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The notation and terminology used in this paper are introduced in the following
articles: (18], [14], [11], [7], [1], [13], [16], [10], [4], [19], [9], [17], [12], [6], [15], 3],
[8], [2], and [5].

1. SUBSETS AS NETS

Let A be a set and let B be a non empty set. Observe that B4 is non empty.

In this article we present several logical schemes. The scheme Fraenkellnvo-
lution deals with a non empty set A, subsets B, C of A, and a unary functor F
yielding an element of A, and states that:

B = {F(a);a ranges over elements of A : a € C}
provided the parameters have the following properties:
e C = {F(a);a ranges over elements of A : a € B}, and
e For every element a of A holds F(F(a)) = a.

The scheme FraenkelComplement! deals with a non empty relational struc-
ture A, a family B of subsets of A, a set C, and a unary functor F yielding a
subset of A, and states that:

B¢ = {—F(a);a ranges over elements of A: a € C}
provided the parameters meet the following requirement:
e B ={F(a);a ranges over elements of A : a € C}.

The scheme FraenkelComplement2 deals with a non empty relational struc-
ture A, a family B of subsets of A, a set C, and a unary functor F yielding a
subset of A, and states that:

B¢ = {F(a);a ranges over elements of A : a € C}
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provided the parameters meet the following requirement:
e B ={—F(a);a ranges over elements of A: a € C}.
We now state several propositions:

(1) For every non empty relational structure R and for all elements x, y of
Rholds y € =Tz iff z L y.

(2) Let S be a l-sorted structure, 7' be a non empty 1l-sorted structure, f
be a map from S into T, and X be a subset of the carrier of 7. Then
—fTHX) = fH=X).

(3) For every 1-sorted structure T and for every family F' of subsets of T
holds F¢ = {—a; a ranges over subsets of T: a € F'}.

(4) Let R be a non empty relational structure and F' be a subset of R. Then
1F = |U{Tz;z ranges over elements of R: x € F} and |F = (J{|lz;x
ranges over elements of R: x € F'}.

(5) Let R be a non empty relational structure, A be a family of subsets of
R, and F be a subset of R. If A = {—7z;x ranges over elements of R:
x € F'}, then Intersect(4) = —TF.

Let us mention that there exists a FR-structure which is strict, trivial, re-
flexive, non empty, discrete, and finite.

One can check that there exists a top-lattice which is strict, complete, and
trivial.

Let S be a non empty relational structure and let 7" be an upper-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is infs-preserving.

Let S be a non empty relational structure and let T' be a lower-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is sups-preserving.

Let R, S be 1-sorted structures. Let us assume that the carrier of S C the
carrier of R. The functor incl(S, R) yields a map from S into R and is defined
as follows:

(Def. 1) inCl(S, R) = idthe carrier of S-

Let R be a non empty relational structure and let S be a non empty relational
substructure of R. One can check that incl(S, R) is monotone.

Let R be a non empty relational structure and let X be a non empty subset
of the carrier of R. Note that sub(X) is non empty.

Let R be a non empty relational structure and let X be a non empty subset
of the carrier of R. The functor (X;id) yielding a strict non empty net structure
over R is defined as follows:

(Def. 2) (X;id) = incl(sub(X), R) - (sub(X);id).
The functor (X°P;id) yielding a strict non empty net structure over R is defined
as follows:
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(Def. 3) (X°P;id) = incl(sub(X), R) - ((sub(X))°P;id).
One can prove the following propositions:
(6) Let R be a non empty relational structure and X be a non empty subset
of R. Then
(i)  the carrier of (X;id) = X,
(ii)  (X;id) is a full relational substructure of R, and
(iii)  for every element = of (X;id) holds (X;id)(x) = x.
(7) Let R be a non empty relational structure and X be a non empty subset
of R. Then
(i)  the carrier of (X°P;id) = X,
(il)  (X°P;id) is a full relational substructure of R°?, and
(iii)  for every element = of (X°P;id) holds (X°P;id)(z) = x.
Let R be a non empty reflexive relational structure and let X be a non empty
subset of R. One can check that (X;id) is reflexive and (X°P;id) is reflexive.
Let R be a non empty transitive relational structure and let X be a non
empty subset of R. Observe that (X;id) is transitive and (X°P;id) is transitive.
Let R be a non empty reflexive relational structure and let I be a directed
subset of R. Note that sub([) is directed.
Let R be a non empty reflexive relational structure and let I be a directed
non empty subset of R. Note that (I;id) is directed.
Let R be a non empty reflexive relational structure and let F' be a filtered
non empty subset of R. One can verify that ((sub(F"))°P;id) is directed.
Let R be a non empty reflexive relational structure and let F' be a filtered
non empty subset of R. Note that (F°P;id) is directed.

2. OPERATIONS ON FAMILIES OF OPEN SETS

One can prove the following propositions:
(8) For every topological space T such that T is empty holds the topology
of T = {0}.
(9) Let T be a trivial non empty topological space. Then
(i)  the topology of T = 2the carrier of T "5 q
(ii)  for every point z of T" holds the carrier of T'= {z} and the topology of
T ={0.{=}}.
(10) Let T be a trivial non empty topological space. Then {the carrier of T'}
is a basis of T and () is a prebasis of T" and {0} is a prebasis of T
(11) For all sets X, Y and for every family A of subsets of X such that
A = {Y'} holds FinMeetCl(A) = {Y, X} and UniCl(A) = {Y,0}.
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(12) For every set X and for all families A, B of subsets of X such that
A=BU{X}or B=A\{X} holds Intersect(A) = Intersect(B).

(13) For every set X and for all families A, B of subsets of X such that
A=BU{X}or B=A\{X} holds FinMeetCl(A) = FinMeetCl(B).
(14) Let X be a set and A be a family of subsets of X. Suppose X € A. Let
x be a set. Then x € FinMeetCl(A) if and only if there exists a finite non

empty family Y of subsets of X such that Y C A and = = Intersect(Y).

(15) For every set X and for every family A of subsets of X holds
UniCl(UniCl(A)) = UniCl(A).

(16) For every set X and for every empty family A of subsets of X holds
UniCl(A) = {0}.

(17) For every set X and for every empty family A of subsets of X holds
FinMeetCl(A) = {X}.

(18) For every set X and for every family A of subsets of X such that A =
{0, X} holds UniCl(A) = A and FinMeetCl(A4) = A.

(19) Let X, Y be sets, A be a family of subsets of X, and B be a family of
subsets of Y. Then

(i) if A C B, then UniCl(A) C UniCl(B), and
(i) if A= B, then UniCl(A) = UniCl(B).

(20) Let X, Y be sets, A be a family of subsets of X, and B be a family of
subsets of Y. If A = B and X € A and X C Y, then FinMeetCl(B) =
{Y} UFinMeetCI(A).

(21) For every set X and for every family A of subsets of X holds
UniCl(FinMeetCl(UniCl(A))) = UniCl(FinMeetCI(A)).

3. BASES

Next we state a number of propositions:

(22) Let T be a topological space and K be a family of subsets of T. Then
the topology of T'= UniCl(K) if and only if K is a basis of T

(23) Let T be a topological space and K be a family of subsets of the carrier
of T. Then K is a prebasis of T if and only if FinMeetCI(K) is a basis of
T.

(24) Let T be a non empty topological space and B be a family of subsets of
T. If UniCl(B) is a prebasis of T, then B is a prebasis of T

(25) Let Ty, T> be topological spaces and B be a basis of Tj. Suppose the
carrier of T} = the carrier of T5 and B is a basis of T5. Then the topology
of T} = the topology of T5.
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(26) Let Ty, Ty be topological spaces and P be a prebasis of T). Suppose
the carrier of T7 = the carrier of T5 and P is a prebasis of T5. Then the
topology of T = the topology of T5.

(27) For every topological space T holds every basis of T is open and is a
prebasis of T'.

(28) For every topological space T holds every prebasis of T is open.

(29) Let T be a non empty topological space and B be a prebasis of T'. Then
B U {the carrier of T'} is a prebasis of T'.

(30) For every topological space T' and for every basis B of T' holds B U {the
carrier of T'} is a basis of T.

(31) Let T be a topological space, B be a basis of T, and A be a subset of T'.
Then A is open if and only if for every point p of T' such that p € A there
exists a subset a of T such that « € B and p € a and a C A.

(32) Let T be a topological space and B be a family of subsets of T". Suppose
that
(i) B C the topology of T', and
(ii)  for every subset A of T such that A is open and for every point p of T
such that p € A there exists a subset a of T such that ¢ € B and p € a
and a C A.
Then B is a basis of T'.

(33) Let S be a topological space, T' be a non empty topological space, K be
a basis of T', and f be a map from S into 7. Then f is continuous if and
only if for every subset A of T such that A € K holds f~!(—A) is closed.

(34) Let S be a topological space, T' be a non empty topological space, K be
a basis of T', and f be a map from S into T. Then f is continuous if and
only if for every subset A of T such that A € K holds f~1(A) is open.

(35) Let S be a topological space, T' be a non empty topological space, K be
a prebasis of T, and f be a map from S into T. Then f is continuous if
and only if for every subset A of T such that A € K holds f~!(—A) is
closed.

(36) Let S be a topological space, T' be a non empty topological space, K be
a prebasis of T, and f be a map from S into T. Then f is continuous if
and only if for every subset A of T such that A € K holds f~!(A) is open.

(37) Let T be a non empty topological space, x be a point of T'; X be a subset
of T, and K be a basis of T'. Suppose that for every subset A of T such
that A € K and = € A holds A meets X. Then z € X.

(38) Let T be a non empty topological space, x be a point of T', X be a subset
of T, and K be a prebasis of T. Suppose that for every finite family Z
of subsets of T such that Z C K and z € Intersect(Z) holds Intersect(Z)
meets X. Then z € X.
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(39) Let T be a non empty topological space, K be a prebasis of T', x be a
point of T, and N be a net in T. Suppose that for every subset A of T'
such that A € K and x € A holds N is eventually in A. Let S be a subset
of T. If rng netmap(N,T) C S, then z € S.

4. PropuUCT TOPOLOGIES

The following four propositions are true:

(40) Let 71, T5 be non empty topological spaces, B be a basis of 17, and Ba
be a basis of Ty. Then {[ a, b];a ranges over subsets of 77, b ranges over
subsets of T5: a € By A b € By} is a basis of [ T, Tb .

(41) Let Ty, T be non empty topological spaces, By be a prebasis of T, and
Bs be a prebasis of T. Then {[ the carrier of 71, b1;b ranges over subsets
of Ty: b € Bo}U{| a, the carrier of T» ]; a ranges over subsets of Ty: a € By}
is a prebasis of [ 11, T2 .

(42) Let X1, X5 be sets, A be a family of subsets of [ X1, X2], A be a non
empty family of subsets of X1, and As be a non empty family of subsets
of Xo. Suppose A = {[a, b];a ranges over subsets of X;, b ranges over
subsets of X9: a € A1 A b € As}. Then Intersect(A) = [ Intersect(4;),
Intersect(Az) J.

(43) Let Ty, T be non empty topological spaces, By be a prebasis of T3, and
Bs be a prebasis of Th. Suppose | J By = the carrier of T} and J By = the
carrier of Th. Then {[a, b];a ranges over subsets of T}, b ranges over
subsets of Th: a € By A b € By} is a prebasis of [ T, T5 1.

5. TOPOLOGICAL AUGMENTATIONS

Let R be a relational structure. A FR-structure is called a topological au-
gmentation of R if:
(Def. 4) The relational structure of it = the relational structure of R.
Let R be a relational structure and let 7" be a topological augmentation of
R. We introduce T is correct as a synonym of T is topological space-like.
Let R be a relational structure. Note that there exists a topological augmen-
tation of R which is correct, discrete, and strict.
We now state three propositions:
(44) Every FR-structure T is a topological augmentation of 7.
(45) Let S be a FR-structure and T be a topological augmentation of S. Then
S is a topological augmentation of T
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(46) Let R be a relational structure and 7 be a topological augmentation of
R. Then every topological augmentation of 73 is a topological augmenta-
tion of R.

Let R be a non empty relational structure. One can check that every topo-
logical augmentation of R is non empty.

Let R be a reflexive relational structure. Note that every topological au-
gmentation of R is reflexive.

Let R be a transitive relational structure. One can check that every topolo-
gical augmentation of R is transitive.

Let R be an antisymmetric relational structure. One can verify that every
topological augmentation of R is antisymmetric.

Let R be a complete non empty relational structure. Observe that every
topological augmentation of R is complete.

We now state three propositions:

(47) Let S be a complete reflexive antisymmetric non empty relational struc-
ture and T be a non empty reflexive relational structure. Suppose the
relational structure of S = the relational structure of T'. Let A be a subset
of S and C be a subset of T. If A = C and A is inaccessible, then C' is

inaccessible.

(48) Let S be a non empty reflexive relational structure and T" be a topological
augmentation of S. If the topology of 7' = ¢ (S), then T is correct.

(49) Let S be a complete lattice and T' be a topological augmentation of S.
If the topology of T'= o(S), then T is Scott.

Let R be a complete lattice. One can verify that there exists a topological
augmentation of R which is Scott, strict, and correct.

The following three propositions are true:
(50) Let S, T be complete Scott non empty reflexive transitive antisymme-
tric FR-structures. Suppose the relational structure of S = the relational

structure of T'. Let F' be a subset of S and G be a subset of T. If F' = G,
then if F' is open, then G is open.

(51) For every complete lattice S and for every Scott topological augmenta-
tion T of S holds the topology of T' = o(S5).

(52) Let S, T be complete lattices. Suppose the relational structure of S = the
relational structure of 7. Then o(S) = o(T).

Let R be a complete lattice. Observe that every topological augmentation
of R which is Scott is also correct.
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6. REFINEMENTS

Let T be a topological structure. A topological space is said to be a topolo-
gical extension of T if:

(Def. 5) The carrier of T' = the carrier of it and the topology of T C the topology
of it.

One can prove the following proposition

(53) Let S be a topological structure. Then there exists a topological exten-
sion T of S such that T is strict and the topology of S is a prebasis of
T.

Let T be a topological structure. Note that there exists a topological exten-
sion of T" which is strict and discrete.

Let T3, 15 be topological structures. A topological space is said to be a
refinement of 7} and 75 if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it = (the carrier of 77) U (the carrier of 75), and

(ii)  (the topology of T1) U (the topology of T5) is a prebasis of it.

Let T be a non empty topological structure and let 75 be a topological
structure. Observe that every refinement of 77 and 75 is non empty and every
refinement of 75 and 77 is non empty.

The following propositions are true:

(54) Let Ty, Ty be topological structures and T', T' be refinements of 77 and
T,. Then the topological structure of T' = the topological structure of T”.

(55) For all topological structures 77, T5 holds every refinement of 77 and 15
is a refinement of Ty and T7.

(56) Let T1, Tb be topological structures, T" be a refinement of 77 and T, and
X be a family of subsets of T'. Suppose X = (the topology of T7) U (the
topology of T5). Then the topology of T'= UniCl(FinMeetCl(X)).

(57) Let Ty, T> be topological structures. Suppose the carrier of 71 = the
carrier of T5. Then every refinement of 77 and 75 is a topological extension
of 17 and a topological extension of T5.

(58) Let T1, T» be non empty topological spaces, T be a refinement of 77 and
T, By be a prebasis of 77, and By be a prebasis of T5. Then By U By U{the
carrier of T, the carrier of T5} is a prebasis of T'.

(59) Let T3, To be non empty topological spaces, B be a basis of T7, Bs be
a basis of T, and T be a refinement of T and T5. Then B U Bs U B1 M By
is a basis of T'.

(60) Let Ty, T» be non empty topological spaces. Suppose the carrier of T; =
the carrier of 7. Let T" be a refinement of T} and 7. Then (the topology
of T1) M (the topology of T5) is a basis of T'.
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(61) Let L be a non empty relational structure, T}, T» be correct topologi-

[1]
2]

3]

cal augmentations of L, and T" be a refinement of 7} and T5. Then (the
topology of T1) M (the topology of Tb) is a basis of T'.
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