Natural Numbers

Robert Milewski University of Białystok

MML Identifier: NAT_2.

The papers [6], [4], [2], [7], [1], [3], [5], and [8] provide the terminology and notation for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme NonUniqRe-cExD deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0) = \mathcal{B}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the following condition is satisfied:

• For every natural number n and for every element x of \mathcal{A} there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.

The scheme *NonUniqFinRecExD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

There exists a finite sequence p of elements of \mathcal{A} such that len p = 2

 \mathcal{C} but $p(1) = \mathcal{B}$ or $\mathcal{C} = 0$ but for every natural number n such that $1 \leq n$ and $n \leq \mathcal{C} - 1$ holds $\mathcal{P}[n, p(n), p(n+1)]$

provided the parameters meet the following requirement:

• Let n be a natural number. Suppose $1 \leq n$ and $n \leq C - 1$. Let x be an element of \mathcal{A} . Then there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.

The scheme *NonUniqPiFinRecExD* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , a natural number \mathcal{C} , and a ternary predicate \mathcal{P} , and states that:

C 1998 University of Białystok ISSN 1426-2630 There exists a finite sequence p of elements of \mathcal{A} such that len $p = \mathcal{C}$ but $\pi_1 p = \mathcal{B}$ or $\mathcal{C} = 0$ but for every natural number n such that $1 \leq n$ and $n \leq \mathcal{C} - 1$ holds $\mathcal{P}[n, \pi_n p, \pi_{n+1} p]$

provided the following condition is met:

• Let n be a natural number. Suppose $1 \leq n$ and $n \leq C - 1$. Let x be an element of \mathcal{A} . Then there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.

The following two propositions are true:

- (1) For every real number x holds $x < \lfloor x \rfloor + 1$.
- (2) For all real numbers x, y such that $x \ge 0$ and y > 0 holds $\frac{x}{\lfloor \frac{x}{y} \rfloor + 1} < y$.

2. DIVISION AND REST OF DIVISION

The following propositions are true:

- (3) For every natural number n holds n is empty iff n = 0.
- (4) For every natural number n holds $0 \div n = 0$.
- (5) For every non empty natural number n holds $n \div n = 1$.
- (6) For every natural number n holds $n \div 1 = n$.
- (7) For all natural numbers i, j, k, l such that $i \leq j$ and $k \leq j$ holds if i = (j k) + l, then k = (j i) + l.
- (8) For all natural numbers i, n such that $i \in \text{Seg } n$ holds $(n-i)+1 \in \text{Seg } n$.
- (9) For all natural numbers i, j such that j < i holds (i (j+1)) + 1 = i j.
- (10) For all natural numbers i, j such that $i \ge j$ holds j i = 0.
- (11) For all non empty natural numbers i, j holds i j < i.
- (12) Let n, k be natural numbers. Suppose $k \le n$. Then the n-th power of 2 = (the k-th power of 2) ·(the (n k)-th power of 2).
- (13) For all natural numbers n, k such that $k \leq n$ holds the k-th power of 2 | the n-th power of 2.
- (14) For all natural numbers n, k such that k > 0 and $n \div k = 0$ holds n < k.
- (15) For all natural numbers n, k such that k > 0 and $k \leq n$ holds $n \div k \geq 1$.
- (16) For all natural numbers n, k such that $k \neq 0$ holds $(n+k) \div k = (n \div k) + 1$.
- (17) For all natural numbers n, k, i such that $k \mid n$ and $1 \leq n$ and $1 \leq i$ and $i \leq k$ holds $(n i) \div k = (n \div k) 1$.
- (18) Let n, k be natural numbers. Suppose $k \leq n$. Then (the *n*-th power of 2) \div (the *k*-th power of 2) = the (n k)-th power of 2.
- (19) For every natural number n such that n > 0 holds (the *n*-th power of 2) mod 2 = 0.

- (20) For every natural number n such that n > 0 holds $n \mod 2 = 0$ iff $(n 1) \mod 2 = 1$.
- (21) For every non empty natural number n such that $n \neq 1$ holds n > 1.
- (22) For all natural numbers n, k such that $n \leq k$ and k < n + n holds $k \div n = 1$.
- (23) For every natural number n holds n is even iff $n \mod 2 = 0$.
- (24) For every natural number n holds n is odd iff $n \mod 2 = 1$.
- (25) For all natural numbers n, k, t such that $1 \le t$ and $k \le n$ and $2 \cdot t \mid k$ holds $n \div t$ is even iff $(n t) \div t$ is even.
- (26) For all natural numbers n, m, k such that $n \leq m$ holds $n \div k \leq m \div k$.
- (27) For all natural numbers n, k such that $k \leq 2 \cdot n$ holds $(k+1) \div 2 \leq n$.
- (28) For every even natural number n holds $n \div 2 = (n+1) \div 2$.
- (29) For all natural numbers n, k, i holds $n \div k \div i = n \div k \cdot i$.
- Let n be a natural number. We say that n is non trivial if and only if:

(Def. 1) $n \neq 0$ and $n \neq 1$.

One can verify that every natural number which is non trivial is also non empty.

One can check that there exists a natural number which is non trivial.

The following two propositions are true:

- (30) For every natural number k holds k is non trivial iff k is non empty and $k \neq 1$.
- (31) For every non trivial natural number k holds $k \ge 2$.

The scheme Ind from 2 concerns a unary predicate \mathcal{P} , and states that:

For every non trivial natural number k holds $\mathcal{P}[k]$

provided the following conditions are met:

- $\mathcal{P}[2]$, and
- For every non trivial natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [4] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [5] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449– 452, 1991.
- [6] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [7] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

ROBERT MILEWSKI

_

Received February 23, 1998