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Summary. We introduce the field of quotients over an integral domain
following the well-known construction using pairs over integral domains. In ad-
dition we define ring homomorphisms and prove some basic facts about fields of
quotients including their universal property.

MML Identifier: QUOFIELD.

The papers [1], [13], [10], [2], [3], [7], [9], [11], [12], [5], [6], [8], and [4] provide

the terminology and notation for this paper.

1. Preliminaries

Let I be a non empty zero structure. The functor Q(I) is a subset of [: the

carrier of I, the carrier of I :] and is defined by:

(Def. 1) For every set u holds u ∈ Q(I) iff there exist elements a, b of the carrier

of I such that u = 〈〈a, b〉〉 and b 6= 0I .

Next we state the proposition

(1) For every non degenerated non empty multiplicative loop with zero struc-

ture I holds Q(I) is non empty.

The following two propositions are true:

(2) Let I be a non degenerated non empty multiplicative loop with zero

structure and u be an element of Q(I). Then u2 6= 0I .

(3) Let I be a non degenerated non empty multiplicative loop with zero

structure and u be an element of Q(I). Then u1 is an element of the

carrier of I and u2 is an element of the carrier of I.
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Let I be a non degenerated integral domain-like non empty double loop

structure and let u, v be elements of Q(I). The functor u+v yielding an element

of Q(I) is defined by:

(Def. 2) u + v = 〈〈u1 · v2 + v1 · u2, u2 · v2〉〉.

Let I be a non degenerated integral domain-like non empty double loop

structure and let u, v be elements of Q(I). The functor u · v yielding an element

of Q(I) is defined as follows:

(Def. 3) u · v = 〈〈u1 · v1, u2 · v2〉〉.

The following two propositions are true:

(4) Let I be a non degenerated integral domain-like associative commutative

Abelian add-associative distributive non empty double loop structure and

u, v, w be elements of Q(I). Then u+(v+w) = (u+v)+w and u+v = v+u.

(5) Let I be a non degenerated integral domain-like associative commutative

Abelian non empty double loop structure and u, v, w be elements of Q(I).

Then u · (v · w) = (u · v) · w and u · v = v · u.

Let I be a non degenerated integral domain-like associative commutative

Abelian add-associative distributive non empty double loop structure and let u,

v be elements of Q(I). Let us notice that the functor u + v is commutative.

Let I be a non degenerated integral domain-like associative commutative

Abelian non empty double loop structure and let u, v be elements of Q(I). Let

us note that the functor u · v is commutative.

Let I be a non degenerated non empty multiplicative loop with zero structure

and let u be an element of Q(I). The functor QClass(u) is a subset of Q(I) and

is defined as follows:

(Def. 4) For every element z of Q(I) holds z ∈ QClass(u) iff z1 · u2 = z2 · u1.

The following proposition is true

(6) Let I be a non degenerated commutative non empty multiplicative loop

with zero structure and u be an element of Q(I). Then u ∈ QClass(u).

Let I be a non degenerated commutative non empty multiplicative loop with

zero structure and let u be an element of Q(I). Observe that QClass(u) is non

empty.

Let I be a non degenerated non empty multiplicative loop with zero struc-

ture. The functor Quot(I) is a family of subsets of Q(I) and is defined by:

(Def. 5) For every subset A of Q(I) holds A ∈ Quot(I) iff there exists an element

u of Q(I) such that A = QClass(u).

Next we state the proposition

(7) For every non degenerated non empty multiplicative loop with zero struc-

ture I holds Quot(I) is non empty.

Next we state two propositions:
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(8) Let I be a non degenerated integral domain-like ring and u, v be elements

of Q(I). If there exists an element w of Quot(I) such that u ∈ w and v ∈ w,

then u1 · v2 = v1 · u2.

(9) For every non degenerated integral domain-like ring I and for all elements

u, v of Quot(I) such that u ∩ v 6= ∅ holds u = v.

2. Defining the Operations

Let I be a non degenerated integral domain-like ring and let u, v be elements

of Quot(I). The functor u +q v yielding an element of Quot(I) is defined by the

condition (Def. 6).

(Def. 6) Let z be an element of Q(I). Then z ∈ u +q v if and only if there exist

elements a, b of Q(I) such that a ∈ u and b ∈ v and z1 · (a2 · b2) =

z2 · (a1 · b2 + b1 · a2).

Let I be a non degenerated integral domain-like ring and let u, v be elements

of Quot(I). The functor u ·q v yielding an element of Quot(I) is defined by the

condition (Def. 7).

(Def. 7) Let z be an element of Q(I). Then z ∈ u ·q v if and only if there exist

elements a, b of Q(I) such that a ∈ u and b ∈ v and z1·(a2·b2) = z2·(a1·b1).

Next we state the proposition

(10) Let I be a non degenerated non empty multiplicative loop with zero

structure and u be an element of Q(I). Then QClass(u) is an element of

Quot(I).

We now state two propositions:

(11) For every non degenerated integral domain-like ring I and for all elements

u, v of Q(I) holds QClass(u) +q QClass(v) = QClass(u + v).

(12) For every non degenerated integral domain-like ring I and for all elements

u, v of Q(I) holds QClass(u) ·q QClass(v) = QClass(u · v).

Let I be a non degenerated integral domain-like ring. The functor 0q(I)

yielding an element of Quot(I) is defined by:

(Def. 8) For every element z of Q(I) holds z ∈ 0q(I) iff z1 = 0I .

Let I be a non degenerated integral domain-like ring. The functor 1q(I)

yielding an element of Quot(I) is defined as follows:

(Def. 9) For every element z of Q(I) holds z ∈ 1q(I) iff z1 = z2.

Let I be a non degenerated integral domain-like ring and let u be an element

of Quot(I). The functor −qu yielding an element of Quot(I) is defined by:

(Def. 10) For every element z of Q(I) holds z ∈ −qu iff there exists an element a

of Q(I) such that a ∈ u and z1 · a2 = z2 · −a1.
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Let I be a non degenerated integral domain-like ring and let u be an element

of Quot(I). Let us assume that u 6= 0q(I). The functor u−1
q yields an element of

Quot(I) and is defined by:

(Def. 11) For every element z of Q(I) holds z ∈ u−1
q iff there exists an element a

of Q(I) such that a ∈ u and z1 · a1 = z2 · a2.

The following propositions are true:

(13) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of Quot(I). Then u+q(v+qw) = (u+qv)+qw and u+qv = v+qu.

(14) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds u +q 0q(I) = u and 0q(I) +q u = u.

(15) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of Quot(I). Then u ·q (v ·q w) = (u ·q v) ·q w and u ·q v = v ·q u.

(16) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds u ·q 1q(I) = u and 1q(I) ·q u = u.

(17) For every non degenerated integral domain-like ring I and for all elements

u, v, w of Quot(I) holds (u +q v) ·q w = (u ·q w) +q (v ·q w).

(18) For every non degenerated integral domain-like ring I and for all elements

u, v, w of Quot(I) holds u ·q (v +q w) = (u ·q v) +q (u ·q w).

(19) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds u +q −qu = 0q(I) and −qu +q u = 0q(I).

(20) Let I be a non degenerated integral domain-like ring and u be an element

of Quot(I). If u 6= 0q(I), then u ·q u−1
q = 1q(I) and u−1

q ·q u = 1q(I).

(21) For every non degenerated integral domain-like ring I holds 1q(I) 6=

0q(I).

Let I be a non degenerated integral domain-like ring. The functor +q(I)

yielding a binary operation on Quot(I) is defined as follows:

(Def. 12) For all elements u, v of Quot(I) holds (+q(I))(u, v) = u +q v.

Let I be a non degenerated integral domain-like ring. The functor ·q(I) yields

a binary operation on Quot(I) and is defined as follows:

(Def. 13) For all elements u, v of Quot(I) holds (·q(I))(u, v) = u ·q v.

Let I be a non degenerated integral domain-like ring. The functor −q(I)

yields a unary operation on Quot(I) and is defined as follows:

(Def. 14) For every element u of Quot(I) holds (−q(I))(u) = −qu.

Let I be a non degenerated integral domain-like ring. The functor −1
q (I)

yields a unary operation on Quot(I) and is defined as follows:

(Def. 15) For every element u of Quot(I) holds (−1
q (I))(u) = u−1

q .

We now state a number of propositions:
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(22) For every non degenerated integral domain-like ring I and for all ele-

ments u, v, w of Quot(I) holds (+q(I))((+q(I))(u, v), w) = (+q(I))(u,

(+q(I))(v, w)).

(23) For every non degenerated integral domain-like ring I and for all elements

u, v of Quot(I) holds (+q(I))(u, v) = (+q(I))(v, u).

(24) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds (+q(I))(u, 0q(I)) = u and (+q(I))(0q(I), u) =

u.

(25) For every non degenerated integral domain-like ring I and for all elements

u, v, w of Quot(I) holds (·q(I))((·q(I))(u, v), w) = (·q(I))(u, (·q(I))(v,

w)).

(26) For every non degenerated integral domain-like ring I and for all elements

u, v of Quot(I) holds (·q(I))(u, v) = (·q(I))(v, u).

(27) For every non degenerated integral domain-like ring I and for every

element u of Quot(I) holds (·q(I))(u, 1q(I)) = u and (·q(I))(1q(I), u) = u.

(28) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of Quot(I). Then (·q(I))((+q(I))(u, v), w) = (+q(I))((·q(I))(u,

w), (·q(I))(v, w)).

(29) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of Quot(I). Then (·q(I))(u, (+q(I))(v, w)) = (+q(I))((·q(I))(u,

v), (·q(I))(u, w)).

(30) Let I be a non degenerated integral domain-like ring and u be an element

of Quot(I). Then (+q(I))(u, (−q(I))(u)) = 0q(I) and (+q(I))((−q(I))(u),

u) = 0q(I).

(31) Let I be a non degenerated integral domain-like ring and u be an ele-

ment of Quot(I). If u 6= 0q(I), then (·q(I))(u, (−1
q (I))(u)) = 1q(I) and

(·q(I))((−1
q (I))(u), u) = 1q(I).

3. Defining the Field of Quotients

Let I be a non degenerated integral domain-like ring. The field of quotients

of I yields a strict double loop structure and is defined as follows:

(Def. 16) The field of quotients of I = 〈Quot(I),+q(I), ·q(I), 1q(I), 0q(I)〉.

Let I be a non degenerated integral domain-like ring. Observe that the field

of quotients of I is non empty.

The following propositions are true:

(32) Let I be a non degenerated integral domain-like ring. Then

(i) the carrier of the field of quotients of I = Quot(I),

(ii) the addition of the field of quotients of I = +q(I),
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(iii) the multiplication of the field of quotients of I = ·q(I),

(iv) the zero of the field of quotients of I = 0q(I), and

(v) the unity of the field of quotients of I = 1q(I).

(33) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then (+q(I))(u, v) is an element

of the carrier of the field of quotients of I.

(34) Let I be a non degenerated integral domain-like ring and u be an element

of the carrier of the field of quotients of I. Then (−q(I))(u) is an element

of the carrier of the field of quotients of I.

(35) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then (·q(I))(u, v) is an element

of the carrier of the field of quotients of I.

(36) Let I be a non degenerated integral domain-like ring and u be an element

of the carrier of the field of quotients of I. Then (−1
q (I))(u) is an element

of the carrier of the field of quotients of I.

(37) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then u + v = (+q(I))(u, v).

Let I be a non degenerated integral domain-like ring. One can verify that the

field of quotients of I is add-associative right zeroed and right complementable.

Next we state a number of propositions:

(38) Let I be a non degenerated integral domain-like ring and u be an element

of the carrier of the field of quotients of I. Then −u = (−q(I))(u).

(39) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then u · v = (·q(I))(u, v).

(40) Let I be a non degenerated integral domain-like ring. Then

1the field of quotients of I = 1q(I) and 0the field of quotients of I = 0q(I).

(41) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of the carrier of the field of quotients of I. Then (u + v) + w =

u + (v + w).

(42) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then u + v = v + u.

(43) Let I be a non degenerated integral domain-like ring and u be

an element of the carrier of the field of quotients of I. Then u +

0the field of quotients of I = u.

(44) Let I be a non degenerated integral domain-like ring and u be an

element of the carrier of the field of quotients of I. Then u + −u =

0the field of quotients of I .

(45) Let I be a non degenerated integral domain-like ring and u be an element

of the carrier of the field of quotients of I. Then 1the field of quotients of I ·u =

u.
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(46) Let I be a non degenerated integral domain-like ring and u, v be elements

of the carrier of the field of quotients of I. Then u · v = v · u.

(47) Let I be a non degenerated integral domain-like ring and u, v, w be

elements of the carrier of the field of quotients of I. Then (u · v) · w =

u · (v · w).

(48) Let I be a non degenerated integral domain-like ring and u be an

element of the carrier of the field of quotients of I. Suppose u 6=

0the field of quotients of I . Then there exists an element v of the carrier of

the field of quotients of I such that u · v = 1the field of quotients of I .

(49) Let I be a non degenerated integral domain-like ring. Then the field

of quotients of I is an add-associative right zeroed right complementa-

ble Abelian commutative associative left unital distributive field-like non

degenerated non empty double loop structure.

Let I be a non degenerated integral domain-like ring. Note that the field of

quotients of I is Abelian commutative associative left unital distributive field-

like and non degenerated.

Next we state the proposition

(50) Let I be a non degenerated integral domain-like ring and x be an

element of the carrier of the field of quotients of I. Suppose x 6=

0the field of quotients of I . Let a be an element of the carrier of I. Suppose

a 6= 0I . Let u be an element of Q(I). Suppose x = QClass(u) and u = 〈〈a,

1I〉〉. Let v be an element of Q(I). If v = 〈〈1I , a〉〉, then x−1 = QClass(v).

Let us observe that every add-associative right zeroed right complementable

commutative associative left unital distributive field-like non degenerated non

empty double loop structure is integral domain-like and right unital.

One can check that there exists a non empty double loop structure which

is add-associative, right zeroed, right complementable, Abelian, commutative,

associative, left unital, distributive, field-like, and non degenerated.

Let F be a commutative associative left unital distributive field-like non

empty double loop structure and let x, y be elements of the carrier of F . The

functor x
y
yields an element of the carrier of F and is defined as follows:

(Def. 17) x
y

= x · y−1.

One can prove the following propositions:

(51) Let F be a non degenerated field-like ring and a, b, c, d be elements of

the carrier of F . If b 6= 0F and d 6= 0F , then a
b
· c

d
= a·c

b·d
.

(52) Let F be a non degenerated field-like ring and a, b, c, d be elements of

the carrier of F . If b 6= 0F and d 6= 0F , then a
b

+ c
d

= a·d+c·b
b·d

.
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4. Defining Ring Homomorphisms

Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring homomorphism if and only if:

(Def. 21)1 f is additive, multiplicative, and unity-preserving.

Let R, S be non empty double loop structures. One can verify that every map

from R into S which is ring homomorphism is also additive, multiplicative, and

unity-preserving and every map from R into S which is additive, multiplicative,

and unity-preserving is also a ring homomorphism.

Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring epimorphism if and only if:

(Def. 22) f is a ring homomorphism and rng f = the carrier of S.

We say that f is a ring monomorphism if and only if:

(Def. 23) f is a ring homomorphism and one-to-one.

We introduce f is an embedding as a synonym of f is a ring monomorphism.

Let R, S be non empty double loop structures and let f be a map from R

into S. We say that f is a ring isomorphism if and only if:

(Def. 24) f is a ring monomorphism and a ring epimorphism.

Let R, S be non empty double loop structures. Note that every map from

R into S which is ring isomorphism is also a ring monomorphism and a ring

epimorphism and every map from R into S which is ring monomorphism and

ring epimorphism is also a ring isomorphism.

We now state several propositions:

(53) For all rings R, S and for every map f from R into S such that f is a

ring homomorphism holds f(0R) = 0S .

(54) Let R, S be rings and f be a map from R into S. Suppose f is a ring

monomorphism. Let x be an element of the carrier of R. Then f(x) = 0S

if and only if x = 0R.

(55) Let R, S be non degenerated field-like rings and f be a map from R into

S. Suppose f is a ring homomorphism. Let x be an element of the carrier

of R. If x 6= 0R, then f(x−1) = f(x)−1.

(56) Let R, S be non degenerated field-like rings and f be a map from R into

S. Suppose f is a ring homomorphism. Let x, y be elements of the carrier

of R. If y 6= 0R, then f(x · y−1) = f(x) · f(y)−1.

(57) Let R, S, T be rings and f be a map from R into S. Suppose f is

a ring homomorphism. Let g be a map from S into T . If g is a ring

homomorphism, then g · f is a ring homomorphism.

1The definitions (Def. 18)–(Def. 20) have been removed.
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(58) For every non empty double loop structure R holds idR is a ring homo-

morphism.

Let R, S be non empty double loop structures. We say that R is embedded

in S if and only if:

(Def. 25) There exists a map from R into S which is a ring monomorphism.

Let R, S be non empty double loop structures. We say that R is ring iso-

morphic to S if and only if:

(Def. 26) There exists a map from R into S which is a ring isomorphism.

Let us note that the predicate R is ring isomorphic to S is symmetric.

5. Some Further Properties

Let I be a non empty zero structure and let x, y be elements of the carrier

of I. Let us assume that y 6= 0I . The functor quotient(x, y) yielding an element

of Q(I) is defined as follows:

(Def. 27) quotient(x, y) = 〈〈x, y〉〉.

Let I be a non degenerated integral domain-like ring. The canonical homo-

morphism of I into quotient field is a map from I into the field of quotients of

I and is defined by the condition (Def. 28).

(Def. 28) Let x be an element of the carrier of I. Then (the canonical homomor-

phism of I into quotient field)(x) = QClass(quotient(x, 1I)).

Next we state four propositions:

(59) Let I be a non degenerated integral domain-like ring. Then the canonical

homomorphism of I into quotient field is a ring homomorphism.

(60) Let I be a non degenerated integral domain-like ring. Then the canonical

homomorphism of I into quotient field is an embedding.

(61) For every non degenerated integral domain-like ring I holds I is embed-

ded in the field of quotients of I.

(62) Let F be a non degenerated field-like integral domain-like ring. Then F

is ring isomorphic to the field of quotients of F .

Let I be a non degenerated integral domain-like ring. Note that the field of

quotients of I is integral domain-like right unital and right-distributive.

One can prove the following proposition

(63) Let I be a non degenerated integral domain-like ring. Then the field of

quotients of the field of quotients of I is ring isomorphic to the field of

quotients of I.

Let I be a non empty double loop structure, let F be a non empty double

loop structure, and let f be a map from I into F . We say that F is a field of

quotients for I via f if and only if the conditions (Def. 29) are satisfied.



78 christoph schwarzweller

(Def. 29)(i) f is a ring monomorphism, and

(ii) for every add-associative right zeroed right complementable Abelian

commutative associative left unital distributive field-like non degenerated

non empty double loop structure F ′ and for every map f ′ from I into F ′

such that f ′ is a ring monomorphism there exists a map h from F into F ′

such that h is a ring homomorphism and h · f = f ′ and for every map h′

from F into F ′ such that h′ is a ring homomorphism and h′ · f = f ′ holds

h′ = h.

Next we state two propositions:

(64) Let I be a non degenerated integral domain-like ring. Then there exi-

sts an add-associative right zeroed right complementable Abelian com-

mutative associative left unital distributive field-like non degenerated non

empty double loop structure F and there exists a map f from I into F

such that F is a field of quotients for I via f .

(65) Let I be an integral domain-like ring, F , F ′ be add-associative right

zeroed right complementable Abelian commutative associative left unital

distributive field-like non degenerated non empty double loop structures,

f be a map from I into F , and f ′ be a map from I into F ′. Suppose F is

a field of quotients for I via f and F ′ is a field of quotients for I via f ′.

Then F is ring isomorphic to F ′.
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