Graph Theoretical Properties of Arcs in the Plane and Fashoda Meet Theorem

Yatsuka Nakamura Shinshu University Nagano

Summary. We define a graph on an abstract set, edges of which are pairs of any two elements. For any finite sequence of a plane, we give a definition of nodic, which means that edges by a finite sequence are crossed only at terminals. If the first point and the last point of a finite sequence differs, simpleness as a chain and nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard Theorem, proved by us before, to a continuous case. We call this Fashoda Meet Theorem, which was taken from Fashoda incident of 100 years ago.

 ${\rm MML} \ {\rm Identifier:} \ {\tt JGRAPH_1}.$

The articles [23], [21], [27], [8], [10], [2], [25], [5], [6], [17], [16], [20], [14], [18], [19], [15], [1], [4], [22], [7], [13], [28], [24], [26], [11], [12], [9], and [3] provide the terminology and notation for this paper.

1. A GRAPH BY CARTESIAN PRODUCT

For simplicity, we adopt the following convention: G denotes a graph, v_1 denotes a finite sequence of elements of the vertices of G, I_1 denotes an oriented chain of G, n, m, k, i, j denote natural numbers, and r, r_1 , r_2 denote real numbers.

Next we state four propositions:

(1)
$$\frac{0}{r} = 0.$$

(2) $\sqrt{r_1^2 + r_2^2} \leq |r_1| + |r_2|.$
(3) $|r_1| \leq \sqrt{r_1^2 + r_2^2}$ and $|r_2| \leq \sqrt{r_1^2 + r_2^2}.$

C 1998 University of Białystok ISSN 1426-2630

193

YATSUKA NAKAMURA

(4) Let given v_1 . Suppose I_1 is Simple and v_1 is oriented vertex seq of I_1 . Let given n, m. If $1 \leq n$ and n < m and $m \leq \ln v_1$ and $v_1(n) = v_1(m)$, then n = 1 and $m = \ln v_1$.

Let X be a set. The functor $\operatorname{PGraph} X$ yields a multi graph structure and is defined by:

(Def. 1) PGraph $X = \langle X, [X, X], \pi_1(X \times X), \pi_2(X \times X) \rangle$.

We now state two propositions:

- (5) For every non empty set X holds $\operatorname{PGraph} X$ is a graph.
- (6) For every non empty set X holds the vertices of PGraph X = X.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is defined by:

(Def. 2) len PairF f = len f - i and for every natural number i such that $1 \leq i$ and i < len f holds (PairF f) $(i) = \langle f(i), f(i+1) \rangle$.

In the sequel X is a non empty set.

Let X be a non empty set. Then PGraph X is a graph.

The following propositions are true:

- (7) Every finite sequence of elements of X is a finite sequence of elements of the vertices of PGraph X.
- (8) For every finite sequence f of elements of X holds PairF f is a finite sequence of elements of the edges of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X. Then PairF f is a finite sequence of elements of the edges of PGraph X.

We now state two propositions:

- (9) Let n be a natural number and f be a finite sequence of elements of X. If $1 \leq n$ and $n \leq \text{len PairF } f$, then $(\text{PairF } f)(n) \in \text{the edges of PGraph } X$.
- (10) For every finite sequence f of elements of X holds PairF f is an oriented chain of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X. Then PairF f is an oriented chain of PGraph X.

The following proposition is true

(11) Let f be a finite sequence of elements of X and f_1 be a finite sequence of elements of the vertices of PGraph X. If len $f \ge 1$ and $f = f_1$, then f_1 is oriented vertex seq of PairF f.

2. Shortcuts of Finite Sequences in Plane

Let X be a non empty set and let f, g be finite sequences of elements of X. We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.

194

(Def. 3)(i) f(1) = g(1),

- (ii) $f(\operatorname{len} f) = g(\operatorname{len} g)$, and
- (iii) there exists a FinSubsequence f_2 of PairF f and there exists a FinSubsequence f_3 of f and there exists an oriented simple chain s_1 of PGraph X and there exists a finite sequence g_1 of elements of the vertices of PGraph X such that Seq $f_2 = s_1$ and Seq $f_3 = g$ and $g_1 = g$ and g_1 is oriented vertex seq of s_1 .

We now state four propositions:

- (12) For all finite sequences f, g of elements of X such that g is Shortcut of f holds $1 \leq \text{len } g$ and $\text{len } g \leq \text{len } f$.
- (13) Let f be a finite sequence of elements of X. Suppose len $f \ge 1$. Then there exists a finite sequence g of elements of X such that g is Shortcut of f.
- (14) For all finite sequences f, g of elements of X such that g is Shortcut of f holds rng PairF $g \subseteq$ rng PairF f.
- (15) Let f, g be finite sequences of elements of X. Suppose $f(1) \neq f(\operatorname{len} f)$ and g is Shortcut of f. Then g is one-to-one and rng PairF $g \subseteq \operatorname{rng} \operatorname{PairF} f$ and g(1) = f(1) and $g(\operatorname{len} g) = f(\operatorname{len} f)$.

Let us consider n and let I_1 be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^n$. We say that I_1 is nodic if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let given i, j. Suppose $\mathcal{L}(I_1, i) \cap \mathcal{L}(I_1, j) \neq \emptyset$. Then $\mathcal{L}(I_1, i) \cap \mathcal{L}(I_1, j) = \{I_1(i)\}$ but $I_1(i) = I_1(j)$ or $I_1(i) = I_1(j+1)$ or $\mathcal{L}(I_1, i) \cap \mathcal{L}(I_1, j) = \{I_1(i+1)\}$ but $I_1(i+1) = I_1(j)$ or $I_1(i+1) = I_1(j+1)$ or $\mathcal{L}(I_1, i) = \mathcal{L}(I_1, j)$.

One can prove the following propositions:

- (16) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that f is s.n.c. holds f is s.c.c..
- (17) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that f is s.c.c. and $\mathcal{L}(f,1) \cap \mathcal{L}(f, \operatorname{len} f 1) = \emptyset$ holds f is s.n.c..
- (18) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that f is nodic and PairF f is Simple holds f is s.c.c..
- (19) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that f is nodic and PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$ holds f is s.n.c..
- (20) For all points p_1 , p_2 , p_3 of $\mathcal{E}^n_{\mathrm{T}}$ such that there exists a set x such that $x \neq p_2$ and $x \in \mathcal{L}(p_1, p_2) \cap \mathcal{L}(p_2, p_3)$ holds $p_1 \in \mathcal{L}(p_2, p_3)$ or $p_3 \in \mathcal{L}(p_1, p_2)$.
- (21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is s.n.c. and $\mathcal{L}(f,1) \cap \mathcal{L}(f,1+1) \subseteq \{\pi_{1+1}f\}$ and $\mathcal{L}(f, \operatorname{len} f 2) \cap \mathcal{L}(f, \operatorname{len$
- (22) For every finite sequence f of elements of X such that PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$ holds f is one-to-one and $\operatorname{len} f \neq 1$.

YATSUKA NAKAMURA

- (23) For every finite sequence f of elements of X such that f is one-to-one and len f > 1 holds PairF f is Simple and $f(1) \neq f(\text{len } f)$.
- (24) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$. If f is nodic and PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$, then f is unfolded.
- (25) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$ and given i. Suppose g is Shortcut of f and $1 \leq i$ and $i+1 \leq \log g$. Then there exists a natural number k_1 such that $1 \leq k_1$ and $k_1 + 1 \leq \log f$ and $\pi_{k_1} f = \pi_i g$ and $\pi_{k_1+1} f = \pi_{i+1} g$ and $f(k_1) = g(i)$ and $f(k_1 + 1) = g(i + 1)$.
- (26) For all finite sequences f, g of elements of $\mathcal{E}^2_{\mathrm{T}}$ such that g is Shortcut of f holds rng $g \subseteq \mathrm{rng} f$.
- (27) For all finite sequences f, g of elements of $\mathcal{E}^2_{\mathrm{T}}$ such that g is Shortcut of f holds $\widetilde{\mathcal{L}}(g) \subseteq \widetilde{\mathcal{L}}(f)$.
- (28) Let f, g be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. If f is special and g is Shortcut of f, then g is special.
- (29) Let f be a finite sequence of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose f is special and $2 \leq \inf f$ and $f(1) \neq f(\inf f)$. Then there exists a finite sequence g of elements of $\mathcal{E}^2_{\mathrm{T}}$ such that $2 \leq \inf g$ and g is special and one-to-one and $\widetilde{\mathcal{L}}(g) \subseteq \widetilde{\mathcal{L}}(f)$ and f(1) = g(1) and $f(\inf f) = g(\inf g)$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$.
- (30) Let f_1 , f_4 be finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$. Suppose that
 - (i) f_1 is special,
- (ii) f_4 is special,
- (iii) $2 \leq \operatorname{len} f_1$,
- (iv) $2 \leq \operatorname{len} f_4$,
- $(\mathbf{v}) \quad f_1(1) \neq f_1(\operatorname{len} f_1),$
- (vi) $f_4(1) \neq f_4(\operatorname{len} f_4),$
- (vii) **X**-coordinate (f_1) lies between (**X**-coordinate (f_1))(1) and (**X**-coordinate (f_1))(len f_1),
- (viii) **X**-coordinate (f_4) lies between (**X**-coordinate (f_1))(1) and (**X**-coordinate (f_1))(len f_1),
- (ix) \mathbf{Y} -coordinate (f_1) lies between $(\mathbf{Y}$ -coordinate (f_4))(1) and $(\mathbf{Y}$ -coordinate (f_4))(len f_4), and
- (x) **Y**-coordinate (f_4) lies between (**Y**-coordinate (f_4))(1) and (**Y**-coordinate (f_4))(len f_4). Then $\widetilde{\mathcal{L}}(f_1) \cap \widetilde{\mathcal{L}}(f_4) \neq \emptyset$.

196

3. Norm of Points in $\mathcal{E}^n_{\mathrm{T}}$

The following proposition is true

(31) For all real numbers a, b, r_1, r_2 such that $a \leq r_1$ and $r_1 \leq b$ and $a \leq r_2$ and $r_2 \leq b$ holds $|r_1 - r_2| \leq b - a$.

Let us consider n and let p be a point of \mathcal{E}_{T}^{n} . The functor |p| yields a real number and is defined by:

(Def. 5) For every element w of \mathcal{R}^n such that p = w holds |p| = |w|.

In the sequel p, p_1, p_2 are points of $\mathcal{E}_{\mathrm{T}}^n$.

We now state a number of propositions:

- $(32) \quad |0_{\mathcal{E}^n_{\mathrm{T}}}| = 0.$
- (33) If |p| = 0, then $p = 0_{\mathcal{E}^n_{\mathcal{T}}}$.
- $(34) \quad |p| \ge 0.$
- (35) |-p| = |p|.
- $(36) \quad |r \cdot p| = |r| \cdot |p|.$
- (37) $|p_1 + p_2| \leq |p_1| + |p_2|.$
- $(38) |p_1 p_2| \le |p_1| + |p_2|.$
- $(39) |p_1| |p_2| \le |p_1 + p_2|.$
- $(40) \quad |p_1| |p_2| \le |p_1 p_2|.$
- (41) $|p_1 p_2| = 0$ iff $p_1 = p_2$.
- (42) If $p_1 \neq p_2$, then $|p_1 p_2| > 0$.
- $(43) \quad |p_1 p_2| = |p_2 p_1|.$
- (44) $|p_1 p_2| \leq |p_1 p| + |p p_2|.$
- (45) For all points x_1, x_2 of \mathcal{E}^n such that $x_1 = p_1$ and $x_2 = p_2$ holds $|p_1 p_2| = \rho(x_1, x_2)$.
- (46) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|p|^2 = |p_1|^2 + |p_2|^2$.
- (47) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|p| = \sqrt{|p_1|^2 + |p_2|^2}$.
- (48) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|p| \leq |p_1| + |p_2|$.
- (49) For all points p_1, p_2 of \mathcal{E}^2_T holds $|p_1 p_2| \leq |(p_1)_1 (p_2)_1| + |(p_1)_2 (p_2)_2|$.
- (50) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|p_1| \leq |p|$ and $|p_2| \leq |p|$.
- (51) For all points p_1 , p_2 of \mathcal{E}_T^2 holds $|(p_1)_1 (p_2)_1| \le |p_1 p_2|$ and $|(p_1)_2 (p_2)_2| \le |p_1 p_2|$.
- (52) If $p \in \mathcal{L}(p_1, p_2)$, then there exists r such that $0 \leq r$ and $r \leq 1$ and $p = (1 r) \cdot p_1 + r \cdot p_2$.
- (53) If $p \in \mathcal{L}(p_1, p_2)$, then $|p p_1| \leq |p_1 p_2|$ and $|p p_2| \leq |p_1 p_2|$.

4. EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequel M denotes a metric space. Next we state several propositions:

- (54) For all subsets P, Q of M_{top} such that $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact holds $\text{dist}_{\min}^{\min}(P, Q) \ge 0$.
- (55) Let P, Q be subsets of M_{top} . Suppose $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact. Then $P \cap Q = \emptyset$ if and only if $\text{dist}_{\min}^{\min}(P,Q) > 0$.
- (56) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and a, c, d be real numbers. Suppose that
 - (i) $1 \leq \operatorname{len} f$,
 - (ii) **X**-coordinate(f) lies between (**X**-coordinate(f))(1) and (**X**-coordinate(f))(len f),
- (iii) **Y**-coordinate(f) lies between c and d,
- (iv) a > 0, and
- (v) for every *i* such that $1 \leq i$ and $i+1 \leq \text{len } f$ holds $|\pi_i f \pi_{i+1} f| < a$. Then there exists a finite sequence *g* of elements of \mathcal{E}^2_{T} such that
- (vi) g is special,
- (vii) g(1) = f(1),
- (viii) $g(\operatorname{len} g) = f(\operatorname{len} f),$
- (ix) $\operatorname{len} g \ge \operatorname{len} f$,
- (x) **X**-coordinate(g) lies between (**X**-coordinate(f))(1) and (**X**-coordinate(f))(len f),
- (xi) **Y**-coordinate(g) lies between c and d,
- (xii) for every j such that $j \in \text{dom } g$ there exists k such that $k \in \text{dom } f$ and $|\pi_j g \pi_k f| < a$, and
- (xiii) for every j such that $1 \leq j$ and $j+1 \leq \log p$ holds $|\pi_j g \pi_{j+1} g| < a$.
- (57) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and a, c, d be real numbers. Suppose that
 - (i) $1 \leq \operatorname{len} f$,
 - (ii) **Y**-coordinate(f) lies between (**Y**-coordinate(f))(1) and (**Y**-coordinate(f))(len f),
- (iii) **X**-coordinate(f) lies between c and d,
- (iv) a > 0, and
- (v) for every *i* such that $1 \leq i$ and $i + 1 \leq \text{len } f$ holds $|\pi_i f \pi_{i+1} f| < a$. Then there exists a finite sequence *g* of elements of $\mathcal{E}^2_{\mathrm{T}}$ such that
- (vi) g is special,
- (vii) g(1) = f(1),
- (viii) $g(\operatorname{len} g) = f(\operatorname{len} f),$
- (ix) $\operatorname{len} g \ge \operatorname{len} f$,

- (x) **Y**-coordinate(g) lies between (**Y**-coordinate(f))(1) and (**Y**-coordinate(f))(len f),
- (xi) **X**-coordinate(g) lies between c and d,
- (xii) for every j such that $j \in \text{dom } g$ there exists k such that $k \in \text{dom } f$ and $|\pi_j g \pi_k f| < a$, and
- (xiii) for every j such that $1 \leq j$ and $j+1 \leq \log p$ holds $|\pi_j g \pi_{j+1} g| < a$.
- (58) For every subset P of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and for all points p_1 , p_2 of $\mathcal{E}_{\mathrm{T}}^2$ such that P is an arc from p_1 to p_2 holds $p_1 \neq p_2$.
- (59) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that $1 \leq \mathrm{len} f$ holds $\mathrm{len} \mathbf{X}$ -coordinate $(f) = \mathrm{len} f$ and $(\mathbf{X}$ -coordinate $(f))(1) = (\pi_1 f)_1$ and $(\mathbf{X}$ -coordinate $(f))(\mathrm{len} f) = (\pi_{\mathrm{len} f} f)_1$.
- (60) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ such that $1 \leq \mathrm{len} f$ holds $\mathrm{len} \mathbf{Y}$ -coordinate $(f) = \mathrm{len} f$ and $(\mathbf{Y}$ -coordinate $(f))(1) = (\pi_1 f)_2$ and $(\mathbf{Y}$ -coordinate $(f))(\mathrm{len} f) = (\pi_{\mathrm{len} f} f)_2$.
- (61) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^2$ and for every i such that $i \in \mathrm{dom} f$ holds $(\mathbf{X}\operatorname{-coordinate}(f))(i) = (\pi_i f)_1$ and $(\mathbf{Y}\operatorname{-coordinate}(f))(i) = (\pi_i f)_2$.
- (62) Let P, Q be non empty subsets of the carrier of \mathcal{E}_{T}^{2} and $p_{1}, p_{2}, q_{1}, q_{2}$ be points of \mathcal{E}_{T}^{2} . Suppose that
 - (i) P is an arc from p_1 to p_2 ,
 - (ii) Q is an arc from q_1 to q_2 ,
- (iii) for every point p of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in P$ holds $(p_1)_1 \leq p_1$ and $p_1 \leq (p_2)_1$,
- (iv) for every point p of \mathcal{E}^2_T such that $p \in Q$ holds $(p_1)_1 \leq p_1$ and $p_1 \leq (p_2)_1$,
- (v) for every point p of \mathcal{E}^2_T such that $p \in P$ holds $(q_1)_2 \leq p_2$ and $p_2 \leq (q_2)_2$, and
- (vi) for every point p of \mathcal{E}^2_T such that $p \in Q$ holds $(q_1)_2 \leq p_2$ and $p_2 \leq (q_2)_2$. Then $P \cap Q \neq \emptyset$.

In the sequel X, Y are non empty topological spaces. We now state three propositions:

- (63) Let f be a map from X into Y, P be a non empty subset of the carrier of Y, and f_1 be a map from X into $Y \upharpoonright P$. If $f = f_1$ and f is continuous, then f_1 is continuous.
- (64) Let f be a map from X into Y and P be a non empty subset of the carrier of Y. Suppose X is compact and Y is a T_2 space and f is continuous and one-to-one and $P = \operatorname{rng} f$. Then there exists a map f_1 from X into $Y \upharpoonright P$ such that $f = f_1$ and f_1 is a homeomorphism.
- (65) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2$, a, b, c, d be real numbers, and O, I be points of \mathbb{I} . Suppose that
 - (i) O = 0,
- (ii) I = 1,

- (iii) f is continuous and one-to-one,
- (iv) g is continuous and one-to-one,
- $(\mathbf{v}) \quad f(O)_{\mathbf{1}} = a,$
- $(vi) \quad f(I)_1 = b,$
- $(\text{vii}) \quad g(O)_2 = c,$
- (viii) $g(I)_2 = d$, and
- (ix) for every point r of I holds $a \leq f(r)_1$ and $f(r)_1 \leq b$ and $a \leq g(r)_1$ and $g(r)_1 \leq b$ and $c \leq f(r)_2$ and $f(r)_2 \leq d$ and $c \leq g(r)_2$ and $g(r)_2 \leq d$. Then rng $f \cap \operatorname{rng} q \neq \emptyset$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353–359, 1996.
- [4] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.
- [15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [16] Jarosław Kotowicz and Yatsuka Nakamura. Go-board theorem. Formalized Mathematics, 3(1):125–129, 1992.
- [17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [18] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297–304, 1996.
- [19] Yatsuka Nakamura and Piotr Rudnicki. Oriented chains. Formalized Mathematics, 7(2):189–192, 1998.
- [20] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [21] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.

- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
 [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 21, 1998