Lattice of Substitutions is a Heyting Algebra

Adam Grabowski
University of Białystok

MML Identifier: HEYTING2.

The terminology and notation used in this paper have been introduced in the following articles: [2], [15], [1], [7], [13], [9], [3], [4], [10], [18], [5], [16], [17], [11], [14], [8], [12], and [6].

1. Preliminaries

We adopt the following convention: V, C, x are sets and A, B are elements of SubstitutionSet (V, C).

Let a, b be sets. Note that $\{\langle a, b\rangle\}$ is function-like and relation-like.
Let A, B be sets. Observe that $A \dot{\rightarrow} B$ is functional.
Next we state several propositions:
(1) For all non empty sets V, C there exists an element f of $V \dot{\rightarrow} C$ such that $f \neq \emptyset$.
(2) For all sets a, b such that $b \in \operatorname{SubstitutionSet}(V, C)$ and $a \in b$ holds a is a finite function.
(3) For every element f of $V \rightarrow C$ and for every set g such that $g \subseteq f$ holds $g \in V \dot{\rightarrow} C$.
(4) $V \dot{\rightarrow} C \subseteq 2^{\{V, C \exists}$.
(5) If V is finite and C is finite, then $V \dot{\rightarrow} C$ is finite.

One can check that there exists a set which is functional, finite, and non empty.

2. Some Properties of Sets of Substitutions

One can prove the following four propositions:
(6) For every finite element a of $V \dot{\rightarrow} C$ holds $\{a\} \in \operatorname{SubstitutionSet}(V, C)$.
(7) If $A^{\wedge} B=A$, then for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$.
(8) If $\mu\left(A^{\wedge} B\right)=A$, then for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$.
(9) If for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$, then $\mu\left(A^{\wedge} B\right)=A$.
Let V be a set, let C be a finite set, and let A be an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$. The functor Involved A is defined by:
(Def. 1) $x \in \operatorname{Involved} A$ iff there exists a finite function f such that $f \in A$ and $x \in \operatorname{dom} f$.
In the sequel C denotes a finite set.
The following propositions are true:
(10) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \dot{\rightarrow} C)$ holds Involved $A \subseteq V$.
(11) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \dot{\rightarrow} C)$ such that $A=\emptyset$ holds Involved $A=\emptyset$.
(12) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \dot{\rightarrow} C)$ holds Involved A is finite.
(13) For every finite set C and for every element A of $\operatorname{Fin}(\emptyset \dot{\rightarrow} C)$ holds Involved $A=\emptyset$.
Let V be a set, let C be a finite set, and let A be an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$. The functor $-A$ yielding an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$ is defined as follows:
(Def. 2) $\quad-A=\left\{f ; f\right.$ ranges over elements of Involved $A \rightarrow C: \bigwedge_{g: \text { element of } V \rightarrow C}(g \in$ $A \Rightarrow f \not \approx g)\}$.
One can prove the following propositions:
(14) $A^{\sim}-A=\emptyset$.
(15) If $A=\emptyset$, then $-A=\{\emptyset\}$.
(16) If $A=\{\emptyset\}$, then $-A=\emptyset$.
(17) For every set V and for every finite set C and for every element A of SubstitutionSet (V, C) holds $\mu\left(A^{\wedge}-A\right)=\perp_{\text {SubstLatt }(V, C)}$.
(18) For every non empty set V and for every finite non empty set C and for every element A of SubstitutionSet (V, C) such that $A=\emptyset$ holds $\mu(-A)=$ $\top_{\text {SubstLatt }(V, C)}$.
(19) Let V be a set, C be a finite set, A be an element of SubstitutionSet $(V, C), a$ be an element of $V \dot{\rightarrow} C$, and B be an element of SubstitutionSet (V, C). Suppose $B=\{a\}$. If $A^{\wedge} B=\emptyset$, then there exists a finite set b such that $b \in-A$ and $b \subseteq a$.
Let V be a set, let C be a finite set, and let A, B be elements of $\operatorname{Fin}(V \dot{\rightarrow} C)$. The functor $A \hookrightarrow B$ yielding an element of $\operatorname{Fin}(V \dot{\rightarrow} C)$ is defined as follows:
(Def. 3) $\quad A \hookrightarrow B=(V \dot{\rightarrow} C) \cap\{\bigcup\{f(i) \backslash i ; i$ ranges over elements of $V \dot{\rightarrow} C$: $i \in A\} ; f$ ranges over elements of $A \dot{\rightarrow} B: \operatorname{dom} f=A\}$.
Next we state two propositions:
(20) Let A, B be elements of $\operatorname{Fin}(V \dot{\rightarrow} C)$ and s be a set. Suppose $s \in A \hookrightarrow B$. Then there exists a partial function f from A to B such that $s=\bigcup\{f(i) \backslash$ $i ; i$ ranges over elements of $V \dot{\rightarrow} C: i \in A\}$ and $\operatorname{dom} f=A$.
(21) For every set V and for every finite set C and for every element A of Fin $(V \dot{\rightarrow} C)$ such that $A=\emptyset$ holds $A \hookrightarrow A=\{\emptyset\}$.
We adopt the following convention: u, v are elements of the carrier of $\operatorname{SubstLatt}(V, C), a$ is an element of $V \dot{\rightarrow} C$, and K, L are elements of SubstitutionSet (V, C).

The following proposition is true
(22) For every set X such that $X \subseteq u$ holds X is an element of the carrier of SubstLatt(V, C).

3. Lattice of Substitutions is Implicative

Let us consider V, C. The functor pseudo_compl (V, C) yielding a unary operation on the carrier of $\operatorname{SubstLatt}(V, C)$ is defined as follows:
(Def. 4) For every element u^{\prime} of $\operatorname{SubstitutionSet}(V, C)$ such that $u^{\prime}=u$ holds (pseudo_compl $(V, C))(u)=\mu\left(-u^{\prime}\right)$.
The functor $\operatorname{StrongImpl}(V, C)$ yielding a binary operation on the carrier of SubstLatt (V, C) is defined by:
(Def. 5) For all elements u^{\prime}, v^{\prime} of $\operatorname{SubstitutionSet}(V, C)$ such that $u^{\prime}=u$ and $v^{\prime}=v$ holds $(\operatorname{StrongImpl}(V, C))(u, v)=\mu\left(u^{\prime} \mapsto v^{\prime}\right)$.
Let us consider u. The functor 2^{u} yielding an element of Fin (the carrier of SubstLatt $(V, C))$ is defined by:
(Def. 6) $2^{u}=2^{u}$.
The functor $\square \backslash_{u} \square$ yielding a unary operation on the carrier of $\operatorname{SubstLatt}(V, C)$ is defined by:
(Def. 7) $\left(\square \backslash_{u} \square\right)(v)=u \backslash v$.

Let us consider V, C. The functor $\operatorname{Atom}(V, C)$ yielding a function from $V \dot{\rightarrow} C$ into the carrier of $\operatorname{SubstLatt}(V, C)$ is defined as follows:
(Def. 8) For every element a of $V \dot{\rightarrow} C$ holds $(\operatorname{Atom}(V, C))(a)=\mu\{a\}$.
Next we state a number of propositions:
(23) $\bigsqcup_{K}^{\mathrm{f}} \operatorname{Atom}(V, C)=\operatorname{FinUnion}\left(K\right.$, singleton $\left._{V \rightarrow C}\right)$.
(24) For every element u of $\operatorname{SubstitutionSet}(V, C)$ holds $u=\bigsqcup_{u}^{\mathrm{f}} \operatorname{Atom}(V, C)$.

$$
\begin{equation*}
\left(\square \backslash_{u} \square\right)(v) \sqsubseteq u \tag{25}
\end{equation*}
$$

(26) For every element a of $V \dot{\rightarrow} C$ such that a is finite and for every set c such that $c \in(\operatorname{Atom}(V, C))(a)$ holds $c=a$.
(27) For every element a of $V \dot{\rightarrow} C$ such that $K=\{a\}$ and $L=u$ and $L^{\wedge} K=\emptyset$ holds $(\operatorname{Atom}(V, C))(a) \sqsubseteq($ pseudo_compl $(V, C))(u)$.
(28) For every finite element a of $V \dot{\rightarrow} C$ holds $a \in(\operatorname{Atom}(V, C))(a)$.
(29) Let u, v be elements of SubstitutionSet (V, C). Suppose that for every set c such that $c \in u$ there exists a set b such that $b \in v$ and $b \subseteq c \cup a$. Then there exists a set b such that $b \in u \mapsto v$ and $b \subseteq a$.
(30) Let a be a finite element of $V \dot{\rightarrow} C$. Suppose for every element b of $V \dot{\rightarrow} C$ such that $b \in u$ holds $b \approx a$ and $u \sqcap(\operatorname{Atom}(V, C))(a) \sqsubseteq v$. Then $(\operatorname{Atom}(V, C))(a) \sqsubseteq(\operatorname{StrongImpl}(V, C))(u, v)$.
(31) $u \sqcap($ pseudo_compl $(V, C))(u)=\perp_{\text {SubstLatt }(V, C)}$.
(32) $u \sqcap(\operatorname{StrongImpl}(V, C))(u, v) \sqsubseteq v$.

Let us consider V, C. Observe that $\operatorname{SubstLatt}(V, C)$ is implicative.
One can prove the following proposition
(33) $\quad u \Rightarrow v=\bigsqcup_{2^{u}}^{\mathrm{f}}\left((\text { the meet operation of } \operatorname{SubstLatt}(V, C))^{\circ}(\right.$ pseudo_compl (V, C), $\left.(\operatorname{Strong} \operatorname{Impl}(V, C))^{\circ}\left(\square \backslash_{u} \square, v\right)\right)$).

References

[1] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Adam Grabowski. Lattice of substitutions. Formalized Mathematics, 6(3):359-361, 1997.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983-988, 1990.
[11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[18] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received December 31, 1998

