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Summary. We define a graph on an abstract set, edges of which are pairs of
any two elements. For any finite sequence of a plane, we give a definition of nodic,
which means that edges by a finite sequence are crossed only at terminals. If the
first point and the last point of a finite sequence differs, simpleness as a chain and
nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard
Theorem, proved by us before, to a continuous case. We call this Fashoda Meet
Theorem, which was taken from Fashoda incident of 100 years ago.

MML Identifier: JGRAPH_1.

The articles [23], [21], [27], [8], [10], [2], [25], [5], [6], [17], [16], [20], [14], [18],
[19], [15], [1], [4], [22], [7], [13], [28], [24], [26], [11], [12], [9], and [3] provide the
terminology and notation for this paper.

1. A GrRAPH BY CARTESIAN PrRODUCT

For simplicity, we adopt the following convention: G denotes a graph, v
denotes a finite sequence of elements of the vertices of G, I; denotes an oriented
chain of G, n, m, k, i, j denote natural numbers, and r, 71, ro denote real

numbers.
Next we state four propositions:
M t=o

(2) VrZHr? < il + .
(3) |ril < VriZ + 192 and |ro| < V2 + o2
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(4) Let given v;. Suppose I is Simple and v; is oriented vertex seq of I.
Let given n, m. If 1 < n and n < m and m < lenv; and vi(n) = vi(m),
then n =1 and m = lenwv;.

Let X be a set. The functor PGraph X yields a multi graph structure and
is defined by:
(Def. 1) PGraph X = (X, [ X, X |, m (X x X), m(X x X)).
We now state two propositions:
(5) For every non empty set X holds PGraph X is a graph.
(6) For every non empty set X holds the vertices of PGraph X = X.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is
defined by:
(Def. 2) lenPairF f =len f —' 1 and for every natural number i such that 1 <
and ¢ < len f holds (PairF f)(¢) = (f(4), f(i + 1)).
In the sequel X is a non empty set.
Let X be a non empty set. Then PGraph X is a graph.
The following propositions are true:
(7) Every finite sequence of elements of X is a finite sequence of elements of
the vertices of PGraph X.
(8) For every finite sequence f of elements of X holds PairF f is a finite
sequence of elements of the edges of PGraph X.
Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is a finite sequence of elements of the edges of PGraph X.
We now state two propositions:

(9) Let n be a natural number and f be a finite sequence of elements of X.
If 1 <n and n < lenPairF f, then (PairF f)(n) € the edges of PGraph X.

(10) For every finite sequence f of elements of X holds PairF f is an oriented
chain of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X.
Then PairF f is an oriented chain of PGraph X.
The following proposition is true

(11) Let f be a finite sequence of elements of X and f; be a finite sequence
of elements of the vertices of PGraph X. If len f > 1 and f = fi, then f;
is oriented vertex seq of PairF f.

2. SHORTCUTS OF FINITE SEQUENCES IN PLANE

Let X be a non empty set and let f, g be finite sequences of elements of X.
We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.
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(Def. 3)(3)  f(1) = g(2),
(i)  f(len f) = g(leng), and
(iii)  there exists a FinSubsequence f2 of PairF f and there exists a FinSub-
sequence f3 of f and there exists an oriented simple chain s; of PGraph X
and there exists a finite sequence g; of elements of the vertices of PGraph X
such that Seq fo = s1 and Seq f3 = g and g1 = g and ¢; is oriented vertex
seq of s7.
We now state four propositions:
(12) For all finite sequences f, g of elements of X such that g is Shortcut of
f holds 1 <leng and leng < len f.
(13) Let f be a finite sequence of elements of X. Suppose len f > 1. Then
there exists a finite sequence g of elements of X such that g is Shortcut of
I
(14) For all finite sequences f, g of elements of X such that g is Shortcut of
f holds rng PairF g C rng PairF f.
(15) Let f, g be finite sequences of elements of X. Suppose f(1) # f(len f)
and g is Shortcut of f. Then g is one-to-one and rng PairF g C rng PairF f
and ¢g(1) = f(1) and g(leng) = f(len f).
Let us consider n and let I; be a finite sequence of elements of £F. We say
that I; is nodic if and only if the condition (Def. 4) is satisfied.

(Def. 4)  Let given 4, j. Suppose L(I1,7) N L(I1,7) # 0. Then L(I1,1) N L(I1,]) =
{h(i)} but [1(i) = Li(j) or L1(2) = L(j+ 1) or L(I1,4) N L(L,]) =
{51(i+1)} but I (i+1) = L1(j) or I (i+1) = L1(j+1) or L(I1,1) = L(I1, ).

One can prove the following propositions:

(16) For every finite sequence f of elements of £2 such that f is s.n.c. holds
f is s.c.c..

(17) For every finite sequence f of elements of 5% such that f is s.c.c. and
L(f,1)NL(flenf—"1) =0 holds f is s.n.c..

(18) For every finite sequence f of elements of £% such that f is nodic and
PairF f is Simple holds f is s.c.c..

(19) For every finite sequence f of elements of £% such that f is nodic and
PairF f is Simple and f(1) # f(len f) holds f is s.n.c..

(20) For all points p1, p2, p3 of £ such that there exists a set x such that
x # p2 and x € L(p1,p2) N L(p2,p3) holds p1 € L(p2,p3) or p3 € L(p1,p2).

(21) Let f be a finite sequence of elements of E%. Suppose f is s.n.c. and
LL)NL(f,14+1) C {msf} and L(f,lenf =" 2) N L(f,len f —' 1) C
{Tlen f—1f}. Then f is unfolded.

(22) For every finite sequence f of elements of X such that PairF f is Simple
and f(1) # f(len f) holds f is one-to-one and len f # 1.
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(23) For every finite sequence f of elements of X such that f is one-to-one
and len f > 1 holds PairF f is Simple and f(1) # f(len f).

(24) Let f be a finite sequence of elements of £%. If f is nodic and PairF f is
Simple and f(1) # f(len f), then f is unfolded.

(25) Let f, g be finite sequences of elements of 5% and given ¢. Suppose g is
Shortcut of f and 1 < ¢ and i + 1 < leng. Then there exists a natural
number k; such that 1 < k; and k1 + 1 < len f and 7, f = mig and
Ty +1f = mit1g and f(k1) = g(i) and f(k1 + 1) = g(i + 1).

(26) For all finite sequences f, g of elements of £2 such that g is Shortcut of
f holds rng g C rng f.

(27) For all finite sequences f, g of elements of E2 such that g is Shortcut of
f holds L(g) < L(f).

(28) Let f, g be finite sequences of elements of £%. If f is special and g is
Shortcut of f, then g is special.

(29) Let f be a finite sequence of elements of 5%. Suppose f is special and
2 <lenf and f(1) # f(len f). Then there exists a finite sequence g of
elements of 6’% such that 2 < leng and g is special and one-to-one and

L(g) C L(f) and f(1) = g(1) and f(len f) = g(len g) and rng g C rng f.
(30) Let f1, f4 be finite sequences of elements of 5%. Suppose that

(i)  fi1 is special,
(ii)  fa is special,
(ili) 2 <lenfy,
(iv) 2 <len fy,
(v)  fi(1) # fi(len f1),
(vi)  fa(1) # fa(len fy),
(vii)  X-coordinate(f1) lies between (X-coordinate(f1))(1) and

)
(X-coordinate(f1))(len f1),
(viii)  X-coordinate(fy) lies between (X-coordinate(f1))(1) and
(X-coordinate(f1))(len f1),
(ix) Y-coordinate(f;) lies between (Y-coordinate(fy))(1) and
(Y-coordinate(f4))(len fy), and
(x)  Y-coordinate(fy) lies between (Y-coordinate(fs))(1) and
(Y-coordinate(f4))(len fy).
Then L(f1) N L(f1) # 0.
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3. NORM OF POINTS IN &F

The following proposition is true

(31) For all real numbers a, b, r1, r9 such that a < r; and r; < b and a < ro
and 79 < b holds |r; — ra| < b —a.

Let us consider n and let p be a point of £}. The functor [p| yields a real
number and is defined by:

(Def. 5) For every element w of R"™ such that p = w holds [p| = |w|.

In the sequel p, p1, p2 are points of £7.
We now state a number of propositions:

(32) |Ogn| = 0.

(33) If [p| = 0, then p = Ogx.

(34) [p[>0.

(35) |=pl = Ipl.

(36) [r-pl=Irl-Ipl.

(37)  [p1 + p2| < |p1| + |p2l-

(38) [p1 —p2| < lp1| + |p2l-

(39)  [p1] = Ip2| < lp1 + p2l-

(40)  [p1] = Ip2| < |p1 — p2l-

(41) |p1 —p2| =0 iff p1 = po.

(42) If p1 # po, then |p1 — pa| > 0.
(43) |p1 — p2| = |p2 — p1l-

(44) |p1 —p2| < |p1 —pl + |p — p2l.
(45) For all points 1, z2 of " such that 1 = p; and x2 = py holds |p1 —p2| =

p(x1,2).

For every point p of £2 holds |p|? = |p1|? + |p2|?.

For every point p of % holds |p| = /|p1|2 + |p2|?.

For every point p of £2 holds |p| < [p1]| + |p2|-

N
(@)

N N N N N N
IS IS
Nej -~

N N e N N N

For all points p1, pa of £F holds |p1 —p2| < |(p1)1—(2)1]+](p1)2— (p2)2]-
For every point p of £% holds |p1] < |p| and |p2| < |p).
<

Ip1 — p2| and |(p1)2 —

ot Ot
_ O

For all points py, p2 of £2 holds |(p1)1 — (p2)1]
(p2)2| < [p1 — p2l.
(52) If p € L(p1,p2), then there exists r such that 0 < r and r < 1 and
p=1~-7)-p1+7-pa
(53) If p € L(p1,p2), then |p —p1| < [p1 — po| and [p — pa| < [p1 — p2l.
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4. EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequel M denotes a metric space.
Next we state several propositions:

(54) For all subsets P, @ of M, such that P # () and P is compact and
Q # () and Q is compact holds dist™%(P,Q) > 0.
(55) Let P, @ be subsets of M;qp. Suppose P # () and P is compact and
Q # 0 and Q is compact. Then PN Q = () if and only if dist™(P, Q) > 0.
(56) Let f be a finite sequence of elements of £2 and a, ¢, d be real numbers.
Suppose that
(i) 1<lenf,
(i)  X-coordinate(f) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),
(ili)  Y-coordinate(f) lies between ¢ and d,
(iv) a>0,and
(v)  for every i such that 1 <i and i+ 1 <len f holds |m; f — mi+1f| < a.
Then there exists a finite sequence g of elements of 6'% such that
(vi) g is special,
(i) g(1) = £(1),
(vi))  glleng) = f(len /),
(ix) leng>lenf,
(x) X-coordinate(g) lies between (X-coordinate(f))(1) and
(X-coordinate(f))(len f),
(xi)  Y-coordinate(g) lies between ¢ and d,
(xii) for every j such that j € dom g there exists k such that & € dom f and
|7j9 — T f| < a, and
(xiii)  for every j such that 1 < j and j + 1 <leng holds |7jg — mj119] < a.
(57) Let f be a finite sequence of elements of 5% and a, ¢, d be real numbers.
Suppose that
(i) 1<lenf,
(ii)  Y-coordinate(f) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),
(ili)  X-coordinate(f) lies between ¢ and d,
(iv) a>0,and
(v)  for every i such that 1 <i and i+ 1 <len f holds |m;f — w41 f| < a.
Then there exists a finite sequence g of elements of £2 such that

(vi) g is special,

(vii) g(1) = f(1),

(viii) g(leng) = f(len f),
(ix) leng >len f,
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(x)  Y-coordinate(g) lies between (Y-coordinate(f))(1) and
(Y-coordinate(f))(len f),
(xi)  X-coordinate(g) lies between ¢ and d,

(xii)  for every j such that j € dom g there exists k such that k£ € dom f and
|mjg — mp f| < a, and

(xiii)  for every j such that 1 < j and j 4+ 1 <leng holds |79 — 74+19| < a.

(58) For every subset P of the carrier of 5% and for all points p;, po of E%
such that P is an arc from p; to py holds p; # ps.

(59) For every finite sequence f of elements of €% such that 1 < len f
holds len X-coordinate(f) = len f and (X-coordinate(f))(1) = (w1 f)1 and
(X-coordinate(f))(len f) = (Tien £ f)1-

(60) For every finite sequence f of elements of €% such that 1 < lenf
holds len Y-coordinate(f) = len f and (Y-coordinate(f))(1) = (71 f)2 and
(Y-coordinate(f))(len f) = (Tien £.f)2-

(61) For every finite sequence f of elements of £2 and for every i such that i €
dom f holds (X-coordinate(f))(i) = (m;f)1 and (Y-coordinate(f))(i) =
(mif)2.

(62) Let P, @ be non empty subsets of the carrier of 5% and p1, p2, q1, g2 be
points of 5%. Suppose that

(i

(i) @ is an arc from ¢ to ¢o,

P is an arc from p; to po,

(iv)  for every point p of €% such that p € Q holds (p1)1 < p1 and p1 < (p2)1,

(v)  for every point p of 2 such that p € P holds (q1)2 < p2 and pa < (g2)2,
and

(vi)  for every point p of £2 such that p € Q holds (q1)2 < p2 and p2 < (g2)2-
Then PN Q # 0.

In the sequel X, Y are non empty topological spaces.
We now state three propositions:

)
)
(iii) ~ for every point p of £2 such that p € P holds (p1)1 < p1 and p1 < (p2)1,
)
)

(63) Let f be a map from X into Y, P be a non empty subset of the carrier
of Y, and fi; be a map from X into Y[P. If f = f; and f is continuous,
then f; is continuous.

(64) Let f beamap from X into Y and P be a non empty subset of the carrier
of Y. Suppose X is compact and Y is a T5 space and f is continuous and
one-to-one and P = rng f. Then there exists a map fi; from X into Y [P
such that f = f; and f; is a homeomorphism.

(65) Let f, g be maps from I into E%, a, b, ¢, d be real numbers, and O, I be
points of I. Suppose that

(i) 0=0,
(i) =1,
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(iii)  f is continuous and one-to-one,
(iv) g is continuous and one-to-one,
(v)  f(Oh=a,
(vi)  fI)1 =0,
(vii)  9(0)2 = ¢,
(viii)  g(I)2 =d, and
)

for every point 7 of I holds a < f(r)1 and f(r)1 < band a < g(r)1 and
g(r)1 <band ¢ < f(r)2 and f(r)2 < d and ¢ < g(r)2 and g(r)2 < d.
Then rng f Nrng g # 0.
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