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Summary. At the beginning, the concept of the segment of the simple
closed curve in 2-dimensional Euclidean space is defined. Some properties of
segments are shown in the succeeding theorems. At the end, the existence of the
function which can divide the simple closed curve into segments is shown. We
can make the diameter of segments as small as we want.

MML Identifier: JORDAN7.

The terminology and notation used in this paper are introduced in the following

papers: [17], [5], [7], [2], [15], [3], [11], [12], [13], [1], [14], [4], [18], [16], [10], [8],

[9], and [6].

1. Definition of the Segment and Its Property

In this paper p, p1, q are points of E
2
T
.

The following three propositions are true:

(1) Let P be a compact non empty subset of E2
T
. Suppose P is a simple

closed curve. Then W-minP ∈ LowerArcP and E-maxP ∈ LowerArcP

and W-minP ∈ UpperArcP and E-maxP ∈ UpperArcP.

(2) For every compact non empty subset P of E2
T
and for every q such that

P is a simple closed curve and LE(q,W-minP, P ) holds q =W-minP.

(3) For every compact non empty subset P of E2
T
and for every q such that

P is a simple closed curve and q ∈ P holds LE(W-minP, q, P ).
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Let P be a compact non empty subset of E2
T
and let q1, q2 be points of E

2
T
.

The functor Segment(q1, q2, P ) yields a subset of E2
T
and is defined by:

(Def. 1) Segment(q1, q2, P ) =















{p : LE(q1, p, P ) ∧ LE(p, q2, P )},

if q2 6=W-minP,

{p1 : LE(q1, p1, P ) ∨ q1 ∈ P ∧ p1 =W-minP},

otherwise.

One can prove the following propositions:

(4) For every compact non empty subset P of E2
T
such that P is a sim-

ple closed curve holds Segment(W-minP,E-maxP, P ) = UpperArcP and

Segment(E-maxP,W-minP, P ) = LowerArcP.

(5) Let P be a compact non empty subset of E2
T
and q1, q2 be points of E

2
T
.

If P is a simple closed curve and LE(q1, q2, P ), then q1 ∈ P and q2 ∈ P.

(6) Let P be a compact non empty subset of E2
T
and q1, q2 be points of E

2
T
. If

P is a simple closed curve and LE(q1, q2, P ), then q1 ∈ Segment(q1, q2, P )

and q2 ∈ Segment(q1, q2, P ).

(7) Let P be a compact non empty subset of E2
T
and q be a point of

E2
T
. If P is a simple closed curve and q ∈ P and q 6= W-minP, then

Segment(q, q, P ) = {q}.

(8) Let P be a compact non empty subset of E2
T
and q1, q2 be points of E

2
T
.

If P is a simple closed curve and q1 6=W-minP and q2 6=W-minP, then

W-minP /∈ Segment(q1, q2, P ).

(9) Let P be a compact non empty subset of E2
T
and q1, q2, q3 be points of E

2
T
.

Suppose P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P ) and

q1 = q2 and q1 = W-minP and q1 6= q3 and q2 = q3 and q2 = W-minP.

Then Segment(q1, q2, P ) ∩ Segment(q2, q3, P ) = {q2}.

(10) Let P be a compact non empty subset of E2
T
and q1, q2 be points of E

2
T
.

Suppose P is a simple closed curve and LE(q1, q2, P ) and q1 6= q2 and q1 6=

W-minP. Then Segment(q2,W-minP, P ) ∩ Segment(W-minP, q1, P ) =

{W-minP}.

(11) Let P be a compact non empty subset of E2
T
and q1, q2, q3, q4 be points of

E2
T
. Suppose P is a simple closed curve and LE(q1, q2, P ) and LE(q2, q3, P )

and LE(q3, q4, P ) and q1 6= q2 and q2 6= q3. Then Segment(q1, q2, P ) ∩

Segment(q3, q4, P ) = ∅.
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2. A Function to Divide the Simple Closed Curve

In the sequel n is a natural number.

We now state three propositions:

(12) Let P be a non empty subset of the carrier of En
T
and f be a map from

I into (En
T
)↾P. Suppose P 6= ∅ and f is a homeomorphism. Then there

exists a map g from I into En
T
such that f = g and g is continuous and

one-to-one.

(13) For every finite sequence f of elements of R such that f is increasing

holds f is one-to-one.

(14) Let P be a compact non empty subset of E2
T
and e be a real number.

Suppose P is a simple closed curve and e > 0. Then there exists a finite

sequence h of elements of the carrier of E2
T
such that

(i) h(1) =W-minP,

(ii) h is one-to-one,

(iii) 8 ¬ lenh,

(iv) rng h ⊆ P,

(v) for every natural number i such that 1 ¬ i and i < lenh holds

LE(πih, πi+1h, P ),

(vi) for every natural number i and for every subset W of the carrier of

E2 such that 1 ¬ i and i < lenh and W = Segment(πih, πi+1h, P ) holds

ØW < e,

(vii) for every subset W of the carrier of E2 such that W =

Segment(πlenhh, π1h, P ) holds ØW < e,

(viii) for every natural number i such that 1 ¬ i and i + 1 < lenh holds

Segment(πih, πi+1h, P ) ∩ Segment(πi+1h, πi+2h, P ) = {πi+1h},

(ix) Segment(πlenhh, π1h, P ) ∩ Segment(π1h, π2h, P ) = {π1h}, and

(x) for all natural numbers i, j such that 1 ¬ i and i < lenh and

1 ¬ j and j < lenh and i 6= j and i and j are not adjacent holds

Segment(πih, πi+1h, P ) ∩ Segment(πjh, πj+1h, P ) = ∅.
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