}(Y)=\left\{B: \bigvee_{x: \text { set }}(B=\{x\} \wedge x \in Y)\right\}$.
(36) For every partition P_{1} of Y holds $\mathcal{O}(Y) \ni P_{1}$ and $P_{1} \ni \mathcal{I}(Y)$.
(37) $\equiv_{\mathcal{O}(Y)}=\nabla_{Y}$.
(38) $\equiv_{\mathcal{I}(Y)}=\triangle_{Y}$.
(39) $\mathcal{I}(Y) \Subset \mathcal{O}(Y)$.
(40) For every partition P_{1} of Y holds $\mathcal{O}(Y) \vee P_{1}=\mathcal{O}(Y)$ and $\mathcal{O}(Y) \wedge P_{1}=P_{1}$.
(41) For every partition P_{1} of Y holds $\mathcal{I}(Y) \vee P_{1}=P_{1}$ and $\mathcal{I}(Y) \wedge P_{1}=\mathcal{I}(Y)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[6] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, $5(2): 233-236,1996$.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[9] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[10] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ The proposition (6) has been removed.

