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Summary. In this article, an algebraic group on fixed-length bit integer
is constructed and its adaptation to IDEA cryptography is discussed. In the

first section, we present some selected theorems on integers. In the continuous

section, we construct an algebraic group on fixed-length integer. In the third

section, operations of IDEA Cryptograms are defined and some theorems on

these operations are proved. In the fourth section, we define sequences of IDEA

Cryptogram’s operations and discuss their nature. Finally, we make a model of

IDEA Cryptogram and prove that the ciphertext that is encrypted by IDEA

encryption algorithm can be decrypted by the IDEA decryption algorithm.

MML Identifier: IDEA 1.

The articles [11], [2], [4], [5], [6], [3], [10], [14], [8], [1], [7], [15], [12], [13], and [9]

provide the notation and terminology for this paper.

1. Some Selected Theorems on Integers

We adopt the following rules: i, j, k, n are natural numbers and x, y, z are

tuples of n and Boolean.

Next we state several propositions:

(1) For all i, j, k such that j is prime and i < j and k < j and i 6= 0 there

exists a natural number a such that a · imod j = k and a < j.

(2) For all natural numbers n, k1, k2 such that n 6= 0 and k1modn = k2modn

and k1 ¬ k2 there exists a natural number t such that k2 − k1 = n · t.
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(3) For all natural numbers a, b holds a− b ¬ a.

(4) For all natural numbers b1, b2, c such that b2 ¬ c holds b2 − b1 ¬ c.

(5) For all natural numbers a, b, c such that 0 < a and 0 < b and a < c and

b < c and c is prime holds a · bmod c 6= 0.

(6) For every non empty natural number n holds the n-th power of 2 6= 1.

2. Basic Operators of IDEA Cryptograms

Let us consider n. The functor ZEROn yielding a tuple of n and Boolean is

defined by:

(Def. 1) ZEROn = n 7→ false.

Let us consider n and let x, y be tuples of n and Boolean. The functor x⊕ y

yields a tuple of n and Boolean and is defined by:

(Def. 2) For every i such that i ∈ Segn holds πi(x⊕ y) = πix⊕ πiy.

The following propositions are true:

(7) For all n, x holds x⊕ x = ZEROn.

(8) For all n, x, y holds x⊕ y = y ⊕ x.

Let us consider n and let x, y be tuples of n and Boolean. Let us observe

that the functor x⊕ y is commutative.

One can prove the following propositions:

(9) For all n, x holds ZEROn⊕ x = x.

(10) For all n, x, y, z holds (x⊕ y)⊕ z = x⊕ (y ⊕ z).

Let us consider n and let i be a natural number. We say that i is expressible

by n if and only if:

(Def. 3) i < the n-th power of 2.

The following proposition is true

(11) For every n holds n -BinarySequence(0) = ZEROn.

Let us consider n and let i, j be natural numbers. The functor

ADD MOD(i, j, n) yields a natural number and is defined by:

(Def. 4) ADD MOD(i, j, n) = (i + j)mod (the n-th power of 2).

Let us consider n and let i be a natural number. Let us assume that i is

expressible by n. The functor NEG N(i, n) yielding a natural number is defined

by:

(Def. 5) NEG N(i, n) = (the n-th power of 2)−i.

Let us consider n and let i be a natural number. Let us assume that i is

expressible by n. The functor NEG MOD(i, n) yielding a natural number is

defined as follows:
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(Def. 6) NEG MOD(i, n) = NEG N(i, n)mod (the n-th power of 2).

We now state several propositions:

(12) For all n, i such that i is expressible by n holds

ADD MOD(i,NEG MOD(i, n), n) = 0.

(13) For all n, i, j holds ADD MOD(i, j, n) = ADD MOD(j, i, n).

(14) For all n, i such that i is expressible by n holds ADD MOD(0, i, n) = i.

(15) For all n, i, j, k holds ADD MOD(ADD MOD(i, j, n), k, n) =

ADD MOD(i,ADD MOD(j, k, n), n).

(16) For all n, i, j holds ADD MOD(i, j, n) is expressible by n.

(17) For all n, i such that i is expressible by n holds NEG MOD(i, n) is

expressible by n.

Let us consider n and let i be a natural number. The functor

ChangeVal 1(i, n) yields a natural number and is defined by:

(Def. 7) ChangeVal 1(i, n) =

{

the n-th power of 2, if i = 0,

i, otherwise.

We now state two propositions:

(18) For all n, i such that i is expressible by n holds ChangeVal 1(i, n) ¬ the

n-th power of 2 and ChangeVal 1(i, n) > 0.

(19) Let n, a1, a2 be natural numbers. Suppose a1 is expressible by n and a2

is expressible by n and ChangeVal 1(a1, n) = ChangeVal 1(a2, n). Then

a1 = a2.

Let us consider n and let i be a natural number. The functor

ChangeVal 2(i, n) yields a natural number and is defined as follows:

(Def. 8) ChangeVal 2(i, n) =

{

0, if i = the n-th power of 2,

i, otherwise.

We now state two propositions:

(20) For all n, i such that i is expressible by n holds ChangeVal 2(i, n) is

expressible by n.

(21) For all natural numbers n, a1, a2 such that a1 6= 0 and a2 6= 0 and

ChangeVal 2(a1, n) = ChangeVal 2(a2, n) holds a1 = a2.

Let us consider n and let i, j be natural numbers. The functor

MUL MOD(i, j, n) yields a natural number and is defined as follows:

(Def. 9) MUL MOD(i, j, n) = ChangeVal 2(ChangeVal 1(i, n)·

ChangeVal 1(j, n)mod ((the n-th power of 2)+1), n).

Let n be a non empty natural number and let i be a natural number. Let

us assume that i is expressible by n and (the n-th power of 2)+1 is prime. The

functor INV MOD(i, n) yielding a natural number is defined as follows:

(Def. 10) MUL MOD(i, INV MOD(i, n), n) = 1 and INV MOD(i, n) is expressible

by n.
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The following propositions are true:

(22) For all n, i, j holds MUL MOD(i, j, n) = MUL MOD(j, i, n).

(23) For all n, i such that i is expressible by n holds MUL MOD(1, i, n) = i.

(24) Let given n, i, j, k. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) i is expressible by n,

(iii) j is expressible by n, and

(iv) k is expressible by n.

Then MUL MOD(MUL MOD(i, j, n), k, n) =

MUL MOD(i,MUL MOD(j, k, n), n).

(25) For all n, i, j holds MUL MOD(i, j, n) is expressible by n.

(26) If ChangeVal 2(i, n) = 1, then i = 1.

3. Operations of IDEA Cryptograms

Let us consider n and let m, k be finite sequences of elements of N. The

functor IDEAoperationA(m, k, n) yielding a finite sequence of elements of N is

defined by the conditions (Def. 11).

(Def. 11)(i) len IDEAoperationA(m, k, n) = lenm, and

(ii) for every natural number i such that i ∈ domm holds if i = 1, then

(IDEAoperationA(m, k, n))(i) = MUL MOD(m(1), k(1), n) and if i = 2,

then (IDEAoperationA(m, k, n))(i) = ADD MOD(m(2), k(2), n) and if

i = 3, then (IDEAoperationA(m, k, n))(i) = ADD MOD(m(3), k(3), n)

and if i = 4, then (IDEAoperationA(m, k, n))(i) = MUL MOD(m(4), k(4), n)

and if i 6= 1 and i 6= 2 and i 6= 3 and i 6= 4, then

(IDEAoperationA(m, k, n))(i) = m(i).

In the sequel m, k, k1, k2 denote finite sequences of elements of N.

Let n be a non empty natural number and let m, k be finite sequences of

elements of N. The functor IDEAoperationB(m, k, n) yielding a finite sequence

of elements of N is defined by the conditions (Def. 12).

(Def. 12)(i) len IDEAoperationB(m, k, n) = lenm, and

(ii) for every natural number i such that i ∈ domm holds if i = 1, then

(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(1))) ⊕

(n -BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval

((n -BinarySequence(m(1)))⊕ (n -BinarySequence(m(3)))), k(5), n),

Absval((n -BinarySequence(m(2)))⊕(n -BinarySequence(m(4)))), n), k(6),

n)))) and if i = 2, then

(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(2))) ⊕

(n -BinarySequence(ADD MOD(MUL MOD(Absval((n -BinarySequence
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(m(1)))⊕ (n -BinarySequence(m(3)))), k(5), n),MUL MOD(ADD MOD

(MUL MOD(Absval((n -BinarySequence

(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n),Absval((n -BinarySequence(m

(2))) ⊕ (n -BinarySequence(m(4)))), n), k(6), n), n)))) and if i = 3, then

(IDEAoperationB(m, k, n))(i) = Absval((n -BinarySequence(m(3))) ⊕

(n -BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval

((n -BinarySequence(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n),Absval

((n -BinarySequence(m(2)))⊕ (n -BinarySequence(m(4)))), n), k(6), n))))

and if i = 4, then (IDEAoperationB(m, k, n))(i) =

Absval((n -BinarySequence(m(4)))⊕ (n -BinarySequence

(ADD MOD(MUL MOD(Absval((n -BinarySequence(m(1)))⊕

(n -BinarySequence(m(3)))), k(5), n),MUL MOD(ADD MOD(MUL MOD

(Absval((n -BinarySequence(m(1)))⊕(n -BinarySequence(m(3)))), k(5), n),

Absval((n -BinarySequence(m(2)))⊕(n -BinarySequence(m(4)))), n), k(6),

n), n)))) and if i 6= 1 and i 6= 2 and i 6= 3 and i 6= 4, then

(IDEAoperationB(m, k, n))(i) = m(i).

Let m be a finite sequence of elements of N. The functor IDEAoperationCm

yields a finite sequence of elements of N and is defined as follows:

(Def. 13) len IDEAoperationCm = lenm and for every natural number i such

that i ∈ domm holds (IDEAoperationCm)(i) = (i = 2→ m(3), (i = 3→

m(2),m(i))).

The following propositions are true:

(27) Let given n, m, k. Suppose lenm ­ 4. Then

(i) (IDEAoperationA(m, k, n))(1) is expressible by n,

(ii) (IDEAoperationA(m, k, n))(2) is expressible by n,

(iii) (IDEAoperationA(m, k, n))(3) is expressible by n, and

(iv) (IDEAoperationA(m, k, n))(4) is expressible by n.

(28) Let n be a non empty natural number and givenm, k. Suppose lenm ­ 4.

Then

(i) (IDEAoperationB(m, k, n))(1) is expressible by n,

(ii) (IDEAoperationB(m, k, n))(2) is expressible by n,

(iii) (IDEAoperationB(m, k, n))(3) is expressible by n, and

(iv) (IDEAoperationB(m, k, n))(4) is expressible by n.

(29) Let given m. Suppose that

(i) lenm ­ 4,

(ii) m(1) is expressible by n,

(iii) m(2) is expressible by n,

(iv) m(3) is expressible by n, and

(v) m(4) is expressible by n.

Then

(vi) (IDEAoperationCm)(1) is expressible by n,
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(vii) (IDEAoperationCm)(2) is expressible by n,

(viii) (IDEAoperationCm)(3) is expressible by n, and

(ix) (IDEAoperationCm)(4) is expressible by n.

(30) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(1) is expressible by n,

(viii) k1(2) is expressible by n,

(ix) k1(3) is expressible by n,

(x) k1(4) is expressible by n,

(xi) k2(1) = INV MOD(k1(1), n),

(xii) k2(2) = NEG MOD(k1(2), n),

(xiii) k2(3) = NEG MOD(k1(3), n), and

(xiv) k2(4) = INV MOD(k1(4), n).

Then IDEAoperationA(IDEAoperationA(m, k1, n), k2, n) = m.

(31) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(1) is expressible by n,

(viii) k1(2) is expressible by n,

(ix) k1(3) is expressible by n,

(x) k1(4) is expressible by n,

(xi) k2(1) = INV MOD(k1(1), n),

(xii) k2(2) = NEG MOD(k1(3), n),

(xiii) k2(3) = NEG MOD(k1(2), n), and

(xiv) k2(4) = INV MOD(k1(4), n).

Then IDEAoperationA(IDEAoperationC IDEAoperationA

(IDEAoperationCm, k1, n), k2, n) = m.

(32) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,
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(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(5) is expressible by n,

(viii) k1(6) is expressible by n,

(ix) k2(5) = k1(5), and

(x) k2(6) = k1(6).

Then IDEAoperationB(IDEAoperationB(m, k1, n), k2, n) = m.

(33) For everym such that lenm ­ 4 holds IDEAoperationC IDEAoperationCm =

m.

4. Sequences of IDEA Cryptogram’s Operations

The set MESSAGES is defined by:

(Def. 14) MESSAGES = N
∗.

Let us mention that MESSAGES is non empty.

Let us mention that every element of MESSAGES is function-like and

relation-like.

Let us note that every element of MESSAGES is finite sequence-like.

Let n be a non empty natural number and let us consider k. The functor

IDEA P(k, n) yielding a function from MESSAGES into MESSAGES is defined

as follows:

(Def. 15) For every m holds (IDEA P(k, n))(m) = IDEAoperationA

(IDEAoperationC IDEAoperationB(m, k, n), k, n).

Let n be a non empty natural number and let us consider k. The func-

tor IDEA Q(k, n) yields a function from MESSAGES into MESSAGES and is

defined as follows:

(Def. 16) For every m holds (IDEA Q(k, n))(m) = IDEAoperationB

(IDEAoperationA(IDEAoperationCm, k, n), k, n).

Let r, l1 be natural numbers, let n be a non empty natural number, and let

K1 be a matrix over N of dimension l1 × 6. The functor IDEA P F(K1, n, r)

yielding a finite sequence is defined as follows:

(Def. 17) len IDEA P F(K1, n, r) = r and for every i such that i ∈

dom IDEA P F(K1, n, r) holds (IDEA P F(K1, n, r))(i) =

IDEA P(Line(K1, i), n).

Let r, l1 be natural numbers, let n be a non empty natural number,

and let K1 be a matrix over N of dimension l1 × 6. One can verify that

IDEA P F(K1, n, r) is function yielding.
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Let r, l1 be natural numbers, let n be a non empty natural number, and let

K1 be a matrix over N of dimension l1 × 6. The functor IDEA Q F(K1, n, r)

yielding a finite sequence is defined as follows:

(Def. 18) len IDEA Q F(K1, n, r) = r and for every i such that i ∈

dom IDEA Q F(K1, n, r) holds (IDEA Q F(K1, n, r))(i) =

IDEA Q(Line(K1, (r −
′ i) + 1), n).

Let r, l1 be natural numbers, let n be a non empty natural number, and let

K1 be a matrix over N of dimension l1 × 6. Observe that IDEA Q F(K1, n, r)

is function yielding.

Let us consider k, n. The functor IDEA PS(k, n) yields a function from

MESSAGES into MESSAGES and is defined as follows:

(Def. 19) For every m holds (IDEA PS(k, n))(m) = IDEAoperationA(m, k, n).

Let us consider k, n. The functor IDEA QS(k, n) yields a function from

MESSAGES into MESSAGES and is defined as follows:

(Def. 20) For every m holds (IDEA QS(k, n))(m) = IDEAoperationA(m, k, n).

Let n be a non empty natural number and let us consider k. The func-

tor IDEA PE(k, n) yielding a function from MESSAGES into MESSAGES is

defined by:

(Def. 21) For every m holds (IDEA PE(k, n))(m) = IDEAoperationA

(IDEAoperationB(m, k, n), k, n).

Let n be a non empty natural number and let us consider k. The func-

tor IDEA QE(k, n) yielding a function from MESSAGES into MESSAGES is

defined by:

(Def. 22) For every m holds (IDEA QE(k, n))(m) = IDEAoperationB

(IDEAoperationA(m, k, n), k, n).

We now state a number of propositions:

(34) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(1) is expressible by n,

(viii) k1(2) is expressible by n,

(ix) k1(3) is expressible by n,

(x) k1(4) is expressible by n,

(xi) k1(5) is expressible by n,

(xii) k1(6) is expressible by n,

(xiii) k2(1) = INV MOD(k1(1), n),
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(xiv) k2(2) = NEG MOD(k1(3), n),

(xv) k2(3) = NEG MOD(k1(2), n),

(xvi) k2(4) = INV MOD(k1(4), n),

(xvii) k2(5) = k1(5), and

(xviii) k2(6) = k1(6).

Then (IDEA Q(k2, n) · IDEA P(k1, n))(m) = m.

(35) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(1) is expressible by n,

(viii) k1(2) is expressible by n,

(ix) k1(3) is expressible by n,

(x) k1(4) is expressible by n,

(xi) k2(1) = INV MOD(k1(1), n),

(xii) k2(2) = NEG MOD(k1(2), n),

(xiii) k2(3) = NEG MOD(k1(3), n), and

(xiv) k2(4) = INV MOD(k1(4), n).

Then (IDEA QS(k2, n) · IDEA PS(k1, n))(m) = m.

(36) Let n be a non empty natural number and given m, k1, k2. Suppose that

(i) (the n-th power of 2)+1 is prime,

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n,

(vi) m(4) is expressible by n,

(vii) k1(1) is expressible by n,

(viii) k1(2) is expressible by n,

(ix) k1(3) is expressible by n,

(x) k1(4) is expressible by n,

(xi) k1(5) is expressible by n,

(xii) k1(6) is expressible by n,

(xiii) k2(1) = INV MOD(k1(1), n),

(xiv) k2(2) = NEG MOD(k1(2), n),

(xv) k2(3) = NEG MOD(k1(3), n),

(xvi) k2(4) = INV MOD(k1(4), n),

(xvii) k2(5) = k1(5), and

(xviii) k2(6) = k1(6).
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Then (IDEA QE(k2, n) · IDEA PE(k1, n))(m) = m.

(37) Let n be a non empty natural number, l1 be a natural number, K1 be

a matrix over N of dimension l1 × 6, and k be a natural number. Then

IDEA P F(K1, n, k + 1) = (IDEA P F(K1, n, k)) a 〈IDEA P(Line(K1, k +

1), n)〉.

(38) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and k be a natural num-

ber. Then IDEA Q F(K1, n, k + 1) = 〈IDEA Q(Line(K1, k + 1), n)〉 a

IDEA Q F(K1, n, k).

(39) Let n be a non empty natural number, l1 be a natural number, K1 be

a matrix over N of dimension l1 × 6, and k be a natural number. Then

IDEA P F(K1, n, k) is a composable finite sequence.

(40) Let n be a non empty natural number, l1 be a natural number, K1 be

a matrix over N of dimension l1 × 6, and k be a natural number. Then

IDEA Q F(K1, n, k) is a composable finite sequence.

(41) Let n be a non empty natural number, l1 be a natural number, K1 be a

matrix over N of dimension l1 × 6, and k be a natural number. If k 6= 0,

then IDEA P F(K1, n, k) is a composable sequence from MESSAGES into

MESSAGES.

(42) Let n be a non empty natural number, l1 be a natural number, K1 be a

matrix over N of dimension l1 × 6, and k be a natural number. If k 6= 0,

then IDEA Q F(K1, n, k) is a composable sequence from MESSAGES into

MESSAGES.

(43) Let n be a non empty natural number,M be a finite sequence of elements

of N, and given m, k. Suppose M = (IDEA P(k, n))(m) and lenm ­ 4.

Then

(i) lenM ­ 4,

(ii) M(1) is expressible by n,

(iii) M(2) is expressible by n,

(iv) M(3) is expressible by n, and

(v) M(4) is expressible by n.

(44) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and r be a natural num-

ber. Then rng composeMESSAGES IDEA P F(K1, n, r) ⊆ MESSAGES and

domcomposeMESSAGES IDEA P F(K1, n, r) = MESSAGES .

(45) Let n be a non empty natural number, l1 be a natural number, K1

be a matrix over N of dimension l1 × 6, and r be a natural num-

ber. Then rng composeMESSAGES IDEA Q F(K1, n, r) ⊆ MESSAGES and

domcomposeMESSAGES IDEA Q F(K1, n, r) = MESSAGES .

(46) Let n be a non empty natural number,m be a finite sequence of elements
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of N, l1 be a natural number, K1 be a matrix over N of dimension l1 ×

6, r be a natural number, and M be a finite sequence of elements of N.

If M = (composeMESSAGES IDEA P F(K1, n, r))(m) and lenm ­ 4, then

lenM ­ 4.

(47) Let n be a non empty natural number, l1 be a natural number, K1 be a

matrix over N of dimension l1 × 6, r be a natural number, M be a finite

sequence of elements of N, and given m. Suppose that

(i) M = (composeMESSAGES IDEA P F(K1, n, r))(m),

(ii) lenm ­ 4,

(iii) m(1) is expressible by n,

(iv) m(2) is expressible by n,

(v) m(3) is expressible by n, and

(vi) m(4) is expressible by n.

Then

(vii) lenM ­ 4,

(viii) M(1) is expressible by n,

(ix) M(2) is expressible by n,

(x) M(3) is expressible by n, and

(xi) M(4) is expressible by n.

5. Modeling of IDEA Cryptogram

One can prove the following propositions:

(48) Let n be a non empty natural number, l1 be a natural number, K2, K3

be matrices over N of dimension l1 × 6, r be a natural number, and given

m. Suppose that

(i) l1 ­ r,

(ii) (the n-th power of 2)+1 is prime,

(iii) lenm ­ 4,

(iv) m(1) is expressible by n,

(v) m(2) is expressible by n,

(vi) m(3) is expressible by n,

(vii) m(4) is expressible by n, and

(viii) for every natural number i such that i ¬ r holds (K2)i,1 is expressible

by n and (K2)i,2 is expressible by n and (K2)i,3 is expressible by n and

(K2)i,4 is expressible by n and (K2)i,5 is expressible by n and (K2)i,6 is

expressible by n and (K3)i,1 is expressible by n and (K3)i,2 is expressible

by n and (K3)i,3 is expressible by n and (K3)i,4 is expressible by n and

(K3)i,5 is expressible by n and (K3)i,6 is expressible by n and (K3)i,1 =

INV MOD((K2)i,1, n) and (K3)i,2 = NEG MOD((K2)i,3, n) and (K3)i,3 =



214 yasushi fuwa and yoshinori fujisawa

NEG MOD((K2)i,2, n) and (K3)i,4 = INV MOD((K2)i,4, n) and (K2)i,5 =

(K3)i,5 and (K2)i,6 = (K3)i,6.

Then (composeMESSAGES((IDEA P F(K2, n, r))aIDEA Q F(K3, n, r)))(m) =

m.

(49) Let n be a non empty natural number, l1 be a natural number, K2, K3

be matrices over N of dimension l1 × 6, r be a natural number, k3, k4, k5,

k6 be finite sequences of elements of N, and given m. Suppose that

(i) l1 ­ r,

(ii) (the n-th power of 2)+1 is prime,

(iii) lenm ­ 4,

(iv) m(1) is expressible by n,

(v) m(2) is expressible by n,

(vi) m(3) is expressible by n,

(vii) m(4) is expressible by n,

(viii) for every natural number i such that i ¬ r holds (K2)i,1 is expressible

by n and (K2)i,2 is expressible by n and (K2)i,3 is expressible by n and

(K2)i,4 is expressible by n and (K2)i,5 is expressible by n and (K2)i,6 is

expressible by n and (K3)i,1 is expressible by n and (K3)i,2 is expressible

by n and (K3)i,3 is expressible by n and (K3)i,4 is expressible by n and

(K3)i,5 is expressible by n and (K3)i,6 is expressible by n and (K3)i,1 =

INV MOD((K2)i,1, n) and (K3)i,2 = NEG MOD((K2)i,3, n) and (K3)i,3 =

NEG MOD((K2)i,2, n) and (K3)i,4 = INV MOD((K2)i,4, n) and (K2)i,5 =

(K3)i,5 and (K2)i,6 = (K3)i,6,

(ix) k3(1) is expressible by n,

(x) k3(2) is expressible by n,

(xi) k3(3) is expressible by n,

(xii) k3(4) is expressible by n,

(xiii) k4(1) = INV MOD(k3(1), n),

(xiv) k4(2) = NEG MOD(k3(2), n),

(xv) k4(3) = NEG MOD(k3(3), n),

(xvi) k4(4) = INV MOD(k3(4), n),

(xvii) k5(1) is expressible by n,

(xviii) k5(2) is expressible by n,

(xix) k5(3) is expressible by n,

(xx) k5(4) is expressible by n,

(xxi) k5(5) is expressible by n,

(xxii) k5(6) is expressible by n,

(xxiii) k6(1) = INV MOD(k5(1), n),

(xxiv) k6(2) = NEG MOD(k5(2), n),

(xxv) k6(3) = NEG MOD(k5(3), n),

(xxvi) k6(4) = INV MOD(k5(4), n),

(xxvii) k6(5) = k5(5), and
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(xxviii) k6(6) = k5(6).

Then (IDEA QS(k4, n) · (composeMESSAGES IDEA Q F(K3, n, r)·

(IDEA QE(k6, n) · (IDEA PE(k5, n) · (composeMESSAGES IDEA P F

(K2, n, r) · IDEA PS(k3, n))))))(m) = m.
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