Oriented Chains

Yatsuka Nakamura
Shinshu University
Nagano

Piotr Rudnicki
University of Alberta
Edmonton

Abstract

Summary. In [5] we introduced a number of notions about vertex sequences associated with undirected chains of edges in graphs. In this article, we introduce analogous concepts for oriented chains and use them to prove properties of cutting and glueing of oriented chains, and the existence of a simple oriented chain in an oriented chain.

MML Identifier: GRAPH_4.

The notation and terminology used here are introduced in the following papers: [6], [8], [2], [3], [4], [5], [1], [9], and [7].

1. Oriented Vertex Sequences

For simplicity, we adopt the following rules: p, q denote finite sequences, m, n denote natural numbers, G denotes a graph, $x, y, v, v_{1}, v_{2}, v_{3}, v_{4}$ denote elements of the vertices of G, e denotes a set, and X denotes a set.

Let us consider G, let us consider x, y, and let us consider e. We say that e orientedly joins x, y if and only if:
(Def. 1) (The source of $G)(e)=x$ and (the target of $G)(e)=y$.
We now state the proposition
(1) If e orientedly joins v_{1}, v_{2}, then e joins v_{1} with v_{2}.

Let us consider G and let x, y be elements of the vertices of G. We say that x, y are orientedly incident if and only if:
(Def. 2) There exists a set v such that $v \in$ the edges of G and v orientedly joins x, y.

One can prove the following proposition
(2) If e orientedly joins v_{1}, v_{2} and e orientedly joins v_{3}, v_{4}, then $v_{1}=v_{3}$ and $v_{2}=v_{4}$.
We follow the rules: v_{5}, v_{6}, v_{7} are finite sequences of elements of the vertices of G and c, c_{1}, c_{2} are oriented chains of G.

We now state the proposition
(3) ε is an oriented chain of G.

Let us consider G. Observe that there exists a chain of G which is empty and oriented.

Let us consider G, X. The functor G-SVSet X yields a set and is defined by:
(Def. 3) G-SVSet $X=\left\{v: \bigvee_{e: \text { element of the edges of } G}(e \in X \wedge v=\right.$ (the source of $G)(e))\}$.
Let us consider G, X. The functor G-TVSet X yielding a set is defined by:
(Def. 4) G-TVSet $X=\left\{v: \bigvee_{e: \text { element of the edges of } G}(e \in X \wedge v=\right.$ (the target of $G)(e))\}$.
Next we state the proposition
(4) If $X=\emptyset$, then G-SVSet $X=\emptyset$ and G-TVSet $X=\emptyset$.

Let us consider G, v_{5} and let c be a finite sequence. We say that v_{5} is oriented vertex seq of c if and only if:
(Def. 5) len $v_{5}=\operatorname{len} c+1$ and for every n such that $1 \leqslant n$ and $n \leqslant \operatorname{len} c$ holds $c(n)$ orientedly joins $\pi_{n} v_{5}, \pi_{n+1} v_{5}$.
One can prove the following propositions:
(5) If v_{5} is oriented vertex seq of c, then v_{5} is vertex sequence of c.
(6) If v_{5} is oriented vertex seq of c, then G-SVSet $\operatorname{rng} c \subseteq \operatorname{rng} v_{5}$.
(7) If v_{5} is oriented vertex seq of c, then G-TVSet $\operatorname{rng} c \subseteq \operatorname{rng} v_{5}$.
(8) If $c \neq \varepsilon$ and v_{5} is oriented vertex seq of c, then $\operatorname{rng} v_{5} \subseteq(G$-SVSet $\operatorname{rng} c) \cup$ (G-TVSet rng c).

2. Cutting and Glueing of Oriented Chains

One can prove the following propositions:
(9) $\langle v\rangle$ is oriented vertex seq of ε.
(10) There exists v_{5} such that v_{5} is oriented vertex seq of c.
(11) If $c \neq \varepsilon$ and v_{6} is oriented vertex seq of c and v_{7} is oriented vertex seq of c, then $v_{6}=v_{7}$.

Let us consider G, c. Let us assume that $c \neq \varepsilon$. The functor oriented-vertex-seq c yielding a finite sequence of elements of the vertices of G is defined as follows:
(Def. 6) oriented-vertex-seq c is oriented vertex seq of c.
Next we state several propositions:
(12) If v_{5} is oriented vertex seq of c and $c_{1}=c \upharpoonright \operatorname{Seg} n$ and $v_{6}=v_{5} \upharpoonright \operatorname{Seg}(n+1)$, then v_{6} is oriented vertex seq of c_{1}.
(13) If $1 \leqslant m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} c$ and $q=\langle c(m), \ldots, c(n)\rangle$, then q is an oriented chain of G.
(14) Suppose $1 \leqslant m$ and $m \leqslant n$ and $n \leqslant \operatorname{len} c$ and $c_{1}=\langle c(m), \ldots, c(n)\rangle$ and v_{5} is oriented vertex seq of c and $v_{6}=\left\langle v_{5}(m), \ldots, v_{5}(n+1)\right\rangle$. Then v_{6} is oriented vertex seq of c_{1}.
(15) Suppose v_{6} is oriented vertex seq of c_{1} and v_{7} is oriented vertex seq of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=v_{7}(1)$. Then $c_{1} \wedge c_{2}$ is an oriented chain of G.
(16) Suppose v_{6} is oriented vertex seq of c_{1} and v_{7} is oriented vertex seq of c_{2} and $v_{6}\left(\operatorname{len} v_{6}\right)=v_{7}(1)$ and $c=c_{1}{ }^{\wedge} c_{2}$ and $v_{5}=v_{6} \wedge v_{7}$. Then v_{5} is oriented vertex seq of c.

3. Oriented Simple Chains in Oriented Chains

Let us consider G and let I_{1} be an oriented chain of G. We say that I_{1} is Simple if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exists v_{5} such that v_{5} is oriented vertex seq of I_{1} and for all n, m such that $1 \leqslant n$ and $n<m$ and $m \leqslant \operatorname{len} v_{5}$ and $v_{5}(n)=v_{5}(m)$ holds $n=1$ and $m=\operatorname{len} v_{5}$.
Let us consider G. Note that there exists an oriented chain of G which is Simple.

Let us consider G. One can verify that there exists a chain of G which is oriented and simple.

Next we state two propositions:
(17) Every oriented simple chain of G is an oriented chain of G.
(18) For every oriented chain q of G holds $q \upharpoonright \operatorname{Seg} n$ is an oriented chain of G.

In the sequel s_{1} is an oriented simple chain of G.
Next we state several propositions:
(19) $s_{1} \upharpoonright \operatorname{Seg} n$ is an oriented simple chain of G.
(20) For every oriented chain s_{1}^{\prime} of G such that $s_{1}^{\prime}=s_{1}$ holds s_{1}^{\prime} is Simple.
(21) Every Simple oriented chain of G is an oriented simple chain of G.
(22) Suppose c is not Simple and v_{5} is oriented vertex seq of c. Then there exists a FinSubsequence f_{1} of c and there exists a FinSubsequence f_{2} of v_{5} and there exist c_{1}, v_{6} such that len $c_{1}<\operatorname{len} c$ and v_{6} is oriented vertex seq of c_{1} and len $v_{6}<\operatorname{len} v_{5}$ and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=v_{6}\left(\operatorname{len} v_{6}\right)$ and Seq $f_{1}=c_{1}$ and Seq $f_{2}=v_{6}$.
(23) Suppose v_{5} is oriented vertex seq of c. Then there exists a FinSubsequence f_{1} of c and there exists a FinSubsequence f_{2} of v_{5} and there exist s_{1}, v_{6} such that $\operatorname{Seq} f_{1}=s_{1}$ and Seq $f_{2}=v_{6}$ and v_{6} is oriented vertex seq of s_{1} and $v_{5}(1)=v_{6}(1)$ and $v_{5}\left(\operatorname{len} v_{5}\right)=v_{6}\left(\operatorname{len} v_{6}\right)$.
Let us consider G. Observe that every oriented chain of G which is empty is also oriented.

Next we state three propositions:
(24) If p is an oriented path of G, then $p \upharpoonright \operatorname{Seg} n$ is an oriented path of G.
(25) s_{1} is an oriented path of G.
(26) Let c_{1} be a finite sequence. Then
(i) $\quad c_{1}$ is a Simple oriented chain of G iff c_{1} is an oriented simple chain of G, and
(ii) if c_{1} is an oriented simple chain of G, then c_{1} is an oriented path of G.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[5] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

