Bases and Refinements of Topologies¹

Grzegorz Bancerek University of Białystok

 $\mathrm{MML}\ \mathrm{Identifier}:\ \mathtt{YELLOW_9}.$

The notation and terminology used in this paper are introduced in the following articles: [18], [14], [11], [7], [1], [13], [16], [10], [4], [19], [9], [17], [12], [6], [15], [3], [8], [2], and [5].

1. Subsets as Nets

Let A be a set and let B be a non empty set. Observe that B^A is non empty. In this article we present several logical schemes. The scheme *FraenkelInvolution* deals with a non empty set \mathcal{A} , subsets \mathcal{B} , \mathcal{C} of \mathcal{A} , and a unary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

 $\mathcal{B} = \{\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C}\}$ provided the parameters have the following properties:

• $\mathcal{C} = \{\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{B}\}, \text{ and }$

• For every element a of \mathcal{A} holds $\mathcal{F}(\mathcal{F}(a)) = a$.

The scheme *FraenkelComplement1* deals with a non empty relational structure \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

 $\mathcal{B}^{c} = \{-\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C}\}$ provided the parameters meet the following requirement:

• $\mathcal{B} = \{\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C}\}.$

The scheme *FraenkelComplement2* deals with a non empty relational structure \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

 $\mathcal{B}^{c} = \{\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C}\}$

C 1998 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{This}$ work has been supported by KBN Grant 8 T11C 018 12.

provided the parameters meet the following requirement:

• $\mathcal{B} = \{-\mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C}\}.$

We now state several propositions:

- (1) For every non empty relational structure R and for all elements x, y of R holds $y \in -\uparrow x$ iff $x \leq y$.
- (2) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, f be a map from S into T, and X be a subset of the carrier of T. Then $-f^{-1}(X) = f^{-1}(-X)$.
- (3) For every 1-sorted structure T and for every family F of subsets of T holds $F^{c} = \{-a; a \text{ ranges over subsets of } T: a \in F\}.$
- (4) Let R be a non empty relational structure and F be a subset of R. Then $\uparrow F = \bigcup \{\uparrow x; x \text{ ranges over elements of } R: x \in F\}$ and $\downarrow F = \bigcup \{\downarrow x; x \text{ ranges over elements of } R: x \in F\}$.
- (5) Let R be a non empty relational structure, A be a family of subsets of R, and F be a subset of R. If $A = \{-\uparrow x; x \text{ ranges over elements of } R: x \in F\}$, then Intersect $(A) = -\uparrow F$.

Let us mention that there exists a FR-structure which is strict, trivial, reflexive, non empty, discrete, and finite.

One can check that there exists a top-lattice which is strict, complete, and trivial.

Let S be a non empty relational structure and let T be an upper-bounded non empty reflexive antisymmetric relational structure. Note that there exists a map from S into T which is infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non empty reflexive antisymmetric relational structure. Note that there exists a map from S into T which is sups-preserving.

Let R, S be 1-sorted structures. Let us assume that the carrier of $S \subseteq$ the carrier of R. The functor incl(S, R) yields a map from S into R and is defined as follows:

(Def. 1) $\operatorname{incl}(S, R) = \operatorname{id}_{\operatorname{the carrier of } S}$.

Let R be a non empty relational structure and let S be a non empty relational substructure of R. One can check that incl(S, R) is monotone.

Let R be a non empty relational structure and let X be a non empty subset of the carrier of R. Note that sub(X) is non empty.

Let R be a non empty relational structure and let X be a non empty subset of the carrier of R. The functor $\langle X; id \rangle$ yielding a strict non empty net structure over R is defined as follows:

(Def. 2) $\langle X; \mathrm{id} \rangle = \mathrm{incl}(\mathrm{sub}(X), R) \cdot \langle \mathrm{sub}(X); \mathrm{id} \rangle.$

The functor $\langle X^{\text{op}}; \text{id} \rangle$ yielding a strict non empty net structure over R is defined as follows:

(Def. 3) $\langle X^{\mathrm{op}}; \mathrm{id} \rangle = \mathrm{incl}(\mathrm{sub}(X), R) \cdot \langle (\mathrm{sub}(X))^{\mathrm{op}}; \mathrm{id} \rangle.$

One can prove the following propositions:

- (6) Let R be a non empty relational structure and X be a non empty subset of R. Then
- (i) the carrier of $\langle X; \mathrm{id} \rangle = X$,
- (ii) $\langle X; id \rangle$ is a full relational substructure of R, and
- (iii) for every element x of $\langle X; id \rangle$ holds $\langle X; id \rangle(x) = x$.
- (7) Let R be a non empty relational structure and X be a non empty subset of R. Then
- (i) the carrier of $\langle X^{\mathrm{op}}; \mathrm{id} \rangle = X$,
- (ii) $\langle X^{\text{op}}; \text{id} \rangle$ is a full relational substructure of R^{op} , and
- (iii) for every element x of $\langle X^{\text{op}}; \text{id} \rangle$ holds $\langle X^{\text{op}}; \text{id} \rangle(x) = x$.

Let R be a non empty reflexive relational structure and let X be a non empty subset of R. One can check that $\langle X; id \rangle$ is reflexive and $\langle X^{op}; id \rangle$ is reflexive.

Let R be a non empty transitive relational structure and let X be a non empty subset of R. Observe that $\langle X; \mathrm{id} \rangle$ is transitive and $\langle X^{\mathrm{op}}; \mathrm{id} \rangle$ is transitive.

Let R be a non empty reflexive relational structure and let I be a directed subset of R. Note that sub(I) is directed.

Let R be a non empty reflexive relational structure and let I be a directed non empty subset of R. Note that $\langle I; id \rangle$ is directed.

Let R be a non empty reflexive relational structure and let F be a filtered non empty subset of R. One can verify that $\langle (\operatorname{sub}(F))^{\operatorname{op}}; \operatorname{id} \rangle$ is directed.

Let R be a non empty reflexive relational structure and let F be a filtered non empty subset of R. Note that $\langle F^{op}; id \rangle$ is directed.

2. Operations on Families of Open Sets

One can prove the following propositions:

- (8) For every topological space T such that T is empty holds the topology of $T = \{\emptyset\}$.
- (9) Let T be a trivial non empty topological space. Then
- (i) the topology of $T = 2^{\text{the carrier of } T}$, and
- (ii) for every point x of T holds the carrier of $T = \{x\}$ and the topology of $T = \{\emptyset, \{x\}\}.$
- (10) Let T be a trivial non empty topological space. Then {the carrier of T} is a basis of T and \emptyset is a prebasis of T and $\{\emptyset\}$ is a prebasis of T.
- (11) For all sets X, Y and for every family A of subsets of X such that $A = \{Y\}$ holds FinMeetCl(A) = $\{Y, X\}$ and UniCl(A) = $\{Y, \emptyset\}$.

GRZEGORZ BANCEREK

- (12) For every set X and for all families A, B of subsets of X such that $A = B \cup \{X\}$ or $B = A \setminus \{X\}$ holds Intersect(A) = Intersect(B).
- (13) For every set X and for all families A, B of subsets of X such that $A = B \cup \{X\}$ or $B = A \setminus \{X\}$ holds FinMeetCl(A) = FinMeetCl(B).
- (14) Let X be a set and A be a family of subsets of X. Suppose $X \in A$. Let x be a set. Then $x \in \text{FinMeetCl}(A)$ if and only if there exists a finite non empty family Y of subsets of X such that $Y \subseteq A$ and x = Intersect(Y).
- (15) For every set X and for every family A of subsets of X holds UniCl(UniCl(A)) = UniCl(A).
- (16) For every set X and for every empty family A of subsets of X holds $\text{UniCl}(A) = \{\emptyset\}.$
- (17) For every set X and for every empty family A of subsets of X holds $\operatorname{FinMeetCl}(A) = \{X\}.$
- (18) For every set X and for every family A of subsets of X such that $A = \{\emptyset, X\}$ holds UniCl(A) = A and FinMeetCl(A) = A.
- (19) Let X, Y be sets, A be a family of subsets of X, and B be a family of subsets of Y. Then
 - (i) if $A \subseteq B$, then $\text{UniCl}(A) \subseteq \text{UniCl}(B)$, and
 - (ii) if A = B, then UniCl(A) = UniCl(B).
- (20) Let X, Y be sets, A be a family of subsets of X, and B be a family of subsets of Y. If A = B and $X \in A$ and $X \subseteq Y$, then FinMeetCl(B) = $\{Y\} \cup \text{FinMeetCl}(A)$.
- (21) For every set X and for every family A of subsets of X holds UniCl(FinMeetCl(UniCl(A))) = UniCl(FinMeetCl(A)).

3. Bases

Next we state a number of propositions:

- (22) Let T be a topological space and K be a family of subsets of T. Then the topology of T = UniCl(K) if and only if K is a basis of T.
- (23) Let T be a topological space and K be a family of subsets of the carrier of T. Then K is a prebasis of T if and only if FinMeetCl(K) is a basis of T.
- (24) Let T be a non empty topological space and B be a family of subsets of T. If UniCl(B) is a prebasis of T, then B is a prebasis of T.
- (25) Let T_1 , T_2 be topological spaces and B be a basis of T_1 . Suppose the carrier of T_1 = the carrier of T_2 and B is a basis of T_2 . Then the topology of T_1 = the topology of T_2 .

38

- (26) Let T_1 , T_2 be topological spaces and P be a prebasis of T_1 . Suppose the carrier of T_1 = the carrier of T_2 and P is a prebasis of T_2 . Then the topology of T_1 = the topology of T_2 .
- (27) For every topological space T holds every basis of T is open and is a prebasis of T.
- (28) For every topological space T holds every prebasis of T is open.
- (29) Let T be a non empty topological space and B be a prebasis of T. Then $B \cup \{\text{the carrier of } T\}$ is a prebasis of T.
- (30) For every topological space T and for every basis B of T holds $B \cup \{$ the carrier of $T \}$ is a basis of T.
- (31) Let T be a topological space, B be a basis of T, and A be a subset of T. Then A is open if and only if for every point p of T such that $p \in A$ there exists a subset a of T such that $a \in B$ and $p \in a$ and $a \subseteq A$.
- (32) Let T be a topological space and B be a family of subsets of T. Suppose that
 - (i) $B \subseteq$ the topology of T, and
- (ii) for every subset A of T such that A is open and for every point p of T such that $p \in A$ there exists a subset a of T such that $a \in B$ and $p \in a$ and $a \subseteq A$.

Then B is a basis of T.

- (33) Let S be a topological space, T be a non empty topological space, K be a basis of T, and f be a map from S into T. Then f is continuous if and only if for every subset A of T such that $A \in K$ holds $f^{-1}(-A)$ is closed.
- (34) Let S be a topological space, T be a non empty topological space, K be a basis of T, and f be a map from S into T. Then f is continuous if and only if for every subset A of T such that $A \in K$ holds $f^{-1}(A)$ is open.
- (35) Let S be a topological space, T be a non empty topological space, K be a prebasis of T, and f be a map from S into T. Then f is continuous if and only if for every subset A of T such that $A \in K$ holds $f^{-1}(-A)$ is closed.
- (36) Let S be a topological space, T be a non empty topological space, K be a prebasis of T, and f be a map from S into T. Then f is continuous if and only if for every subset A of T such that $A \in K$ holds $f^{-1}(A)$ is open.
- (37) Let T be a non empty topological space, x be a point of T, X be a subset of T, and K be a basis of T. Suppose that for every subset A of T such that $A \in K$ and $x \in A$ holds A meets X. Then $x \in \overline{X}$.
- (38) Let T be a non empty topological space, x be a point of T, X be a subset of T, and K be a prebasis of T. Suppose that for every finite family Z of subsets of T such that $Z \subseteq K$ and $x \in \text{Intersect}(Z)$ holds Intersect(Z)meets X. Then $x \in \overline{X}$.

GRZEGORZ BANCEREK

(39) Let T be a non empty topological space, K be a prebasis of T, x be a point of T, and N be a net in T. Suppose that for every subset A of T such that $A \in K$ and $x \in A$ holds N is eventually in A. Let S be a subset of T. If rng netmap $(N, T) \subseteq S$, then $x \in \overline{S}$.

4. Product Topologies

The following four propositions are true:

- (40) Let T_1 , T_2 be non empty topological spaces, B_1 be a basis of T_1 , and B_2 be a basis of T_2 . Then $\{[a, b]; a \text{ ranges over subsets of } T_1, b \text{ ranges over subsets of } T_2: a \in B_1 \land b \in B_2\}$ is a basis of $[T_1, T_2]$.
- (41) Let T_1 , T_2 be non empty topological spaces, B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Then {[the carrier of T_1 , b]; b ranges over subsets of T_2 : $b \in B_2$ } \cup {[a, the carrier of T_2]; a ranges over subsets of T_1 : $a \in B_1$ } is a prebasis of [T_1 , T_2].
- (42) Let X_1, X_2 be sets, A be a family of subsets of $[X_1, X_2]$, A_1 be a non empty family of subsets of X_1 , and A_2 be a non empty family of subsets of X_2 . Suppose $A = \{[a, b]; a \text{ ranges over subsets of } X_1, b \text{ ranges over$ $subsets of <math>X_2$: $a \in A_1 \land b \in A_2\}$. Then $\text{Intersect}(A) = [\text{Intersect}(A_1),$ $\text{Intersect}(A_2)].$
- (43) Let T_1 , T_2 be non empty topological spaces, B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Suppose $\bigcup B_1$ = the carrier of T_1 and $\bigcup B_2$ = the carrier of T_2 . Then $\{[a, b]; a \text{ ranges over subsets of } T_1, b \text{ ranges over subsets of } T_2: a \in B_1 \land b \in B_2\}$ is a prebasis of $[T_1, T_2]$.

5. TOPOLOGICAL AUGMENTATIONS

Let R be a relational structure. A FR-structure is called a topological augmentation of R if:

(Def. 4) The relational structure of it = the relational structure of R.

Let R be a relational structure and let T be a topological augmentation of R. We introduce T is correct as a synonym of T is topological space-like.

Let R be a relational structure. Note that there exists a topological augmentation of R which is correct, discrete, and strict.

We now state three propositions:

- (44) Every FR-structure T is a topological augmentation of T.
- (45) Let S be a FR-structure and T be a topological augmentation of S. Then S is a topological augmentation of T.

(46) Let R be a relational structure and T_1 be a topological augmentation of R. Then every topological augmentation of T_1 is a topological augmentation of R.

Let R be a non empty relational structure. One can check that every topological augmentation of R is non empty.

Let R be a reflexive relational structure. Note that every topological augmentation of R is reflexive.

Let R be a transitive relational structure. One can check that every topological augmentation of R is transitive.

Let R be an antisymmetric relational structure. One can verify that every topological augmentation of R is antisymmetric.

Let R be a complete non empty relational structure. Observe that every topological augmentation of R is complete.

We now state three propositions:

- (47) Let S be a complete reflexive antisymmetric non empty relational structure and T be a non empty reflexive relational structure. Suppose the relational structure of S = the relational structure of T. Let A be a subset of S and C be a subset of T. If A = C and A is inaccessible, then C is inaccessible.
- (48) Let S be a non empty reflexive relational structure and T be a topological augmentation of S. If the topology of $T = \sigma(S)$, then T is correct.
- (49) Let S be a complete lattice and T be a topological augmentation of S. If the topology of $T = \sigma(S)$, then T is Scott.

Let R be a complete lattice. One can verify that there exists a topological augmentation of R which is Scott, strict, and correct.

The following three propositions are true:

- (50) Let S, T be complete Scott non empty reflexive transitive antisymmetric FR-structures. Suppose the relational structure of S = the relational structure of T. Let F be a subset of S and G be a subset of T. If F = G, then if F is open, then G is open.
- (51) For every complete lattice S and for every Scott topological augmentation T of S holds the topology of $T = \sigma(S)$.
- (52) Let S, T be complete lattices. Suppose the relational structure of S = the relational structure of T. Then $\sigma(S) = \sigma(T)$.

Let R be a complete lattice. Observe that every topological augmentation of R which is Scott is also correct.

GRZEGORZ BANCEREK

6. Refinements

Let T be a topological structure. A topological space is said to be a topological extension of T if:

(Def. 5) The carrier of T = the carrier of it and the topology of $T \subseteq$ the topology of it.

One can prove the following proposition

(53) Let S be a topological structure. Then there exists a topological extension T of S such that T is strict and the topology of S is a prebasis of T.

Let T be a topological structure. Note that there exists a topological extension of T which is strict and discrete.

Let T_1 , T_2 be topological structures. A topological space is said to be a refinement of T_1 and T_2 if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it = (the carrier of T_1) \cup (the carrier of T_2), and

(ii) (the topology of T_1) \cup (the topology of T_2) is a prebasis of it.

Let T_1 be a non empty topological structure and let T_2 be a topological structure. Observe that every refinement of T_1 and T_2 is non empty and every refinement of T_2 and T_1 is non empty.

The following propositions are true:

- (54) Let T_1 , T_2 be topological structures and T, T' be refinements of T_1 and T_2 . Then the topological structure of T = the topological structure of T'.
- (55) For all topological structures T_1 , T_2 holds every refinement of T_1 and T_2 is a refinement of T_2 and T_1 .
- (56) Let T_1, T_2 be topological structures, T be a refinement of T_1 and T_2 , and X be a family of subsets of T. Suppose $X = (\text{the topology of } T_1) \cup (\text{the topology of } T_2)$. Then the topology of T = UniCl(FinMeetCl(X)).
- (57) Let T_1 , T_2 be topological structures. Suppose the carrier of T_1 = the carrier of T_2 . Then every refinement of T_1 and T_2 is a topological extension of T_1 and a topological extension of T_2 .
- (58) Let T_1 , T_2 be non empty topological spaces, T be a refinement of T_1 and T_2 , B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Then $B_1 \cup B_2 \cup \{$ the carrier of T_1 , the carrier of $T_2 \}$ is a prebasis of T.
- (59) Let T_1 , T_2 be non empty topological spaces, B_1 be a basis of T_1 , B_2 be a basis of T_2 , and T be a refinement of T_1 and T_2 . Then $B_1 \cup B_2 \cup B_1 \cap B_2$ is a basis of T.
- (60) Let T_1 , T_2 be non empty topological spaces. Suppose the carrier of $T_1 =$ the carrier of T_2 . Let T be a refinement of T_1 and T_2 . Then (the topology of T_1) \cap (the topology of T_2) is a basis of T.

(61) Let L be a non empty relational structure, T_1 , T_2 be correct topological augmentations of L, and T be a refinement of T_1 and T_2 . Then (the topology of T_1) \cap (the topology of T_2) is a basis of T.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [6] Artic Dermochural Families of subsets, subsets and mappings in tencherical approximation.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized Mathematics, 6(2):269-277, 1997.
- [9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [15] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311-319, 1997.
- [16] Wojciech A. Trybulec. Partially ordered sets. *Formalized Mathematics*, 1(2):313–319, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received March 9, 1998