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The articles [14], [1], [13], [12], [3], [5], [9], [4], [10], [11], [2], [7], and [8] provide

the notation and terminology for this paper.

1. On the Elements of Product of Relational Structures

Let S, T be non empty upper-bounded relational structures. One can check

that [:S, T :] is upper-bounded.

Let S, T be non empty lower-bounded relational structures. Observe that

[:S, T :] is lower-bounded.

The following propositions are true:

(1) Let S, T be non empty relational structures. If [:S, T :] is upper-bounded,

then S is upper-bounded and T is upper-bounded.

(2) Let S, T be non empty relational structures. If [:S, T :] is lower-bounded,

then S is lower-bounded and T is lower-bounded.

(3) For all upper-bounded antisymmetric non empty relational structures S,

T holds ⊤[: S, T :] = 〈〈⊤S , ⊤T 〉〉.

(4) For all lower-bounded antisymmetric non empty relational structures S,

T holds ⊥[: S, T :] = 〈〈⊥S , ⊥T 〉〉.
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(5) Let S, T be lower-bounded antisymmetric non empty relational structu-

res and D be a subset of [:S, T :]. If [:S, T :] is complete or sup D exists in

[:S, T :], then supD = 〈〈 supπ1(D), supπ2(D)〉〉.

(6) Let S, T be upper-bounded antisymmetric non empty relational struc-

tures and D be a subset of [:S, T :]. If [:S, T :] is complete or inf D exists

in [:S, T :], then infD = 〈〈 inf π1(D), inf π2(D)〉〉.

(7) Let S, T be non empty relational structures and x, y be elements of [:S,

T :]. Then x ¬ {y} if and only if the following conditions are satisfied:

(i) x1 ¬ {y1}, and

(ii) x2 ¬ {y2}.

(8) Let S, T be non empty relational structures and x, y, z be elements

of [:S, T :]. Then x ¬ {y, z} if and only if the following conditions are

satisfied:

(i) x1 ¬ {y1, z1}, and

(ii) x2 ¬ {y2, z2}.

(9) Let S, T be non empty relational structures and x, y be elements of [:S,

T :]. Then x ­ {y} if and only if the following conditions are satisfied:

(i) x1 ­ {y1}, and

(ii) x2 ­ {y2}.

(10) Let S, T be non empty relational structures and x, y, z be elements

of [:S, T :]. Then x ­ {y, z} if and only if the following conditions are

satisfied:

(i) x1 ­ {y1, z1}, and

(ii) x2 ­ {y2, z2}.

(11) Let S, T be non empty antisymmetric relational structures and x, y

be elements of [:S, T :]. Then inf {x, y} exists in [:S, T :] if and only if inf

{x1, y1} exists in S and inf {x2, y2} exists in T .

(12) Let S, T be non empty antisymmetric relational structures and x, y be

elements of [:S, T :]. Then sup {x, y} exists in [:S, T :] if and only if sup

{x1, y1} exists in S and sup {x2, y2} exists in T .

(13) Let S, T be antisymmetric relational structures with g.l.b.’s and x, y be

elements of [:S, T :]. Then (x ⊓ y)1 = x1 ⊓ y1 and (x ⊓ y)2 = x2 ⊓ y2.

(14) Let S, T be antisymmetric relational structures with l.u.b.’s and x, y be

elements of [:S, T :]. Then (x ⊔ y)1 = x1 ⊔ y1 and (x ⊔ y)2 = x2 ⊔ y2.

(15) Let S, T be antisymmetric relational structures with g.l.b.’s, x1, y1 be

elements of S, and x2, y2 be elements of T . Then 〈〈x1 ⊓ y1, x2 ⊓ y2〉〉 = 〈〈x1,

x2〉〉 ⊓ 〈〈y1, y2〉〉.

(16) Let S, T be antisymmetric relational structures with l.u.b.’s, x1, y1 be

elements of S, and x2, y2 be elements of T . Then 〈〈x1 ⊔ y1, x2 ⊔ y2〉〉 = 〈〈x1,

x2〉〉 ⊔ 〈〈y1, y2〉〉.
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Let S be an antisymmetric relational structure with l.u.b.’s and g.l.b.’s and

let x, y be elements of S. Let us note that the predicate y is a complement of x

is symmetric.

One can prove the following propositions:

(17) Let S, T be bounded antisymmetric relational structures with l.u.b.’s

and g.l.b.’s and x, y be elements of [:S, T :]. Then x is a complement of y

if and only if x1 is a complement of y1 and x2 is a complement of y2.

(18) Let S, T be antisymmetric up-complete non empty reflexive relational

structures, a, c be elements of S, and b, d be elements of T . If 〈〈a, b〉〉 ≪ 〈〈c,

d〉〉, then a≪ c and b≪ d.

(19) Let S, T be up-complete non empty posets, a, c be elements of S, and b,

d be elements of T . Then 〈〈a, b〉〉 ≪ 〈〈c, d〉〉 if and only if a≪ c and b≪ d.

(20) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x, y be elements of [:S, T :]. If x ≪ y, then x1 ≪ y1 and

x2 ≪ y2.

(21) Let S, T be up-complete non empty posets and x, y be elements of [:S,

T :]. Then x≪ y if and only if the following conditions are satisfied:

(i) x1 ≪ y1, and

(ii) x2 ≪ y2.

(22) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. If x is compact, then x1 is

compact and x2 is compact.

(23) Let S, T be up-complete non empty posets and x be an element of [:S,

T :]. If x1 is compact and x2 is compact, then x is compact.

2. On the Subsets of Product of Relational Structures

The following propositions are true:

(24) Let S, T be antisymmetric relational structures with g.l.b.’s and X, Y

be subsets of [:S, T :]. Then π1(X ⊓Y ) = π1(X)⊓π1(Y ) and π2(X ⊓Y ) =

π2(X) ⊓ π2(Y ).

(25) Let S, T be antisymmetric relational structures with l.u.b.’s and X, Y

be subsets of [:S, T :]. Then π1(X ⊔Y ) = π1(X)⊔π1(Y ) and π2(X ⊔Y ) =

π2(X) ⊔ π2(Y ).

(26) For all relational structures S, T and for every subset X of [:S, T :] holds

↓X ⊆ [: ↓π1(X), ↓π2(X) :].

(27) For all relational structures S, T and for every subset X of S and for

every subset Y of T holds [: ↓X, ↓Y :] = ↓[:X, Y :].
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(28) For all relational structures S, T and for every subset X of [:S, T :] holds

π1(↓X) ⊆ ↓π1(X) and π2(↓X) ⊆ ↓π2(X).

(29) Let S be a relational structure, T be a reflexive relational structure, and

X be a subset of [:S, T :]. Then π1(↓X) = ↓π1(X).

(30) Let S be a reflexive relational structure, T be a relational structure, and

X be a subset of [:S, T :]. Then π2(↓X) = ↓π2(X).

(31) For all relational structures S, T and for every subset X of [:S, T :] holds

↑X ⊆ [: ↑π1(X), ↑π2(X) :].

(32) For all relational structures S, T and for every subset X of S and for

every subset Y of T holds [: ↑X, ↑Y :] = ↑[:X, Y :].

(33) For all relational structures S, T and for every subset X of [:S, T :] holds

π1(↑X) ⊆ ↑π1(X) and π2(↑X) ⊆ ↑π2(X).

(34) Let S be a relational structure, T be a reflexive relational structure, and

X be a subset of [:S, T :]. Then π1(↑X) = ↑π1(X).

(35) Let S be a reflexive relational structure, T be a relational structure, and

X be a subset of [:S, T :]. Then π2(↑X) = ↑π2(X).

(36) Let S, T be non empty relational structures, s be an element of S, and

t be an element of T . Then [: ↓s, ↓t :] = ↓〈〈s, t〉〉.

(37) For all non empty relational structures S, T and for every element x of

[:S, T :] holds π1(↓x) ⊆ ↓(x1) and π2(↓x) ⊆ ↓(x2).

(38) Let S be a non empty relational structure, T be a non empty reflexive

relational structure, and x be an element of [:S, T :]. Then π1(↓x) = ↓(x1).

(39) Let S be a non empty reflexive relational structure, T be a non empty

relational structure, and x be an element of [:S, T :]. Then π2(↓x) = ↓(x2).

(40) Let S, T be non empty relational structures, s be an element of S, and

t be an element of T . Then [: ↑s, ↑t :] = ↑〈〈s, t〉〉.

(41) For all non empty relational structures S, T and for every element x of

[:S, T :] holds π1(↑x) ⊆ ↑(x1) and π2(↑x) ⊆ ↑(x2).

(42) Let S be a non empty relational structure, T be a non empty reflexive

relational structure, and x be an element of [:S, T :]. Then π1(↑x) = ↑(x1).

(43) Let S be a non empty reflexive relational structure, T be a non empty

relational structure, and x be an element of [:S, T :]. Then π2(↑x) = ↑(x2).

(44) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: ↓↓s, ↓↓t :] = ↓↓〈〈s, t〉〉.

(45) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. Then π1(↓↓x) ⊆ ↓↓(x1) and

π2(↓↓x) ⊆ ↓↓(x2).

(46) Let S be an up-complete non empty poset, T be an up-complete lower-

bounded non empty poset, and x be an element of [:S, T :]. Then π1(↓↓x) =
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↓↓(x1).

(47) Let S be an up-complete lower-bounded non empty poset, T be an up-

complete non empty poset, and x be an element of [:S, T :]. Then π2(↓↓x) =

↓↓(x2).

(48) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: ↑↑s, ↑↑t :] = ↑↑〈〈s, t〉〉.

(49) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. Then π1(↑↑x) ⊆ ↑↑(x1) and

π2(↑↑x) ⊆ ↑↑(x2).

(50) For all up-complete non empty posets S, T and for every element s of S

and for every element t of T holds [: compactbelow(s), compactbelow(t) :] =

compactbelow(〈〈s, t〉〉).

(51) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and x be an element of [:S, T :]. Then π1(compactbelow(x)) ⊆

compactbelow(x1) and π2(compactbelow(x)) ⊆ compactbelow(x2).

(52) Let S be an up-complete non empty poset, T be an up-complete

lower-bounded non empty poset, and x be an element of [:S, T :]. Then

π1(compactbelow(x)) = compactbelow(x1).

(53) Let S be an up-complete lower-bounded non empty poset, T be an

up-complete non empty poset, and x be an element of [:S, T :]. Then

π2(compactbelow(x)) = compactbelow(x2).

Let S be a non empty reflexive relational structure. One can verify that

every subset of S which is empty is also open.

The following propositions are true:

(54) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and X be a subset of [:S, T :]. If X is open, then π1(X) is open

and π2(X) is open.

(55) Let S, T be up-complete non empty posets, X be a subset of S, and Y

be a subset of T . If X is open and Y is open, then [:X, Y :] is open.

(56) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and X be a subset of [:S, T :]. If X is inaccessible, then π1(X)

is inaccessible and π2(X) is inaccessible.

(57) Let S, T be antisymmetric up-complete non empty reflexive relational

structures, X be an upper subset of S, and Y be an upper subset of T . If

X is inaccessible and Y is inaccessible, then [:X, Y :] is inaccessible.

(58) Let S, T be antisymmetric up-complete non empty reflexive relational

structures, X be a subset of S, and Y be a subset of T such that [:X, Y :]

is directly closed. Then

(i) if Y 6= ∅, then X is directly closed, and

(ii) if X 6= ∅, then Y is directly closed.
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(59) Let S, T be antisymmetric up-complete non empty reflexive relational

structures, X be a subset of S, and Y be a subset of T . Suppose X is

directly closed and Y is directly closed. Then [:X, Y :] is directly closed.

(60) Let S, T be antisymmetric up-complete non empty reflexive relational

structures and X be a subset of [:S, T :]. If X has the property (S), then

π1(X) has the property (S) and π2(X) has the property (S).

(61) Let S, T be up-complete non empty posets, X be a subset of S, and Y

be a subset of T . If X has the property (S) and Y has the property (S),

then [:X, Y :] has the property (S).

3. On the Products of Relational Structures

We now state the proposition

(62) Let S, T be non empty reflexive relational structures. Suppose the rela-

tional structure of S = the relational structure of T and S is inf-complete.

Then T is inf-complete.

Let S be an inf-complete non empty reflexive relational structure. Observe

that the relational structure of S is inf-complete.

Let S, T be inf-complete non empty reflexive relational structures. Observe

that [:S, T :] is inf-complete.

The following proposition is true

(63) Let S, T be non empty reflexive relational structures. If [:S, T :] is inf-

complete, then S is inf-complete and T is inf-complete.

Let S, T be complemented bounded antisymmetric non empty relational

structures with g.l.b.’s and l.u.b.’s. Observe that [:S, T :] is complemented.

Next we state the proposition

(64) Let S, T be bounded antisymmetric relational structures with g.l.b.’s

and l.u.b.’s. If [:S, T :] is complemented, then S is complemented and T is

complemented.

Let S, T be distributive antisymmetric non empty relational structures with

g.l.b.’s and l.u.b.’s. Observe that [:S, T :] is distributive.

The following propositions are true:

(65) Let S be an antisymmetric relational structure with g.l.b.’s and l.u.b.’s

and T be a reflexive antisymmetric relational structure with g.l.b.’s and

l.u.b.’s. If [:S, T :] is distributive, then S is distributive.

(66) Let S be a reflexive antisymmetric relational structure with g.l.b.’s and

l.u.b.’s and T be an antisymmetric relational structure with g.l.b.’s and

l.u.b.’s. If [:S, T :] is distributive, then T is distributive.
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Let S, T be meet-continuous semilattices. Observe that [:S, T :] satisfies MC.

We now state the proposition

(67) For all semilattices S, T such that [:S, T :] is meet-continuous holds S is

meet-continuous and T is meet-continuous.

Let S, T be up-complete inf-complete non empty posets satisfying axiom of

approximation. Note that [:S, T :] satisfies axiom of approximation.

Let S, T be continuous inf-complete non empty posets. Observe that [:S, T :]

is continuous.

Next we state the proposition

(68) Let S, T be up-complete lower-bounded non empty posets. If [:S, T :] is

continuous, then S is continuous and T is continuous.

Let S, T be up-complete lower-bounded sup-semilattices satisfying axiom

K. Note that [:S, T :] satisfies axiom K.

Let S, T be complete algebraic lower-bounded sup-semilattices. Note that

[:S, T :] is algebraic.

The following proposition is true

(69) For all lower-bounded non empty posets S, T such that [:S, T :] is alge-

braic holds S is algebraic and T is algebraic.

Let S, T be arithmetic lower-bounded lattices. Note that [:S, T :] is arithme-

tic.

Next we state the proposition

(70) For all lower-bounded lattices S, T such that [:S, T :] is arithmetic holds

S is arithmetic and T is arithmetic.
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