Graph Theoretical Properties of Arcs in the Plane and Fashoda Meet Theorem

Yatsuka Nakamura
Shinshu University
Nagano

Summary. We define a graph on an abstract set, edges of which are pairs of any two elements. For any finite sequence of a plane, we give a definition of nodic, which means that edges by a finite sequence are crossed only at terminals. If the first point and the last point of a finite sequence differs, simpleness as a chain and nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard Theorem, proved by us before, to a continuous case. We call this Fashoda Meet Theorem, which was taken from Fashoda incident of 100 years ago.

MML Identifier: JGRAPH_1.

The articles [23], [21], [27], [8], [10], [2], [25], [5], [6], [17], [16], [20], [14], [18], [19], [15], [1], [4], [22], [7], [13], [28], [24], [26], [11], [12], [9], and [3] provide the terminology and notation for this paper.

1. A Graph by Cartesian Product

For simplicity, we adopt the following convention: G denotes a graph, v_{1} denotes a finite sequence of elements of the vertices of G, I_{1} denotes an oriented chain of G, n, m, k, i, j denote natural numbers, and r, r_{1}, r_{2} denote real numbers.

Next we state four propositions:
(1) $\frac{0}{r}=0$.
(2) $\sqrt{r_{1}^{2}+r_{2}^{2}} \leqslant\left|r_{1}\right|+\left|r_{2}\right|$.
(3) $\left|r_{1}\right| \leqslant \sqrt{r_{1}^{2}+r_{2}^{2}}$ and $\left|r_{2}\right| \leqslant \sqrt{r_{1}^{2}+r_{2}^{2}}$.
(4) Let given v_{1}. Suppose I_{1} is Simple and v_{1} is oriented vertex seq of I_{1}. Let given n, m. If $1 \leqslant n$ and $n<m$ and $m \leqslant \operatorname{len} v_{1}$ and $v_{1}(n)=v_{1}(m)$, then $n=1$ and $m=\operatorname{len} v_{1}$.
Let X be a set. The functor PGraph X yields a multi graph structure and is defined by:
(Def. 1) \quad PGraph $X=\left\langle X,: X, X: 1, \pi_{1}(X \times X), \pi_{2}(X \times X)\right\rangle$.
We now state two propositions:
(5) For every non empty set X holds PGraph X is a graph.
(6) For every non empty set X holds the vertices of PGraph $X=X$.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is defined by:
(Def. 2) len PairF $f=\operatorname{len} f-^{\prime} 1$ and for every natural number i such that $1 \leqslant i$ and $i<\operatorname{len} f$ holds $(\operatorname{PairF} f)(i)=\langle f(i), f(i+1)\rangle$.
In the sequel X is a non empty set.
Let X be a non empty set. Then PGraph X is a graph.
The following propositions are true:
(7) Every finite sequence of elements of X is a finite sequence of elements of the vertices of PGraph X.
(8) For every finite sequence f of elements of X holds $\operatorname{PairF} f$ is a finite sequence of elements of the edges of PGraph X.
Let X be a non empty set and let f be a finite sequence of elements of X. Then PairF f is a finite sequence of elements of the edges of PGraph X.

We now state two propositions:
(9) Let n be a natural number and f be a finite sequence of elements of X. If $1 \leqslant n$ and $n \leqslant \operatorname{len} \operatorname{PairF} f$, then $(\operatorname{PairF} f)(n) \in$ the edges of PGraph X.
(10) For every finite sequence f of elements of X holds PairF f is an oriented chain of PGraph X.
Let X be a non empty set and let f be a finite sequence of elements of X. Then PairF f is an oriented chain of PGraph X.

The following proposition is true
(11) Let f be a finite sequence of elements of X and f_{1} be a finite sequence of elements of the vertices of $\operatorname{PGraph} X$. If len $f \geqslant 1$ and $f=f_{1}$, then f_{1} is oriented vertex seq of PairF f.

2. Shortcuts of Finite Sequences in Plane

Let X be a non empty set and let f, g be finite sequences of elements of X. We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) $\quad f(1)=g(1)$,
(ii) $f(\operatorname{len} f)=g(\operatorname{len} g)$, and
(iii) there exists a FinSubsequence f_{2} of PairF f and there exists a FinSubsequence f_{3} of f and there exists an oriented simple chain s_{1} of PGraph X and there exists a finite sequence g_{1} of elements of the vertices of PGraph X such that $\operatorname{Seq} f_{2}=s_{1}$ and $\operatorname{Seq} f_{3}=g$ and $g_{1}=g$ and g_{1} is oriented vertex seq of s_{1}.
We now state four propositions:
(12) For all finite sequences f, g of elements of X such that g is Shortcut of f holds $1 \leqslant \operatorname{len} g$ and len $g \leqslant \operatorname{len} f$.
(13) Let f be a finite sequence of elements of X. Suppose len $f \geqslant 1$. Then there exists a finite sequence g of elements of X such that g is Shortcut of f.
(14) For all finite sequences f, g of elements of X such that g is Shortcut of f holds rng PairF $g \subseteq \operatorname{rng}$ PairF f.
(15) Let f, g be finite sequences of elements of X. Suppose $f(1) \neq f(\operatorname{len} f)$ and g is Shortcut of f. Then g is one-to-one and rng PairF $g \subseteq \operatorname{rng} \operatorname{PairF} f$ and $g(1)=f(1)$ and $g(\operatorname{len} g)=f(\operatorname{len} f)$.
Let us consider n and let I_{1} be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that I_{1} is nodic if and only if the condition (Def. 4) is satisfied.
(Def. 4) Let given i, j. Suppose $\mathcal{L}\left(I_{1}, i\right) \cap \mathcal{L}\left(I_{1}, j\right) \neq \emptyset$. Then $\mathcal{L}\left(I_{1}, i\right) \cap \mathcal{L}\left(I_{1}, j\right)=$ $\left\{I_{1}(i)\right\}$ but $I_{1}(i)=I_{1}(j)$ or $I_{1}(i)=I_{1}(j+1)$ or $\mathcal{L}\left(I_{1}, i\right) \cap \mathcal{L}\left(I_{1}, j\right)=$ $\left\{I_{1}(i+1)\right\}$ but $I_{1}(i+1)=I_{1}(j)$ or $I_{1}(i+1)=I_{1}(j+1)$ or $\mathcal{L}\left(I_{1}, i\right)=\mathcal{L}\left(I_{1}, j\right)$.
One can prove the following propositions:
(16) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is s.n.c. holds f is s.c.c..
(17) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is s.c.c. and $\mathcal{L}(f, 1) \cap \mathcal{L}\left(f\right.$, len $\left.f-^{\prime} 1\right)=\emptyset$ holds f is s.n.c..
(18) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is nodic and PairF f is Simple holds f is s.c.c..
(19) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that f is nodic and PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$ holds f is s.n.c..
(20) For all points p_{1}, p_{2}, p_{3} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that there exists a set x such that $x \neq p_{2}$ and $x \in \mathcal{L}\left(p_{1}, p_{2}\right) \cap \mathcal{L}\left(p_{2}, p_{3}\right)$ holds $p_{1} \in \mathcal{L}\left(p_{2}, p_{3}\right)$ or $p_{3} \in \mathcal{L}\left(p_{1}, p_{2}\right)$.
(21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is s.n.c. and $\mathcal{L}(f, 1) \cap \mathcal{L}(f, 1+1) \subseteq\left\{\pi_{1+1} f\right\}$ and $\mathcal{L}\left(f\right.$, len $\left.f-^{\prime} 2\right) \cap \mathcal{L}\left(f\right.$, len $\left.f-^{\prime} 1\right) \subseteq$ $\left\{\pi_{\operatorname{len} f-^{\prime} 1} f\right\}$. Then f is unfolded.
(22) For every finite sequence f of elements of X such that PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$ holds f is one-to-one and len $f \neq 1$.
(23) For every finite sequence f of elements of X such that f is one-to-one and len $f>1$ holds PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$.
(24) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is nodic and PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$, then f is unfolded.
(25) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and given i. Suppose g is Shortcut of f and $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} g$. Then there exists a natural number k_{1} such that $1 \leqslant k_{1}$ and $k_{1}+1 \leqslant \operatorname{len} f$ and $\pi_{k_{1}} f=\pi_{i} g$ and $\pi_{k_{1}+1} f=\pi_{i+1} g$ and $f\left(k_{1}\right)=g(i)$ and $f\left(k_{1}+1\right)=g(i+1)$.
(26) For all finite sequences f, g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that g is Shortcut of f holds $\operatorname{rng} g \subseteq \operatorname{rng} f$.
(27) For all finite sequences f, g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that g is Shortcut of f holds $\widetilde{\mathcal{L}}(g) \subseteq \widetilde{\mathcal{L}}(f)$.
(28) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is special and g is Shortcut of f, then g is special.
(29) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose f is special and $2 \leqslant \operatorname{len} f$ and $f(1) \neq f(\operatorname{len} f)$. Then there exists a finite sequence g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $2 \leqslant \operatorname{len} g$ and g is special and one-to-one and $\widetilde{\mathcal{L}}(g) \subseteq \widetilde{\mathcal{L}}(f)$ and $f(1)=g(1)$ and $f(\operatorname{len} f)=g(\operatorname{len} g)$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$.
(30) Let f_{1}, f_{4} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) f_{1} is special,
(ii) f_{4} is special,
(iii) $2 \leqslant \operatorname{len} f_{1}$,
(iv) $2 \leqslant \operatorname{len} f_{4}$,
(v) $\quad f_{1}(1) \neq f_{1}\left(\operatorname{len} f_{1}\right)$,
(vi) $\quad f_{4}(1) \neq f_{4}\left(\operatorname{len} f_{4}\right)$,
(vii) $\quad \mathbf{X}$-coordinate $\left(f_{1}\right)$ lies between $\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and (X-coordinate $\left.\left(f_{1}\right)\right)\left(\operatorname{len} f_{1}\right)$,
(viii) \mathbf{X}-coordinate $\left(f_{4}\right)$ lies between $\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)(1)$ and $\left(\mathbf{X}\right.$-coordinate $\left.\left(f_{1}\right)\right)\left(\operatorname{len} f_{1}\right)$,
(ix) $\quad \mathbf{Y}$-coordinate $\left(f_{1}\right)$ lies between $\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{4}\right)\right)(1)$ and (Y-coordinate $\left.\left(f_{4}\right)\right)\left(\right.$ len $\left.f_{4}\right)$, and
(x) $\quad \mathbf{Y}$-coordinate $\left(f_{4}\right)$ lies between $\left(\mathbf{Y}\right.$-coordinate $\left.\left(f_{4}\right)\right)(1)$ and (Y-coordinate $\left.\left(f_{4}\right)\right)\left(\operatorname{len} f_{4}\right)$.
Then $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{4}\right) \neq \emptyset$.

3. Norm of Points in $\mathcal{E}_{\text {T }}^{n}$

The following proposition is true
(31) For all real numbers a, b, r_{1}, r_{2} such that $a \leqslant r_{1}$ and $r_{1} \leqslant b$ and $a \leqslant r_{2}$ and $r_{2} \leqslant b$ holds $\left|r_{1}-r_{2}\right| \leqslant b-a$.
Let us consider n and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $|p|$ yields a real number and is defined by:
(Def. 5) For every element w of \mathcal{R}^{n} such that $p=w$ holds $|p|=|w|$.
In the sequel p, p_{1}, p_{2} are points of $\mathcal{E}_{\mathrm{T}}^{n}$.
We now state a number of propositions:
(32) $\left|0_{\mathcal{E}_{\mathrm{T}}^{n}}\right|=0$.
(33) If $|p|=0$, then $p=0_{\mathcal{E}_{T}^{n}}$.
(34) $|p| \geqslant 0$.
(35) $|-p|=|p|$.
(36) $|r \cdot p|=|r| \cdot|p|$.
(37) $\left|p_{1}+p_{2}\right| \leqslant\left|p_{1}\right|+\left|p_{2}\right|$.
(38) $\left|p_{1}-p_{2}\right| \leqslant\left|p_{1}\right|+\left|p_{2}\right|$.
(39) $\left|p_{1}\right|-\left|p_{2}\right| \leqslant\left|p_{1}+p_{2}\right|$.
(40) $\left|p_{1}\right|-\left|p_{2}\right| \leqslant\left|p_{1}-p_{2}\right|$.
(41) $\left|p_{1}-p_{2}\right|=0$ iff $p_{1}=p_{2}$.
(42) If $p_{1} \neq p_{2}$, then $\left|p_{1}-p_{2}\right|>0$.
(43) $\left|p_{1}-p_{2}\right|=\left|p_{2}-p_{1}\right|$.
(44) $\left|p_{1}-p_{2}\right| \leqslant\left|p_{1}-p\right|+\left|p-p_{2}\right|$.
(45) For all points x_{1}, x_{2} of \mathcal{E}^{n} such that $x_{1}=p_{1}$ and $x_{2}=p_{2}$ holds $\left|p_{1}-p_{2}\right|=$ $\rho\left(x_{1}, x_{2}\right)$.
(46) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|p|^{2}=\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}$.
(47) For every point p of \mathcal{E}_{T}^{2} holds $|p|=\sqrt{\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}}$.
(48) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $|p| \leqslant\left|p_{\mathbf{1}}\right|+\left|p_{\mathbf{2}}\right|$.
(49) For all points p_{1}, p_{2} of $\mathcal{E}_{\text {T }}^{2}$ holds $\left|p_{1}-p_{2}\right| \leqslant\left|\left(p_{1}\right)_{\mathbf{1}}-\left(p_{2}\right)_{\mathbf{1}}\right|+\left|\left(p_{1}\right)_{\mathbf{2}}-\left(p_{2}\right)_{\mathbf{2}}\right|$.
(50) For every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\left|p_{1}\right| \leqslant|p|$ and $\left|p_{2}\right| \leqslant|p|$.
(51) For all points p_{1}, p_{2} of $\mathcal{E}_{\text {T }}^{2}$ holds $\left|\left(p_{1}\right)_{\mathbf{1}}-\left(p_{2}\right)_{\mathbf{1}}\right| \leqslant\left|p_{1}-p_{2}\right|$ and $\mid\left(p_{1}\right)_{\mathbf{2}}-$ $\left(p_{2}\right)_{\mathbf{2}}\left|\leqslant\left|p_{1}-p_{2}\right|\right.$.
(52) If $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$, then there exists r such that $0 \leqslant r$ and $r \leqslant 1$ and $p=(1-r) \cdot p_{1}+r \cdot p_{2}$.
(53) If $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$, then $\left|p-p_{1}\right| \leqslant\left|p_{1}-p_{2}\right|$ and $\left|p-p_{2}\right| \leqslant\left|p_{1}-p_{2}\right|$.

4. Extended Goboard Theorem and Fashoda Meet Theorem

In the sequel M denotes a metric space.
Next we state several propositions:
(54) For all subsets P, Q of $M_{\text {top }}$ such that $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact holds $\operatorname{dist}_{\min }^{\min }(P, Q) \geqslant 0$.
(55) Let P, Q be subsets of M_{top}. Suppose $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact. Then $P \cap Q=\emptyset$ if and only if $\operatorname{dist}_{\min }^{\min }(P, Q)>0$.
(56) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, c, d be real numbers. Suppose that
(i) $1 \leqslant \operatorname{len} f$,
(ii) X-coordinate (f) lies between (\mathbf{X}-coordinate $(f))(1)$ and (X-coordinate $(f))(\operatorname{len} f)$,
(iii) Y-coordinate (f) lies between c and d,
(iv) $a>0$, and
(v) for every i such that $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} f$ holds $\left|\pi_{i} f-\pi_{i+1} f\right|<a$.

Then there exists a finite sequence g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
(vi) g is special,
(vii) $g(1)=f(1)$,
(viii) $g(\operatorname{len} g)=f(\operatorname{len} f)$,
(ix) $\operatorname{len} g \geqslant \operatorname{len} f$,
(x) X-coordinate (g) lies between (X-coordinate $(f))(1)$ and (X-coordinate $(f))(\operatorname{len} f)$,
(xi) Y-coordinate (g) lies between c and d,
(xii) for every j such that $j \in \operatorname{dom} g$ there exists k such that $k \in \operatorname{dom} f$ and $\left|\pi_{j} g-\pi_{k} f\right|<a$, and
(xiii) for every j such that $1 \leqslant j$ and $j+1 \leqslant \operatorname{len} g$ holds $\left|\pi_{j} g-\pi_{j+1} g\right|<a$.
(57) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, c, d be real numbers. Suppose that
(i) $1 \leqslant \operatorname{len} f$,
(ii) $\quad \mathbf{Y}$-coordinate (f) lies between $(\mathbf{Y}$-coordinate $(f))(1)$ and (\mathbf{Y}-coordinate (f))(len f),
(iii) \mathbf{X}-coordinate (f) lies between c and d,
(iv) $a>0$, and
(v) for every i such that $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} f$ holds $\left|\pi_{i} f-\pi_{i+1} f\right|<a$. Then there exists a finite sequence g of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that
(vi) g is special,
(vii) $g(1)=f(1)$,
(viii) $\quad g(\operatorname{len} g)=f(\operatorname{len} f)$,
(ix) $\quad \operatorname{len} g \geqslant \operatorname{len} f$,
(x) $\quad \mathbf{Y}$-coordinate (g) lies between (\mathbf{Y}-coordinate $(f))(1)$ and (Y-coordinate (f))(len f),
(xi) X-coordinate (g) lies between c and d,
(xii) for every j such that $j \in \operatorname{dom} g$ there exists k such that $k \in \operatorname{dom} f$ and $\left|\pi_{j} g-\pi_{k} f\right|<a$, and
(xiii) for every j such that $1 \leqslant j$ and $j+1 \leqslant \operatorname{len} g$ holds $\left|\pi_{j} g-\pi_{j+1} g\right|<a$.
(58) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and for all points p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P is an arc from p_{1} to p_{2} holds $p_{1} \neq p_{2}$.
(59) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $1 \leqslant \operatorname{len} f$ holds len \mathbf{X}-coordinate $(f)=\operatorname{len} f$ and $(\mathbf{X}$-coordinate $(f))(1)=\left(\pi_{1} f\right)_{\mathbf{1}}$ and $(\mathbf{X}$-coordinate $(f))(\operatorname{len} f)=\left(\pi_{\operatorname{len} f} f\right)_{\mathbf{1}}$.
(60) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $1 \leqslant \operatorname{len} f$ holds len \mathbf{Y}-coordinate $(f)=\operatorname{len} f$ and $(\mathbf{Y}$-coordinate $(f))(1)=\left(\pi_{1} f\right)_{\mathbf{2}}$ and $(\mathbf{Y}$-coordinate $(f))(\operatorname{len} f)=\left(\pi_{\operatorname{len} f} f\right)_{\mathbf{2}}$.
(61) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every i such that $i \in$ $\operatorname{dom} f$ holds $(\mathbf{X}$-coordinate $(f))(i)=\left(\pi_{i} f\right)_{\mathbf{1}}$ and $(\mathbf{Y}$-coordinate $(f))(i)=$ $\left(\pi_{i} f\right)_{2}$.
(62) Let P, Q be non empty subsets of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$ and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) P is an arc from p_{1} to p_{2},
(ii) Q is an arc from q_{1} to q_{2},
(iii) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in P$ holds $\left(p_{1}\right)_{\mathbf{1}} \leqslant p_{\mathbf{1}}$ and $p_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$,
(iv) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in Q$ holds $\left(p_{1}\right)_{\mathbf{1}} \leqslant p_{\mathbf{1}}$ and $p_{\mathbf{1}} \leqslant\left(p_{2}\right)_{\mathbf{1}}$,
(v) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in P$ holds $\left(q_{1}\right)_{\mathbf{2}} \leqslant p_{\mathbf{2}}$ and $p_{\mathbf{2}} \leqslant\left(q_{2}\right)_{\mathbf{2}}$, and
(vi) for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in Q$ holds $\left(q_{1}\right)_{\mathbf{2}} \leqslant p_{\mathbf{2}}$ and $p_{\mathbf{2}} \leqslant\left(q_{2}\right)_{\mathbf{2}}$. Then $P \cap Q \neq \emptyset$.
In the sequel X, Y are non empty topological spaces.
We now state three propositions:
(63) Let f be a map from X into Y, P be a non empty subset of the carrier of Y, and f_{1} be a map from X into $Y \upharpoonright P$. If $f=f_{1}$ and f is continuous, then f_{1} is continuous.
(64) Let f be a map from X into Y and P be a non empty subset of the carrier of Y. Suppose X is compact and Y is a T_{2} space and f is continuous and one-to-one and $P=\operatorname{rng} f$. Then there exists a map f_{1} from X into $Y \upharpoonright P$ such that $f=f_{1}$ and f_{1} is a homeomorphism.
(65) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and O, I be points of I. Suppose that
(i) $O=0$,
(ii) $\quad I=1$,
(iii) f is continuous and one-to-one,
(iv) g is continuous and one-to-one,
(v) $f(O)_{\mathbf{1}}=a$,
(vi) $f(I)_{\mathbf{1}}=b$,
(vii) $g(O)_{\mathbf{2}}=c$,
(viii) $g(I)_{\mathbf{2}}=d$, and
(ix) for every point r of \mathbb{I} holds $a \leqslant f(r)_{\mathbf{1}}$ and $f(r)_{\mathbf{1}} \leqslant b$ and $a \leqslant g(r)_{\mathbf{1}}$ and $g(r)_{\mathbf{1}} \leqslant b$ and $c \leqslant f(r)_{\mathbf{2}}$ and $f(r)_{\mathbf{2}} \leqslant d$ and $c \leqslant g(r)_{\mathbf{2}}$ and $g(r)_{\mathbf{2}} \leqslant d$. Then rng $f \cap \operatorname{rng} g \neq \emptyset$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353-359, 1996.
[4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[16] Jarosław Kotowicz and Yatsuka Nakamura. Go-board theorem. Formalized Mathematics, 3(1):125-129, 1992.
[17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[18] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[19] Yatsuka Nakamura and Piotr Rudnicki. Oriented chains. Formalized Mathematics, 7(2):189-192, 1998.
[20] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[21] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 21, 1998

