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The notation and terminology used in this paper are introduced in the following

articles: [18], [14], [11], [7], [1], [13], [16], [10], [4], [19], [9], [17], [12], [6], [15], [3],

[8], [2], and [5].

1. Subsets as Nets

Let A be a set and let B be a non empty set. Observe that BA is non empty.

In this article we present several logical schemes. The scheme FraenkelInvo-

lution deals with a non empty set A, subsets B, C of A, and a unary functor F

yielding an element of A, and states that:

B = {F(a); a ranges over elements of A : a ∈ C}

provided the parameters have the following properties:

• C = {F(a); a ranges over elements of A : a ∈ B}, and

• For every element a of A holds F(F(a)) = a.

The scheme FraenkelComplement1 deals with a non empty relational struc-

ture A, a family B of subsets of A, a set C, and a unary functor F yielding a

subset of A, and states that:

Bc = {−F(a); a ranges over elements of A : a ∈ C}

provided the parameters meet the following requirement:

• B = {F(a); a ranges over elements of A : a ∈ C}.

The scheme FraenkelComplement2 deals with a non empty relational struc-

ture A, a family B of subsets of A, a set C, and a unary functor F yielding a

subset of A, and states that:

Bc = {F(a); a ranges over elements of A : a ∈ C}

1This work has been supported by KBN Grant 8 T11C 018 12.

35
c© 1998 University of Białystok

ISSN 1426–2630



36 grzegorz bancerek

provided the parameters meet the following requirement:

• B = {−F(a); a ranges over elements of A : a ∈ C}.

We now state several propositions:

(1) For every non empty relational structure R and for all elements x, y of

R holds y ∈ −↑x iff x 6¬ y.

(2) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, f

be a map from S into T , and X be a subset of the carrier of T . Then

−f−1(X) = f−1(−X).

(3) For every 1-sorted structure T and for every family F of subsets of T

holds F c = {−a; a ranges over subsets of T : a ∈ F}.

(4) Let R be a non empty relational structure and F be a subset of R. Then

↑F =
⋃
{↑x; x ranges over elements of R: x ∈ F} and ↓F =

⋃
{↓x; x

ranges over elements of R: x ∈ F}.

(5) Let R be a non empty relational structure, A be a family of subsets of

R, and F be a subset of R. If A = {−↑x; x ranges over elements of R:

x ∈ F}, then Intersect(A) = −↑F.

Let us mention that there exists a FR-structure which is strict, trivial, re-

flexive, non empty, discrete, and finite.

One can check that there exists a top-lattice which is strict, complete, and

trivial.

Let S be a non empty relational structure and let T be an upper-bounded

non empty reflexive antisymmetric relational structure. Note that there exists

a map from S into T which is infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded

non empty reflexive antisymmetric relational structure. Note that there exists

a map from S into T which is sups-preserving.

Let R, S be 1-sorted structures. Let us assume that the carrier of S ⊆ the

carrier of R. The functor incl(S, R) yields a map from S into R and is defined

as follows:

(Def. 1) incl(S,R) = idthe carrier of S .

Let R be a non empty relational structure and let S be a non empty relational

substructure of R. One can check that incl(S,R) is monotone.

Let R be a non empty relational structure and let X be a non empty subset

of the carrier of R. Note that sub(X) is non empty.

Let R be a non empty relational structure and let X be a non empty subset

of the carrier of R. The functor 〈X; id〉 yielding a strict non empty net structure

over R is defined as follows:

(Def. 2) 〈X; id〉 = incl(sub(X), R) · 〈sub(X); id〉.

The functor 〈Xop; id〉 yielding a strict non empty net structure over R is defined

as follows:
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(Def. 3) 〈Xop; id〉 = incl(sub(X), R) · 〈(sub(X))op; id〉.

One can prove the following propositions:

(6) Let R be a non empty relational structure and X be a non empty subset

of R. Then

(i) the carrier of 〈X; id〉 = X,

(ii) 〈X; id〉 is a full relational substructure of R, and

(iii) for every element x of 〈X; id〉 holds 〈X; id〉(x) = x.

(7) Let R be a non empty relational structure and X be a non empty subset

of R. Then

(i) the carrier of 〈Xop; id〉 = X,

(ii) 〈Xop; id〉 is a full relational substructure of Rop, and

(iii) for every element x of 〈Xop; id〉 holds 〈Xop; id〉(x) = x.

Let R be a non empty reflexive relational structure and letX be a non empty

subset of R. One can check that 〈X; id〉 is reflexive and 〈Xop; id〉 is reflexive.

Let R be a non empty transitive relational structure and let X be a non

empty subset of R. Observe that 〈X; id〉 is transitive and 〈Xop; id〉 is transitive.

Let R be a non empty reflexive relational structure and let I be a directed

subset of R. Note that sub(I) is directed.

Let R be a non empty reflexive relational structure and let I be a directed

non empty subset of R. Note that 〈I; id〉 is directed.

Let R be a non empty reflexive relational structure and let F be a filtered

non empty subset of R. One can verify that 〈(sub(F ))op; id〉 is directed.

Let R be a non empty reflexive relational structure and let F be a filtered

non empty subset of R. Note that 〈F op; id〉 is directed.

2. Operations on Families of Open Sets

One can prove the following propositions:

(8) For every topological space T such that T is empty holds the topology

of T = {∅}.

(9) Let T be a trivial non empty topological space. Then

(i) the topology of T = 2the carrier of T , and

(ii) for every point x of T holds the carrier of T = {x} and the topology of

T = {∅, {x}}.

(10) Let T be a trivial non empty topological space. Then {the carrier of T}

is a basis of T and ∅ is a prebasis of T and {∅} is a prebasis of T .

(11) For all sets X, Y and for every family A of subsets of X such that

A = {Y } holds FinMeetCl(A) = {Y,X} and UniCl(A) = {Y, ∅}.
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(12) For every set X and for all families A, B of subsets of X such that

A = B ∪ {X} or B = A \ {X} holds Intersect(A) = Intersect(B).

(13) For every set X and for all families A, B of subsets of X such that

A = B ∪ {X} or B = A \ {X} holds FinMeetCl(A) = FinMeetCl(B).

(14) Let X be a set and A be a family of subsets of X. Suppose X ∈ A. Let

x be a set. Then x ∈ FinMeetCl(A) if and only if there exists a finite non

empty family Y of subsets of X such that Y ⊆ A and x = Intersect(Y ).

(15) For every set X and for every family A of subsets of X holds

UniCl(UniCl(A)) = UniCl(A).

(16) For every set X and for every empty family A of subsets of X holds

UniCl(A) = {∅}.

(17) For every set X and for every empty family A of subsets of X holds

FinMeetCl(A) = {X}.

(18) For every set X and for every family A of subsets of X such that A =

{∅, X} holds UniCl(A) = A and FinMeetCl(A) = A.

(19) Let X, Y be sets, A be a family of subsets of X, and B be a family of

subsets of Y . Then

(i) if A ⊆ B, then UniCl(A) ⊆ UniCl(B), and

(ii) if A = B, then UniCl(A) = UniCl(B).

(20) Let X, Y be sets, A be a family of subsets of X, and B be a family of

subsets of Y . If A = B and X ∈ A and X ⊆ Y, then FinMeetCl(B) =

{Y } ∪ FinMeetCl(A).

(21) For every set X and for every family A of subsets of X holds

UniCl(FinMeetCl(UniCl(A))) = UniCl(FinMeetCl(A)).

3. Bases

Next we state a number of propositions:

(22) Let T be a topological space and K be a family of subsets of T . Then

the topology of T = UniCl(K) if and only if K is a basis of T .

(23) Let T be a topological space and K be a family of subsets of the carrier

of T . Then K is a prebasis of T if and only if FinMeetCl(K) is a basis of

T .

(24) Let T be a non empty topological space and B be a family of subsets of

T . If UniCl(B) is a prebasis of T , then B is a prebasis of T .

(25) Let T1, T2 be topological spaces and B be a basis of T1. Suppose the

carrier of T1 = the carrier of T2 and B is a basis of T2. Then the topology

of T1 = the topology of T2.
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(26) Let T1, T2 be topological spaces and P be a prebasis of T1. Suppose

the carrier of T1 = the carrier of T2 and P is a prebasis of T2. Then the

topology of T1 = the topology of T2.

(27) For every topological space T holds every basis of T is open and is a

prebasis of T .

(28) For every topological space T holds every prebasis of T is open.

(29) Let T be a non empty topological space and B be a prebasis of T . Then

B ∪ {the carrier of T} is a prebasis of T .

(30) For every topological space T and for every basis B of T holds B ∪ {the

carrier of T} is a basis of T .

(31) Let T be a topological space, B be a basis of T , and A be a subset of T .

Then A is open if and only if for every point p of T such that p ∈ A there

exists a subset a of T such that a ∈ B and p ∈ a and a ⊆ A.

(32) Let T be a topological space and B be a family of subsets of T . Suppose

that

(i) B ⊆ the topology of T , and

(ii) for every subset A of T such that A is open and for every point p of T

such that p ∈ A there exists a subset a of T such that a ∈ B and p ∈ a

and a ⊆ A.

Then B is a basis of T .

(33) Let S be a topological space, T be a non empty topological space, K be

a basis of T , and f be a map from S into T . Then f is continuous if and

only if for every subset A of T such that A ∈ K holds f−1(−A) is closed.

(34) Let S be a topological space, T be a non empty topological space, K be

a basis of T , and f be a map from S into T . Then f is continuous if and

only if for every subset A of T such that A ∈ K holds f−1(A) is open.

(35) Let S be a topological space, T be a non empty topological space, K be

a prebasis of T , and f be a map from S into T . Then f is continuous if

and only if for every subset A of T such that A ∈ K holds f−1(−A) is

closed.

(36) Let S be a topological space, T be a non empty topological space, K be

a prebasis of T , and f be a map from S into T . Then f is continuous if

and only if for every subset A of T such that A ∈ K holds f−1(A) is open.

(37) Let T be a non empty topological space, x be a point of T , X be a subset

of T , and K be a basis of T . Suppose that for every subset A of T such

that A ∈ K and x ∈ A holds A meets X. Then x ∈ X.

(38) Let T be a non empty topological space, x be a point of T , X be a subset

of T , and K be a prebasis of T . Suppose that for every finite family Z

of subsets of T such that Z ⊆ K and x ∈ Intersect(Z) holds Intersect(Z)

meets X. Then x ∈ X.
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(39) Let T be a non empty topological space, K be a prebasis of T , x be a

point of T , and N be a net in T . Suppose that for every subset A of T

such that A ∈ K and x ∈ A holds N is eventually in A. Let S be a subset

of T . If rng netmap(N, T ) ⊆ S, then x ∈ S.

4. Product Topologies

The following four propositions are true:

(40) Let T1, T2 be non empty topological spaces, B1 be a basis of T1, and B2

be a basis of T2. Then {[: a, b :]; a ranges over subsets of T1, b ranges over

subsets of T2: a ∈ B1 ∧ b ∈ B2} is a basis of [:T1, T2 :].

(41) Let T1, T2 be non empty topological spaces, B1 be a prebasis of T1, and

B2 be a prebasis of T2. Then {[: the carrier of T1, b :]; b ranges over subsets

of T2: b ∈ B2}∪{[: a, the carrier of T2 :]; a ranges over subsets of T1: a ∈ B1}

is a prebasis of [:T1, T2 :].

(42) Let X1, X2 be sets, A be a family of subsets of [:X1, X2 :], A1 be a non

empty family of subsets of X1, and A2 be a non empty family of subsets

of X2. Suppose A = {[: a, b :]; a ranges over subsets of X1, b ranges over

subsets of X2: a ∈ A1 ∧ b ∈ A2}. Then Intersect(A) = [: Intersect(A1),

Intersect(A2) :].

(43) Let T1, T2 be non empty topological spaces, B1 be a prebasis of T1, and

B2 be a prebasis of T2. Suppose
⋃

B1 = the carrier of T1 and
⋃

B2 = the

carrier of T2. Then {[: a, b :]; a ranges over subsets of T1, b ranges over

subsets of T2: a ∈ B1 ∧ b ∈ B2} is a prebasis of [:T1, T2 :].

5. Topological Augmentations

Let R be a relational structure. A FR-structure is called a topological au-

gmentation of R if:

(Def. 4) The relational structure of it = the relational structure of R.

Let R be a relational structure and let T be a topological augmentation of

R. We introduce T is correct as a synonym of T is topological space-like.

Let R be a relational structure. Note that there exists a topological augmen-

tation of R which is correct, discrete, and strict.

We now state three propositions:

(44) Every FR-structure T is a topological augmentation of T .

(45) Let S be a FR-structure and T be a topological augmentation of S. Then

S is a topological augmentation of T .
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(46) Let R be a relational structure and T1 be a topological augmentation of

R. Then every topological augmentation of T1 is a topological augmenta-

tion of R.

Let R be a non empty relational structure. One can check that every topo-

logical augmentation of R is non empty.

Let R be a reflexive relational structure. Note that every topological au-

gmentation of R is reflexive.

Let R be a transitive relational structure. One can check that every topolo-

gical augmentation of R is transitive.

Let R be an antisymmetric relational structure. One can verify that every

topological augmentation of R is antisymmetric.

Let R be a complete non empty relational structure. Observe that every

topological augmentation of R is complete.

We now state three propositions:

(47) Let S be a complete reflexive antisymmetric non empty relational struc-

ture and T be a non empty reflexive relational structure. Suppose the

relational structure of S = the relational structure of T . Let A be a subset

of S and C be a subset of T . If A = C and A is inaccessible, then C is

inaccessible.

(48) Let S be a non empty reflexive relational structure and T be a topological

augmentation of S. If the topology of T = σ(S), then T is correct.

(49) Let S be a complete lattice and T be a topological augmentation of S.

If the topology of T = σ(S), then T is Scott.

Let R be a complete lattice. One can verify that there exists a topological

augmentation of R which is Scott, strict, and correct.

The following three propositions are true:

(50) Let S, T be complete Scott non empty reflexive transitive antisymme-

tric FR-structures. Suppose the relational structure of S = the relational

structure of T . Let F be a subset of S and G be a subset of T . If F = G,

then if F is open, then G is open.

(51) For every complete lattice S and for every Scott topological augmenta-

tion T of S holds the topology of T = σ(S).

(52) Let S, T be complete lattices. Suppose the relational structure of S = the

relational structure of T . Then σ(S) = σ(T ).

Let R be a complete lattice. Observe that every topological augmentation

of R which is Scott is also correct.
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6. Refinements

Let T be a topological structure. A topological space is said to be a topolo-

gical extension of T if:

(Def. 5) The carrier of T = the carrier of it and the topology of T ⊆ the topology

of it.

One can prove the following proposition

(53) Let S be a topological structure. Then there exists a topological exten-

sion T of S such that T is strict and the topology of S is a prebasis of

T .

Let T be a topological structure. Note that there exists a topological exten-

sion of T which is strict and discrete.

Let T1, T2 be topological structures. A topological space is said to be a

refinement of T1 and T2 if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it = (the carrier of T1) ∪ (the carrier of T2), and

(ii) (the topology of T1) ∪ (the topology of T2) is a prebasis of it.

Let T1 be a non empty topological structure and let T2 be a topological

structure. Observe that every refinement of T1 and T2 is non empty and every

refinement of T2 and T1 is non empty.

The following propositions are true:

(54) Let T1, T2 be topological structures and T , T ′ be refinements of T1 and

T2. Then the topological structure of T = the topological structure of T ′.

(55) For all topological structures T1, T2 holds every refinement of T1 and T2

is a refinement of T2 and T1.

(56) Let T1, T2 be topological structures, T be a refinement of T1 and T2, and

X be a family of subsets of T . Suppose X = (the topology of T1) ∪ (the

topology of T2). Then the topology of T = UniCl(FinMeetCl(X)).

(57) Let T1, T2 be topological structures. Suppose the carrier of T1 = the

carrier of T2. Then every refinement of T1 and T2 is a topological extension

of T1 and a topological extension of T2.

(58) Let T1, T2 be non empty topological spaces, T be a refinement of T1 and

T2, B1 be a prebasis of T1, and B2 be a prebasis of T2. Then B1∪B2∪{the

carrier of T1, the carrier of T2} is a prebasis of T .

(59) Let T1, T2 be non empty topological spaces, B1 be a basis of T1, B2 be

a basis of T2, and T be a refinement of T1 and T2. Then B1∪B2∪B1 ⋓B2

is a basis of T .

(60) Let T1, T2 be non empty topological spaces. Suppose the carrier of T1 =

the carrier of T2. Let T be a refinement of T1 and T2. Then (the topology

of T1) ⋓ (the topology of T2) is a basis of T .
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(61) Let L be a non empty relational structure, T1, T2 be correct topologi-

cal augmentations of L, and T be a refinement of T1 and T2. Then (the

topology of T1) ⋓ (the topology of T2) is a basis of T .
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