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Summary. In this paper, we define Boolean valued functions. Some of
their algebraic properties are proved. We also introduce and examine the infi-

mum and supremum of Boolean valued functions and their properties. In the

last section, relations between Boolean valued functions and partitions are di-

scussed.

MML Identifier: BVFUNC 1.

The terminology and notation used in this paper are introduced in the following

papers: [4], [6], [1], [2], [3], and [5].

1. Boolean Operations

In this paper Y denotes a non empty set.

Let k, l be elements of Boolean. The functor k ⇒ l is defined by:

(Def. 1) k ⇒ l = ¬k ∨ l.

The functor k ⇔ l is defined as follows:

(Def. 2) k ⇔ l = ¬(k ⊕ l).

Let k, l be elements of Boolean. The predicate k ⋐ l is defined by:

(Def. 3) k ⇒ l = true.

Let us note that the predicate k ⋐ l is reflexive.

One can prove the following three propositions:

(1) For all elements k, l of Boolean and for all natural numbers n1, n2 such

that k = n1 and l = n2 holds k ⋐ l iff n1 ¬ n2.

249
c© 1998 University of Białystok

ISSN 1426–2630



250 shunichi kobayashi and kui jia

(2) For all elements k, l of Boolean such that k ⋐ l and l ⋐ k holds k = l.

(3) For all elements k, l, m of Boolean such that k ⋐ l and l ⋐ m holds

k ⋐ m.

2. Boolean Valued Functions

Let us consider Y . The functor BVF(Y ) is defined by:

(Def. 4) BVF(Y ) = BooleanY .

Let Y be a non empty set. Observe that BVF(Y ) is functional and non

empty.

Let us consider Y , let a be an element of BVF(Y ), and let x be an element

of Y . The functor Pj(a, x) yields an element of Boolean and is defined by:

(Def. 5) Pj(a, x) = a(x).

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ∧ b

yields an element of BVF(Y ) and is defined by:

(Def. 6) For every element x of Y holds Pj(a ∧ b, x) = Pj(a, x) ∧ Pj(b, x).

Let us notice that the functor a ∧ b is commutative.

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ∨ b

yields an element of BVF(Y ) and is defined by:

(Def. 7) For every element x of Y holds Pj(a ∨ b, x) = Pj(a, x) ∨ Pj(b, x).

Let us notice that the functor a ∨ b is commutative.

Let us consider Y and let a be an element of BVF(Y ). The functor ¬a

yielding an element of BVF(Y ) is defined as follows:

(Def. 8) For every element x of Y holds Pj(¬a, x) = ¬Pj(a, x).

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⊕ b

yields an element of BVF(Y ) and is defined as follows:

(Def. 9) For every element x of Y holds Pj(a⊕ b, x) = Pj(a, x)⊕ Pj(b, x).

Let us note that the functor a⊕ b is commutative.

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⇒ b

yields an element of BVF(Y ) and is defined by:

(Def. 10) For every element x of Y holds Pj(a⇒ b, x) = ¬Pj(a, x) ∨ Pj(b, x).

Let us consider Y and let a, b be elements of BVF(Y ). The functor a ⇔ b

yielding an element of BVF(Y ) is defined as follows:

(Def. 11) For every element x of Y holds Pj(a⇔ b, x) = ¬(Pj(a, x)⊕ Pj(b, x)).

Let us observe that the functor a⇔ b is commutative.

Let us consider Y . The functor false(Y ) yielding an element of BVF(Y ) is

defined by:

(Def. 12) For every element x of Y holds Pj(false(Y ), x) = false.
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Let us consider Y . The functor true(Y ) yielding an element of BVF(Y ) is

defined as follows:

(Def. 13) For every element x of Y holds Pj(true(Y ), x) = true.

The following propositions are true:

(4) For every element a of BVF(Y ) holds ¬¬a = a.

(5) For every element a of BVF(Y ) holds ¬ true(Y ) = false(Y ) and

¬ false(Y ) = true(Y ).

(6) For all elements a, b of BVF(Y ) holds a ∧ a = a.

(7) For all elements a, b, c of BVF(Y ) holds (a ∧ b) ∧ c = a ∧ (b ∧ c).

(8) For every element a of BVF(Y ) holds a ∧ false(Y ) = false(Y ).

(9) For every element a of BVF(Y ) holds a ∧ true(Y ) = a.

(10) For every element a of BVF(Y ) holds a ∨ a = a.

(11) For all elements a, b, c of BVF(Y ) holds (a ∨ b) ∨ c = a ∨ (b ∨ c).

(12) For every element a of BVF(Y ) holds a ∨ false(Y ) = a.

(13) For every element a of BVF(Y ) holds a ∨ true(Y ) = true(Y ).

(14) For all elements a, b, c of BVF(Y ) holds a ∧ b ∨ c = (a ∨ c) ∧ (b ∨ c).

(15) For all elements a, b, c of BVF(Y ) holds (a ∨ b) ∧ c = a ∧ c ∨ b ∧ c.

(16) For all elements a, b of BVF(Y ) holds ¬(a ∨ b) = ¬a ∧ ¬b.

(17) For all elements a, b of BVF(Y ) holds ¬(a ∧ b) = ¬a ∨ ¬b.

Let us consider Y and let a, b be elements of BVF(Y ). The predicate a ⋐ b

is defined by:

(Def. 14) For every element x of Y such that Pj(a, x) = true holds Pj(b, x) = true.

Let us note that the predicate a ⋐ b is reflexive.

The following four propositions are true:

(18) For all elements a, b, c of BVF(Y ) holds if a ⋐ b and b ⋐ a, then a = b

and if a ⋐ b and b ⋐ c, then a ⋐ c.

(19) For all elements a, b of BVF(Y ) holds a⇒ b = true(Y ) iff a ⋐ b.

(20) For all elements a, b of BVF(Y ) holds a⇔ b = true(Y ) iff a = b.

(21) For every element a of BVF(Y ) holds false(Y ) ⋐ a and a ⋐ true(Y ).

3. Infimum and Supremum

Let us consider Y and let a be an element of BVF(Y ). The functor INF a

yields an element of BVF(Y ) and is defined as follows:

(Def. 15) INF a =

{

true(Y ), if for every element x of Y holds Pj(a, x) = true,

false(Y ), otherwise.

The functor SUP a yielding an element of BVF(Y ) is defined by:
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(Def. 16) SUP a =

{

false(Y ), if for every element x of Y holds Pj(a, x) = false,

true(Y ), otherwise.

Next we state two propositions:

(22) For every element a of BVF(Y ) holds ¬ INF a = SUP¬a and ¬SUP a =

INF¬a.

(23) INF false(Y ) = false(Y ) and INF true(Y ) = true(Y ) and

SUP false(Y ) = false(Y ) and SUP true(Y ) = true(Y ).

Let us consider Y . Observe that false(Y ) is constant.

Let us consider Y . One can verify that true(Y ) is constant.

Let Y be a non empty set. Observe that there exists an element of BVF(Y )

which is constant.

We now state several propositions:

(24) For every constant element a of BVF(Y ) holds a = false(Y ) or a =

true(Y ).

(25) For every constant element d of BVF(Y ) holds INF d = d and SUP d = d.

(26) For all elements a, b of BVF(Y ) holds INF(a ∧ b) = INF a ∧ INF b and

SUP(a ∨ b) = SUP a ∨ SUP b.

(27) For every element a of BVF(Y ) and for every constant element d of

BVF(Y ) holds INF(d⇒ a) = d⇒ INF a and INF(a⇒ d) = SUP a⇒ d.

(28) For every element a of BVF(Y ) and for every constant element d of

BVF(Y ) holds INF(d ∨ a) = d ∨ INF a and SUP(d ∧ a) = d ∧ SUP a and

SUP(a ∧ d) = SUP a ∧ d.

(29) For every element a of BVF(Y ) and for every element x of Y holds

Pj(INF a, x) ⋐ Pj(a, x).

(30) For every element a of BVF(Y ) and for every element x of Y holds

Pj(a, x) ⋐ Pj(SUP a, x).

4. Boolean Valued Functions and Partitions

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition

of Y . We say that a is dependent of P1 if and only if:

(Def. 17) For every set F such that F ∈ P1 and for all sets x1, x2 such that x1 ∈ F

and x2 ∈ F holds a(x1) = a(x2).

The following two propositions are true:

(31) For every element a of BVF(Y ) holds a is dependent of I(Y ).

(32) For every constant element a of BVF(Y ) holds a is dependent of O(Y ).

Let us consider Y and let P1 be a partition of Y . We see that the element

of P1 is a subset of Y .
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Let us consider Y , let x be an element of Y , and let P1 be a partition of Y .

Then EqClass(x, P1) is an element of P1. We introduce Lift(x, P1) as a synonym

of EqClass(x, P1).

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition

of Y . The functor INF(a, P1) yields an element of BVF(Y ) and is defined by the

condition (Def. 18).

(Def. 18) Let y be an element of Y . Then

(i) if for every element x of Y such that x ∈ EqClass(y, P1) holds Pj(a, x) =

true, then Pj(INF(a, P1), y) = true, and

(ii) if it is not true that for every element x of Y such that x ∈

EqClass(y, P1) holds Pj(a, x) = true, then Pj(INF(a, P1), y) = false.

Let us consider Y , let a be an element of BVF(Y ), and let P1 be a partition

of Y . The functor SUP(a, P1) yielding an element of BVF(Y ) is defined by the

condition (Def. 19).

(Def. 19) Let y be an element of Y . Then

(i) if there exists an element x of Y such that x ∈ EqClass(y, P1) and

Pj(a, x) = true, then Pj(SUP(a, P1), y) = true, and

(ii) if it is not true that there exists an element x of Y such that x ∈

EqClass(y, P1) and Pj(a, x) = true, then Pj(SUP(a, P1), y) = false.

Next we state a number of propositions:

(33) For every element a of BVF(Y ) and for every partition P1 of Y holds

INF(a, P1) is dependent of P1.

(34) For every element a of BVF(Y ) and for every partition P1 of Y holds

SUP(a, P1) is dependent of P1.

(35) For every element a of BVF(Y ) and for every partition P1 of Y holds

INF(a, P1) ⋐ a.

(36) For every element a of BVF(Y ) and for every partition P1 of Y holds

a ⋐ SUP(a, P1).

(37) For every element a of BVF(Y ) and for every partition P1 of Y holds

¬ INF(a, P1) = SUP(¬a, P1).

(38) For every element a of BVF(Y ) holds INF(a,O(Y )) = INF a.

(39) For every element a of BVF(Y ) holds SUP(a,O(Y )) = SUP a.

(40) For every element a of BVF(Y ) holds INF(a, I(Y )) = a.

(41) For every element a of BVF(Y ) holds SUP(a, I(Y )) = a.

(42) For all elements a, b of BVF(Y ) and for every partition P1 of Y holds

INF(a ∧ b, P1) = INF(a, P1) ∧ INF(b, P1).

(43) For all elements a, b of BVF(Y ) and for every partition P1 of Y holds

SUP(a ∨ b, P1) = SUP(a, P1) ∨ SUP(b, P1).
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Let us consider Y and let f be an element of BVF(Y ). The functor GPart f

yields a partition of Y and is defined by:

(Def. 20) GPart f = {{x; x ranges over elements of Y : f(x) = true}, {x′; x′ ranges

over elements of Y : f(x′) = false}} \ {∅}.

The following propositions are true:

(44) For every element a of BVF(Y ) holds a is dependent of GPart a.

(45) For every element a of BVF(Y ) and for every partition P1 of Y such

that a is dependent of P1 holds P1 is finer than GPart a.
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