Natural Numbers

Robert Milewski
University of Białystok

MML Identifier: NAT_2.

The papers [6], [4], [2], [7], [1], [3], [5], and [8] provide the terminology and notation for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme NonUniqRe$c E x D$ deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, and a ternary predicate \mathcal{P}, and states that:

There exists a function f from \mathbb{N} into \mathcal{A} such that $f(0)=\mathcal{B}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$ provided the following condition is satisfied:

- For every natural number n and for every element x of \mathcal{A} there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.
The scheme NonUniqFinRecExD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, and a ternary predicate \mathcal{P}, and states that: There exists a finite sequence p of elements of \mathcal{A} such that len $p=$ \mathcal{C} but $p(1)=\mathcal{B}$ or $\mathcal{C}=0$ but for every natural number n such that $1 \leqslant n$ and $n \leqslant \mathcal{C}-1$ holds $\mathcal{P}[n, p(n), p(n+1)]$
provided the parameters meet the following requirement:
- Let n be a natural number. Suppose $1 \leqslant n$ and $n \leqslant \mathcal{C}-1$. Let x be an element of \mathcal{A}. Then there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.
The scheme NonUniqPiFinRecExD deals with a non empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a natural number \mathcal{C}, and a ternary predicate \mathcal{P}, and states that:

There exists a finite sequence p of elements of \mathcal{A} such that len $p=$ \mathcal{C} but $\pi_{1} p=\mathcal{B}$ or $\mathcal{C}=0$ but for every natural number n such that $1 \leqslant n$ and $n \leqslant \mathcal{C}-1$ holds $\mathcal{P}\left[n, \pi_{n} p, \pi_{n+1} p\right]$
provided the following condition is met:

- Let n be a natural number. Suppose $1 \leqslant n$ and $n \leqslant \mathcal{C}-1$. Let x be an element of \mathcal{A}. Then there exists an element y of \mathcal{A} such that $\mathcal{P}[n, x, y]$.
The following two propositions are true:
(1) For every real number x holds $x<\lfloor x\rfloor+1$.
(2) For all real numbers x, y such that $x \geqslant 0$ and $y>0$ holds $\frac{x}{\left\lfloor\frac{x}{y}\right\rfloor+1}<y$.

2. Division and Rest of Division

The following propositions are true:
(3) For every natural number n holds n is empty iff $n=0$.
(4) For every natural number n holds $0 \div n=0$.
(5) For every non empty natural number n holds $n \div n=1$.
(6) For every natural number n holds $n \div 1=n$.
(7) For all natural numbers i, j, k, l such that $i \leqslant j$ and $k \leqslant j$ holds if $i=\left(j-^{\prime} k\right)+l$, then $k=\left(j-{ }^{\prime} i\right)+l$.
(8) For all natural numbers i, n such that $i \in \operatorname{Seg} n$ holds $\left(n-{ }^{\prime} i\right)+1 \in \operatorname{Seg} n$.
(9) For all natural numbers i, j such that $j<i$ holds $\left(i-^{\prime}(j+1)\right)+1=i-^{\prime} j$.
(10) For all natural numbers i, j such that $i \geqslant j$ holds $j-^{\prime} i=0$.
(11) For all non empty natural numbers i, j holds $i-{ }^{\prime} j<i$.
(12) Let n, k be natural numbers. Suppose $k \leqslant n$. Then the n-th power of 2 $=($ the k-th power of 2$) \cdot\left(\right.$ the $\left(n-{ }^{\prime} k\right)$-th power of 2$)$.
(13) For all natural numbers n, k such that $k \leqslant n$ holds the k-th power of 2 | the n-th power of 2 .
(14) For all natural numbers n, k such that $k>0$ and $n \div k=0$ holds $n<k$.
(15) For all natural numbers n, k such that $k>0$ and $k \leqslant n$ holds $n \div k \geqslant 1$.
(16) For all natural numbers n, k such that $k \neq 0$ holds $(n+k) \div k=(n \div k)+1$.
(17) For all natural numbers n, k, i such that $k \mid n$ and $1 \leqslant n$ and $1 \leqslant i$ and $i \leqslant k$ holds $\left(n-{ }^{\prime} i\right) \div k=(n \div k)-1$.
(18) Let n, k be natural numbers. Suppose $k \leqslant n$. Then (the n-th power of $2) \div($ the k-th power of 2$)=$ the $\left(n-{ }^{\prime} k\right)$-th power of 2 .
(19) For every natural number n such that $n>0$ holds (the n-th power of 2) $\bmod 2=0$.
(20) For every natural number n such that $n>0$ holds $n \bmod 2=0$ iff $\left(n-{ }^{\prime} 1\right) \bmod 2=1$.
(21) For every non empty natural number n such that $n \neq 1$ holds $n>1$.
(22) For all natural numbers n, k such that $n \leqslant k$ and $k<n+n$ holds $k \div n=1$.
(23) For every natural number n holds n is even iff $n \bmod 2=0$.
(24) For every natural number n holds n is odd iff $n \bmod 2=1$.
(25) For all natural numbers n, k, t such that $1 \leqslant t$ and $k \leqslant n$ and $2 \cdot t \mid k$ holds $n \div t$ is even iff $\left(n-{ }^{\prime} k\right) \div t$ is even.
(26) For all natural numbers n, m, k such that $n \leqslant m$ holds $n \div k \leqslant m \div k$.
(27) For all natural numbers n, k such that $k \leqslant 2 \cdot n$ holds $(k+1) \div 2 \leqslant n$.
(28) For every even natural number n holds $n \div 2=(n+1) \div 2$.
(29) For all natural numbers n, k, i holds $n \div k \div i=n \div k \cdot i$.

Let n be a natural number. We say that n is non trivial if and only if:
(Def. 1) $n \neq 0$ and $n \neq 1$.
One can verify that every natural number which is non trivial is also non empty.

One can check that there exists a natural number which is non trivial.
The following two propositions are true:
(30) For every natural number k holds k is non trivial iff k is non empty and $k \neq 1$.
(31) For every non trivial natural number k holds $k \geqslant 2$.

The scheme Ind from 2 concerns a unary predicate \mathcal{P}, and states that:
For every non trivial natural number k holds $\mathcal{P}[k]$
provided the following conditions are met:

- $\mathcal{P}[2]$, and
- For every non trivial natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+$ $1]$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[5] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449452, 1991.
[6] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[7] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

