Lattice of Substitutions is a Heyting Algebra

Adam Grabowski University of Białystok

MML Identifier: HEYTING2.

The terminology and notation used in this paper have been introduced in the following articles: [2], [15], [1], [7], [13], [9], [3], [4], [10], [18], [5], [16], [17], [11], [14], [8], [12], and [6].

1. Preliminaries

We adopt the following convention: V, C, x are sets and A, B are elements of SubstitutionSet(V, C).

Let a, b be sets. Note that $\{\langle a, b \rangle\}$ is function-like and relation-like. Let A, B be sets. Observe that $A \rightarrow B$ is functional. Next we state several propositions:

- (1) For all non empty sets V, C there exists an element f of $V \rightarrow C$ such that $f \neq \emptyset$.
- (2) For all sets a, b such that $b \in \text{SubstitutionSet}(V, C)$ and $a \in b$ holds a is a finite function.
- (3) For every element f of $V \rightarrow C$ and for every set g such that $g \subseteq f$ holds $g \in V \rightarrow C$.
- $(4) \quad V \to C \subseteq 2^{[V,C]}.$
- (5) If V is finite and C is finite, then $V \rightarrow C$ is finite.

One can check that there exists a set which is functional, finite, and non empty.

C 1998 University of Białystok ISSN 1426-2630

ADAM GRABOWSKI

2. Some Properties of Sets of Substitutions

One can prove the following four propositions:

- (6) For every finite element a of $V \rightarrow C$ holds $\{a\} \in \text{SubstitutionSet}(V, C)$.
- (7) If $A \cap B = A$, then for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$.
- (8) If $\mu(A \cap B) = A$, then for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$.
- (9) If for every set a such that $a \in A$ there exists a set b such that $b \in B$ and $b \subseteq a$, then $\mu(A \cap B) = A$.

Let V be a set, let C be a finite set, and let A be an element of $\operatorname{Fin}(V \to C)$. The functor Involved A is defined by:

(Def. 1) $x \in \text{Involved } A$ iff there exists a finite function f such that $f \in A$ and $x \in \text{dom } f$.

In the sequel C denotes a finite set.

The following propositions are true:

- (10) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \to C)$ holds Involved $A \subseteq V$.
- (11) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \to C)$ such that $A = \emptyset$ holds Involved $A = \emptyset$.
- (12) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \to C)$ holds Involved A is finite.
- (13) For every finite set C and for every element A of $\operatorname{Fin}(\emptyset \to C)$ holds Involved $A = \emptyset$.

Let V be a set, let C be a finite set, and let A be an element of $\operatorname{Fin}(V \to C)$. The functor -A yielding an element of $\operatorname{Fin}(V \to C)$ is defined as follows:

(Def. 2) $-A = \{f; f \text{ ranges over elements of Involved } A \rightarrow C : \bigwedge_{g: \text{ element of } V \rightarrow C} (g \in A \Rightarrow f \not\approx g) \}.$

One can prove the following propositions:

- (14) $A \cap -A = \emptyset$.
- (15) If $A = \emptyset$, then $-A = \{\emptyset\}$.
- (16) If $A = \{\emptyset\}$, then $-A = \emptyset$.
- (17) For every set V and for every finite set C and for every element A of SubstitutionSet(V, C) holds $\mu(A \cap -A) = \bot_{\text{SubstLatt}(V,C)}$.
- (18) For every non empty set V and for every finite non empty set C and for every element A of SubstitutionSet(V, C) such that $A = \emptyset$ holds $\mu(-A) = \prod_{\text{SubstLatt}(V,C)}$.

(19) Let V be a set, C be a finite set, A be an element of SubstitutionSet(V, C), a be an element of $V \rightarrow C$, and B be an element of SubstitutionSet(V, C). Suppose $B = \{a\}$. If $A \cap B = \emptyset$, then there exists a finite set b such that $b \in -A$ and $b \subseteq a$.

Let V be a set, let C be a finite set, and let A, B be elements of $\operatorname{Fin}(V \to C)$. The functor $A \to B$ yielding an element of $\operatorname{Fin}(V \to C)$ is defined as follows:

(Def. 3) $A \rightarrow B = (V \rightarrow C) \cap \{\bigcup \{f(i) \setminus i; i \text{ ranges over elements of } V \rightarrow C : i \in A\}; f \text{ ranges over elements of } A \rightarrow B : \text{dom } f = A\}.$

Next we state two propositions:

- (20) Let A, B be elements of $\operatorname{Fin}(V \to C)$ and s be a set. Suppose $s \in A \to B$. Then there exists a partial function f from A to B such that $s = \bigcup \{f(i) \setminus i; i \text{ ranges over elements of } V \to C : i \in A \}$ and dom f = A.
- (21) For every set V and for every finite set C and for every element A of $\operatorname{Fin}(V \to C)$ such that $A = \emptyset$ holds $A \to A = \{\emptyset\}$.

We adopt the following convention: u, v are elements of the carrier of SubstLatt(V, C), a is an element of $V \rightarrow C$, and K, L are elements of SubstitutionSet(V, C).

The following proposition is true

(22) For every set X such that $X \subseteq u$ holds X is an element of the carrier of SubstLatt(V, C).

3. LATTICE OF SUBSTITUTIONS IS IMPLICATIVE

Let us consider V, C. The functor pseudo_compl(V, C) yielding a unary operation on the carrier of SubstLatt(V, C) is defined as follows:

(Def. 4) For every element u' of SubstitutionSet(V, C) such that u' = u holds (pseudo_compl(V, C)) $(u) = \mu(-u')$.

The functor $\operatorname{StrongImpl}(V, C)$ yielding a binary operation on the carrier of $\operatorname{SubstLatt}(V, C)$ is defined by:

(Def. 5) For all elements u', v' of SubstitutionSet(V, C) such that u' = u and v' = v holds (StrongImpl(V, C)) $(u, v) = \mu(u' \rightarrow v')$.

Let us consider u. The functor 2^u yielding an element of Fin (the carrier of SubstLatt(V, C)) is defined by:

(Def. 6)
$$2^u = 2^u$$
.

The functor $\Box \setminus_u \Box$ yielding a unary operation on the carrier of SubstLatt(V, C) is defined by:

(Def. 7) $(\Box \setminus_u \Box)(v) = u \setminus v.$

Let us consider V, C. The functor Atom(V, C) yielding a function from $V \rightarrow C$ into the carrier of SubstLatt(V, C) is defined as follows:

(Def. 8) For every element a of $V \rightarrow C$ holds $(Atom(V, C))(a) = \mu\{a\}$.

Next we state a number of propositions:

- (23) $\bigsqcup_{K}^{f} \operatorname{Atom}(V, C) = \operatorname{FinUnion}(K, \operatorname{singleton}_{V \to C}).$
- (24) For every element u of SubstitutionSet(V, C) holds $u = \bigsqcup_{u}^{f} \operatorname{Atom}(V, C)$.
- (25) $(\Box \setminus_u \Box)(v) \sqsubseteq u.$
- (26) For every element a of $V \rightarrow C$ such that a is finite and for every set c such that $c \in (Atom(V, C))(a)$ holds c = a.
- (27) For every element a of $V \rightarrow C$ such that $K = \{a\}$ and L = u and $L^{\frown}K = \emptyset$ holds $(\operatorname{Atom}(V, C))(a) \sqsubseteq (\operatorname{pseudo_compl}(V, C))(u)$.
- (28) For every finite element a of $V \rightarrow C$ holds $a \in (\operatorname{Atom}(V, C))(a)$.
- (29) Let u, v be elements of SubstitutionSet(V, C). Suppose that for every set c such that $c \in u$ there exists a set b such that $b \in v$ and $b \subseteq c \cup a$. Then there exists a set b such that $b \in u \rightarrow v$ and $b \subseteq a$.
- (30) Let a be a finite element of $V \rightarrow C$. Suppose for every element b of $V \rightarrow C$ such that $b \in u$ holds $b \approx a$ and $u \sqcap (\operatorname{Atom}(V,C))(a) \sqsubseteq v$. Then $(\operatorname{Atom}(V,C))(a) \sqsubseteq (\operatorname{StrongImpl}(V,C))(u, v)$.
- (31) $u \sqcap (\text{pseudo_compl}(V, C))(u) = \bot_{\text{SubstLatt}(V,C)}.$
- (32) $u \sqcap (\operatorname{StrongImpl}(V, C))(u, v) \sqsubseteq v.$

Let us consider V, C. Observe that SubstLatt(V, C) is implicative.

One can prove the following proposition

(33) $u \Rightarrow v = \bigsqcup_{2^u}^{f} (\text{the meet operation of SubstLatt}(V, C))^{\circ}(\text{pseudo_compl}(V, C), (\text{StrongImpl}(V, C))^{\circ}(\Box \setminus_u \Box, v))).$

References

- [1] Grzegorz Bancerek. Filters part I. Formalized Mathematics, 1(5):813-819, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Adam Grabowski. Lattice of substitutions. Formalized Mathematics, 6(3):359–361, 1997.
 [9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
- 1(2):329–334, 1990.
 [10] Andrzej Trybulec. Finite join and finite meet and dual lattices. *Formalized Mathematics*,
- 1(5):983–988, 1990.
 [11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

- [13] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [17] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [18] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received December 31, 1998