A Theory of Boolean Valued Functions and Partitions

Shunichi Kobayashi
Shinshu University
Nagano

Kui Jia
Shinshu University
Nagano

Abstract

Summary. In this paper, we define Boolean valued functions. Some of their algebraic properties are proved. We also introduce and examine the infimum and supremum of Boolean valued functions and their properties. In the last section, relations between Boolean valued functions and partitions are discussed.

MML Identifier: BVFUNC_1.

The terminology and notation used in this paper are introduced in the following papers: [4], [6], [1], [2], [3], and [5].

1. Boolean Operations

In this paper Y denotes a non empty set.
Let k, l be elements of Boolean. The functor $k \Rightarrow l$ is defined by:
(Def. 1) $k \Rightarrow l=\neg k \vee l$.
The functor $k \Leftrightarrow l$ is defined as follows:
(Def. 2) $k \Leftrightarrow l=\neg(k \oplus l)$.
Let k, l be elements of Boolean. The predicate $k \Subset l$ is defined by:
(Def. 3) $k \Rightarrow l=$ true.
Let us note that the predicate $k \Subset l$ is reflexive.
One can prove the following three propositions:
(1) For all elements k, l of Boolean and for all natural numbers n_{1}, n_{2} such that $k=n_{1}$ and $l=n_{2}$ holds $k \Subset l$ iff $n_{1} \leqslant n_{2}$.
(2) For all elements k, l of Boolean such that $k \Subset l$ and $l \Subset k$ holds $k=l$.
(3) For all elements k, l, m of Boolean such that $k \Subset l$ and $l \Subset m$ holds $k \Subset m$.

2. Boolean Valued Functions

Let us consider Y. The functor $\operatorname{BVF}(Y)$ is defined by:
(Def. 4) $\operatorname{BVF}(Y)=$ Boolean Y.
Let Y be a non empty set. Observe that $\operatorname{BVF}(Y)$ is functional and non empty.

Let us consider Y, let a be an element of $\operatorname{BVF}(Y)$, and let x be an element of Y. The functor $\operatorname{Pj}(a, x)$ yields an element of Boolean and is defined by:
(Def. 5) $\operatorname{Pj}(a, x)=a(x)$.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The functor $a \wedge b$ yields an element of $\operatorname{BVF}(Y)$ and is defined by:
(Def. 6) For every element x of Y holds $\operatorname{Pj}(a \wedge b, x)=\operatorname{Pj}(a, x) \wedge \operatorname{Pj}(b, x)$.
Let us notice that the functor $a \wedge b$ is commutative.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The functor $a \vee b$ yields an element of $\operatorname{BVF}(Y)$ and is defined by:
(Def. 7) For every element x of Y holds $\operatorname{Pj}(a \vee b, x)=\operatorname{Pj}(a, x) \vee \operatorname{Pj}(b, x)$.
Let us notice that the functor $a \vee b$ is commutative.
Let us consider Y and let a be an element of $\operatorname{BVF}(Y)$. The functor $\neg a$ yielding an element of $\operatorname{BVF}(Y)$ is defined as follows:
(Def. 8) For every element x of Y holds $\operatorname{Pj}(\neg a, x)=\neg \operatorname{Pj}(a, x)$.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The functor $a \oplus b$ yields an element of $\operatorname{BVF}(Y)$ and is defined as follows:
(Def. 9) For every element x of Y holds $\operatorname{Pj}(a \oplus b, x)=\operatorname{Pj}(a, x) \oplus \operatorname{Pj}(b, x)$.
Let us note that the functor $a \oplus b$ is commutative.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The functor $a \Rightarrow b$ yields an element of $\operatorname{BVF}(Y)$ and is defined by:
(Def. 10) For every element x of Y holds $\operatorname{Pj}(a \Rightarrow b, x)=\neg \operatorname{Pj}(a, x) \vee \operatorname{Pj}(b, x)$.
Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The functor $a \Leftrightarrow b$ yielding an element of $\operatorname{BVF}(Y)$ is defined as follows:
(Def. 11) For every element x of Y holds $\operatorname{Pj}(a \Leftrightarrow b, x)=\neg(\operatorname{Pj}(a, x) \oplus \operatorname{Pj}(b, x))$.
Let us observe that the functor $a \Leftrightarrow b$ is commutative.
Let us consider Y. The functor false (Y) yielding an element of $\operatorname{BVF}(Y)$ is defined by:
(Def. 12) For every element x of Y holds $\operatorname{Pj}($ false $(Y), x)=$ false.

Let us consider Y. The functor true (Y) yielding an element of $\operatorname{BVF}(Y)$ is defined as follows:
(Def. 13) For every element x of Y holds $\operatorname{Pj}($ true $(Y), x)=$ true.
The following propositions are true:
(4) For every element a of $\operatorname{BVF}(Y)$ holds $\neg \neg a=a$.
(5) For every element a of $\operatorname{BVF}(Y)$ holds $\neg \operatorname{true}(Y)=$ false (Y) and $\neg \operatorname{false}(Y)=\operatorname{true}(Y)$.
(6) For all elements a, b of $\operatorname{BVF}(Y)$ holds $a \wedge a=a$.
(7) For all elements a, b, c of $\operatorname{BVF}(Y)$ holds $(a \wedge b) \wedge c=a \wedge(b \wedge c)$.
(8) For every element a of $\operatorname{BVF}(Y)$ holds $a \wedge$ false $(Y)=$ false (Y).
(9) For every element a of $\operatorname{BVF}(Y)$ holds $a \wedge \operatorname{true}(Y)=a$.
(10) For every element a of $\operatorname{BVF}(Y)$ holds $a \vee a=a$.
(11) For all elements a, b, c of $\operatorname{BVF}(Y)$ holds $(a \vee b) \vee c=a \vee(b \vee c)$.
(12) For every element a of $\operatorname{BVF}(Y)$ holds $a \vee$ false $(Y)=a$.
(13) For every element a of $\operatorname{BVF}(Y)$ holds $a \vee \operatorname{true}(Y)=\operatorname{true}(Y)$.
(14) For all elements a, b, c of $\operatorname{BVF}(Y)$ holds $a \wedge b \vee c=(a \vee c) \wedge(b \vee c)$.
(15) For all elements a, b, c of $\operatorname{BVF}(Y)$ holds $(a \vee b) \wedge c=a \wedge c \vee b \wedge c$.
(16) For all elements a, b of $\operatorname{BVF}(Y)$ holds $\neg(a \vee b)=\neg a \wedge \neg b$.
(17) For all elements a, b of $\operatorname{BVF}(Y)$ holds $\neg(a \wedge b)=\neg a \vee \neg b$.

Let us consider Y and let a, b be elements of $\operatorname{BVF}(Y)$. The predicate $a \Subset b$ is defined by:
(Def. 14) For every element x of Y such that $\operatorname{Pj}(a, x)=$ true holds $\operatorname{Pj}(b, x)=$ true.
Let us note that the predicate $a \Subset b$ is reflexive.
The following four propositions are true:
(18) For all elements a, b, c of $\operatorname{BVF}(Y)$ holds if $a \Subset b$ and $b \Subset a$, then $a=b$ and if $a \Subset b$ and $b \Subset c$, then $a \Subset c$.
(19) For all elements a, b of $\operatorname{BVF}(Y)$ holds $a \Rightarrow b=\operatorname{true}(Y)$ iff $a \Subset b$.
(20) For all elements a, b of $\operatorname{BVF}(Y)$ holds $a \Leftrightarrow b=\operatorname{true}(Y)$ iff $a=b$.
(21) For every element a of $\operatorname{BVF}(Y)$ holds false $(Y) \Subset a$ and $a \Subset \operatorname{true}(Y)$.

3. Infimum and Supremum

Let us consider Y and let a be an element of $\operatorname{BVF}(Y)$. The functor INF a yields an element of $\operatorname{BVF}(Y)$ and is defined as follows:
(Def. 15) $\operatorname{INF} a=\left\{\begin{array}{l}\operatorname{true}(Y), \text { if for every element } x \text { of } Y \text { holds } \operatorname{Pj}(a, x)=\text { true }, \\ \text { false }(Y), \text { otherwise. }\end{array}\right.$
The functor SUP a yielding an element of $\operatorname{BVF}(Y)$ is defined by:
(Def. 16) $\operatorname{SUP} a=\left\{\begin{array}{l}\text { false }(Y), \text { if for every element } x \text { of } Y \text { holds } \operatorname{Pj}(a, x)=\text { false, } \\ \operatorname{true}(Y), \text { otherwise. }\end{array}\right.$
Next we state two propositions:
(22) For every element a of $\operatorname{BVF}(Y)$ holds $\neg \operatorname{INF} a=\mathrm{SUP} \neg a$ and $\neg \operatorname{SUP} a=$ INF $\neg a$.
(23) INF false $(Y)=$ false (Y) and $\operatorname{INF} \operatorname{true}(Y)=\operatorname{true}(Y)$ and SUP false $(Y)=$ false (Y) and $\operatorname{SUP} \operatorname{true}(Y)=\operatorname{true}(Y)$.
Let us consider Y. Observe that false (Y) is constant.
Let us consider Y. One can verify that $\operatorname{true}(Y)$ is constant.
Let Y be a non empty set. Observe that there exists an element of $\operatorname{BVF}(Y)$ which is constant.

We now state several propositions:
(24) For every constant element a of $\operatorname{BVF}(Y)$ holds $a=$ false (Y) or $a=$ true (Y).
(25) For every constant element d of $\operatorname{BVF}(Y)$ holds INF $d=d$ and $\operatorname{SUP} d=d$.
(26) For all elements a, b of $\operatorname{BVF}(Y)$ holds $\operatorname{INF}(a \wedge b)=\operatorname{INF} a \wedge \operatorname{INF} b$ and $\operatorname{SUP}(a \vee b)=\operatorname{SUP} a \vee \operatorname{SUP} b$.
(27) For every element a of $\operatorname{BVF}(Y)$ and for every constant element d of $\operatorname{BVF}(Y)$ holds $\operatorname{INF}(d \Rightarrow a)=d \Rightarrow \operatorname{INF} a$ and $\operatorname{INF}(a \Rightarrow d)=\operatorname{SUP} a \Rightarrow d$.
(28) For every element a of $\operatorname{BVF}(Y)$ and for every constant element d of $\operatorname{BVF}(Y)$ holds $\operatorname{INF}(d \vee a)=d \vee \operatorname{INF} a$ and $\operatorname{SUP}(d \wedge a)=d \wedge \operatorname{SUP} a$ and $\operatorname{SUP}(a \wedge d)=\operatorname{SUP} a \wedge d$.
(29) For every element a of $\operatorname{BVF}(Y)$ and for every element x of Y holds $\operatorname{Pj}(\operatorname{INF} a, x) \Subset \operatorname{Pj}(a, x)$.
(30) For every element a of $\operatorname{BVF}(Y)$ and for every element x of Y holds $\operatorname{Pj}(a, x) \Subset \operatorname{Pj}(\operatorname{SUP} a, x)$.

4. Boolean Valued Functions and Partitions

Let us consider Y, let a be an element of $\operatorname{BVF}(Y)$, and let P_{1} be a partition of Y. We say that a is dependent of P_{1} if and only if:
(Def. 17) For every set F such that $F \in P_{1}$ and for all sets x_{1}, x_{2} such that $x_{1} \in F$ and $x_{2} \in F$ holds $a\left(x_{1}\right)=a\left(x_{2}\right)$.
The following two propositions are true:
(31) For every element a of $\operatorname{BVF}(Y)$ holds a is dependent of $\mathcal{I}(Y)$.
(32) For every constant element a of $\operatorname{BVF}(Y)$ holds a is dependent of $\mathcal{O}(Y)$.

Let us consider Y and let P_{1} be a partition of Y. We see that the element of P_{1} is a subset of Y.

Let us consider Y, let x be an element of Y, and let P_{1} be a partition of Y. Then $\operatorname{EqClass}\left(x, P_{1}\right)$ is an element of P_{1}. We introduce $\operatorname{Lift}\left(x, P_{1}\right)$ as a synonym of $\operatorname{EqClass}\left(x, P_{1}\right)$.

Let us consider Y, let a be an element of $\operatorname{BVF}(Y)$, and let P_{1} be a partition of Y. The functor $\operatorname{INF}\left(a, P_{1}\right)$ yields an element of $\operatorname{BVF}(Y)$ and is defined by the condition (Def. 18).
(Def. 18) Let y be an element of Y. Then
(i) if for every element x of Y such that $x \in \operatorname{EqClass}\left(y, P_{1}\right)$ holds $\operatorname{Pj}(a, x)=$ true, then $\operatorname{Pj}\left(\operatorname{INF}\left(a, P_{1}\right), y\right)=$ true, and
(ii) if it is not true that for every element x of Y such that $x \in$ $\operatorname{EqClass}\left(y, P_{1}\right)$ holds $\operatorname{Pj}(a, x)=$ true, then $\operatorname{Pj}\left(\operatorname{INF}\left(a, P_{1}\right), y\right)=$ false.
Let us consider Y, let a be an element of $\operatorname{BVF}(Y)$, and let P_{1} be a partition of Y. The functor $\operatorname{SUP}\left(a, P_{1}\right)$ yielding an element of $\operatorname{BVF}(Y)$ is defined by the condition (Def. 19).
(Def. 19) Let y be an element of Y. Then
(i) if there exists an element x of Y such that $x \in \operatorname{EqClass}\left(y, P_{1}\right)$ and $\operatorname{Pj}(a, x)=$ true , then $\operatorname{Pj}\left(\operatorname{SUP}\left(a, P_{1}\right), y\right)=$ true, and
(ii) if it is not true that there exists an element x of Y such that $x \in$ $\operatorname{EqClass}\left(y, P_{1}\right)$ and $\operatorname{Pj}(a, x)=$ true, then $\operatorname{Pj}\left(\operatorname{SUP}\left(a, P_{1}\right), y\right)=$ false.
Next we state a number of propositions:
(33) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\operatorname{INF}\left(a, P_{1}\right)$ is dependent of P_{1}.
(34) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\operatorname{SUP}\left(a, P_{1}\right)$ is dependent of P_{1}.
(35) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\operatorname{INF}\left(a, P_{1}\right) \Subset a$.
(36) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $a \Subset \operatorname{SUP}\left(a, P_{1}\right)$.
(37) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\neg \operatorname{INF}\left(a, P_{1}\right)=\operatorname{SUP}\left(\neg a, P_{1}\right)$.
(38) For every element a of $\operatorname{BVF}(Y)$ holds $\operatorname{INF}(a, \mathcal{O}(Y))=\operatorname{INF} a$.
(39) For every element a of $\operatorname{BVF}(Y)$ holds $\operatorname{SUP}(a, \mathcal{O}(Y))=\operatorname{SUP} a$.
(40) For every element a of $\operatorname{BVF}(Y)$ holds $\operatorname{INF}(a, \mathcal{I}(Y))=a$.
(41) For every element a of $\operatorname{BVF}(Y)$ holds $\operatorname{SUP}(a, \mathcal{I}(Y))=a$.
(42) For all elements a, b of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\operatorname{INF}\left(a \wedge b, P_{1}\right)=\operatorname{INF}\left(a, P_{1}\right) \wedge \operatorname{INF}\left(b, P_{1}\right)$.
(43) For all elements a, b of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y holds $\operatorname{SUP}\left(a \vee b, P_{1}\right)=\operatorname{SUP}\left(a, P_{1}\right) \vee \operatorname{SUP}\left(b, P_{1}\right)$.

Let us consider Y and let f be an element of $\operatorname{BVF}(Y)$. The functor GPart f yields a partition of Y and is defined by:
(Def. 20) GPart $f=\left\{\{x ; x\right.$ ranges over elements of $Y: f(x)=$ true $\},\left\{x^{\prime} ; x^{\prime}\right.$ ranges over elements of $Y: f\left(x^{\prime}\right)=$ false $\left.\}\right\} \backslash\{\emptyset\}$.
The following propositions are true:
(44) For every element a of $\operatorname{BVF}(Y)$ holds a is dependent of GPart a.
(45) For every element a of $\operatorname{BVF}(Y)$ and for every partition P_{1} of Y such that a is dependent of P_{1} holds P_{1} is finer than GPart a.

References

[1] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[2] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[4] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[6] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received October 22, 1998

