Bounding Boxes for Special Sequences in \mathcal{E}^{2}

Yatsuka Nakamura
Shinshu University
Nagano

Adam Grabowski ${ }^{1}$
University of Białystok

Summary. This is the continuation of the proof of the Jordan Theorem according to [18].

MML Identifier: JORDAN5D.

The articles [16], [8], [6], [2], [21], [20], [5], [3], [12], [13], [15], [9], [1], [14], [17], [4], [23], [11], [10], [22], [19], and [7] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q denote points of $\mathcal{E}_{\mathrm{T}}^{2}$, s, r denote real numbers, h denotes a non constant standard special circular sequence, g denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}, f$ denotes a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and I, i_{1}, i, j, k denote natural numbers.

We now state a number of propositions:
(1) Let B be a subset of \mathbb{R}. Suppose there exists a real number r_{1} such that $r_{1} \in B$ and B is lower bounded and for every r such that $r \in B$ holds $s \leqslant r$. Then $s \leqslant \inf B$.
(2) Let B be a subset of \mathbb{R}. Suppose there exists a real number r_{1} such that $r_{1} \in B$ and B is upper bounded and for every r such that $r \in B$ holds $s \geqslant r$. Then $s \geqslant \sup B$.
(3) $\pi_{\text {len } h} h \in \mathcal{L}\left(h, \operatorname{len} h-^{\prime} 1\right)$.

[^0](4) If $3 \leqslant i$, then $i \bmod \left(i-^{\prime} 1\right)=1$.
(5) If $p \in \operatorname{rng} h$, then there exists a natural number i such that $1 \leqslant i$ and $i+1 \leqslant \operatorname{len} h$ and $h(i)=p$.
(6) For every finite sequence g of elements of \mathbb{R} such that $r \in \operatorname{rng} g$ holds $(\operatorname{Inc}(g))(1) \leqslant r$ and $r \leqslant(\operatorname{Inc}(g))(\operatorname{len} \operatorname{Inc}(g))$.
(7) Suppose $1 \leqslant i$ and $i \leqslant \operatorname{len} h$ and $1 \leqslant I$ and $I \leqslant$ width the Goboard of h. Then $\left((\text { the Go-board of } h)_{1, I}\right)_{\mathbf{1}} \leqslant\left(\pi_{i} h\right)_{\mathbf{1}}$ and $\left(\pi_{i} h\right)_{\mathbf{1}} \leqslant$ ((the Go-board of $\left.h)_{\text {len the Go-board of } h, I}\right)_{\mathbf{1}}$.
(8) Suppose $1 \leqslant i$ and $i \leqslant \operatorname{len} h$ and $1 \leqslant I$ and $I \leqslant$ len the Goboard of h. Then $\left((\text { the Go-board of } h)_{I, 1}\right)_{\mathbf{2}} \leqslant\left(\pi_{i} h\right)_{\mathbf{2}}$ and $\left(\pi_{i} h\right)_{\mathbf{2}} \leqslant$ ((the Go-board of $h)_{I, \text { width the Go-board of } h)_{2}}$.
(9) Suppose $1 \leqslant i$ and $i \leqslant$ len the Go-board of f. Then there exist k, j such that $k \in \operatorname{dom} f$ and $\langle i, j\rangle \in$ the indices of the Go-board of f and $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$.
(10) Suppose $1 \leqslant j$ and $j \leqslant$ width the Go-board of f. Then there exist k, i such that $k \in \operatorname{dom} f$ and $\langle i, j\rangle \in$ the indices of the Go-board of f and $\pi_{k} f=(\text { the Go-board of } f)_{i, j}$.
(11) Suppose $1 \leqslant i$ and $i \leqslant$ len the Go-board of f and $1 \leqslant j$ and $j \leqslant$ width the Go-board of f. Then there exists k such that $k \in \operatorname{dom} f$ and $\langle i, j\rangle \in$ the indices of the Go-board of f and $\left(\pi_{k} f\right)_{\mathbf{1}}=\left((\text { the Go-board of } f)_{i, j}\right)_{\mathbf{1}}$.
(12) Suppose $1 \leqslant i$ and $i \leqslant$ len the Go-board of f and $1 \leqslant j$ and $j \leqslant$ width the Go-board of f. Then there exists k such that $k \in \operatorname{dom} f$ and $\langle i, j\rangle \in$ the indices of the Go-board of f and $\left(\pi_{k} f\right)_{\mathbf{2}}=\left((\text { the Go-board of } f)_{i, j}\right)_{\mathbf{2}}$.

2. Extrema of Projections

One can prove the following propositions:
(13) If $1 \leqslant \underset{\sim}{i}$ and $i \leqslant$ len h, then S-bound $\widetilde{\mathcal{L}}(h) \leqslant\left(\pi_{i} h\right)_{\mathbf{2}}$ and $\left(\pi_{i} h\right)_{\mathbf{2}} \leqslant$ N-bound $\widetilde{\mathcal{L}}(h)$.
(14) If $1 \leqslant \underset{\sim}{i}$ and $i \leqslant$ len h, then W-bound $\widetilde{\mathcal{L}}(h) \leqslant\left(\pi_{i} h\right)_{\mathbf{1}}$ and $\left(\pi_{i} h\right)_{\mathbf{1}} \leqslant$ E-bound $\widetilde{\mathcal{L}}(h)$.
(15) For every subset X of \mathbb{R} such that $X=\left\{q_{2}: q_{1}=\right.$ W-bound $\widetilde{\mathcal{L}}(h) \wedge$ $q \in \widetilde{\mathcal{L}}(h)\}$ holds $X=(\operatorname{proj} 2 \upharpoonright \text { W-most } \widetilde{\mathcal{L}}(h))^{\circ}$ (the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright \mathrm{W}-$ most $\left.\widetilde{\mathcal{L}}(h)\right)$.
(16) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q_{\mathbf{1}}=\right.$ E-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $X=(\text { proj} 2 \upharpoonright \text { E-most } \widetilde{\mathcal{L}}(h))^{\circ}\left(\right.$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ E-most $\left.\widetilde{\mathcal{L}}(h)\right)$.
(17) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q_{2}=\mathrm{N}\right.$-bound $\widetilde{\mathcal{L}}(h) \wedge$ $q \in \widetilde{\mathcal{L}}(h)\}$ holds $X=(\text { proj1 } \upharpoonright \operatorname{N} \text {-most } \widetilde{\mathcal{L}}(h))^{\circ}$ (the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright \mathrm{N}$-most $\left.\widetilde{\mathcal{L}}(h)\right)$.
(18) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q_{\mathbf{2}}=\right.$ S-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $X=(\text { proj1 } \upharpoonright \text { S-most } \widetilde{\mathcal{L}}(h))^{\circ}\left(\right.$ the carrier of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright$ S-most $\left.\widetilde{\mathcal{L}}(h)\right)$.
(19) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds $X=$ (proj1 $\upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}\left(\right.$ the carrier of $\left.\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright \widetilde{\mathcal{L}}(g)\right)$.
(20) For every subset X of \mathbb{R} such that $X=\left\{q_{2}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds $X=$ (proj2 $\upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $\left.\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright \widetilde{\mathcal{L}}(g)\right)$.
 $\widetilde{\mathcal{L}}(h)\}$ holds $\inf X=\inf (\operatorname{proj} 2 \upharpoonright \mathrm{~W}$-most $\widetilde{\mathcal{L}}(h))$.
(22) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q_{\mathbf{1}}=\mathrm{W}\right.$-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds sup $X=\sup (\operatorname{proj} 2 \upharpoonright \mathrm{~W}$-most $\widetilde{\mathcal{L}}(h))$.
(23) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q_{\mathbf{1}}=\right.$ E-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $\inf X=\inf ($ proj $2 \upharpoonright$ E-most $\widetilde{\mathcal{L}}(h))$.
(24) $\widetilde{\sim}^{\text {For every subset } X}$ of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q_{\mathbf{1}}=\right.$ E-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $\sup X=\sup (\operatorname{proj} 2 \upharpoonright \mathrm{E}-$ most $\widetilde{\mathcal{L}}(h))$.
(25) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{1}}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds inf $X=$ $\inf (\operatorname{proj} 1 \upharpoonright \widetilde{\mathcal{L}}(g))$.
(26) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q_{\mathbf{2}}=\right.$ S-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $\inf X=\inf ($ proj1 \upharpoonright S-most $\widetilde{\mathcal{L}}(h))$.
(27) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q_{\mathbf{2}}=\right.$ S-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $\sup X=\sup ($ proj1 \upharpoonright S-most $\widetilde{\mathcal{L}}(h))$.
(28) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q_{\mathbf{2}}=\mathrm{N}\right.$-bound $\widetilde{\mathcal{L}}(h) \wedge q \in$ $\widetilde{\mathcal{L}}(h)\}$ holds $\inf X=\inf ($ proj1 $\upharpoonright \mathrm{N}$-most $\widetilde{\mathcal{L}}(h))$.
 $\widetilde{\mathcal{L}}(h)\}$ holds $\sup X=\sup ($ proj1 $\upharpoonright \mathrm{N}$-most $\widetilde{\mathcal{L}}(h))$.
(30) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds inf $X=$ $\inf (\operatorname{proj} 2 \upharpoonright \widetilde{\mathcal{L}}(g))$.
(31) For every subset X of \mathbb{R} such that $X=\left\{q_{1}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds $\sup X=$ $\sup (\operatorname{proj} 1 \upharpoonright \widetilde{\mathcal{L}}(g))$.
(32) For every subset X of \mathbb{R} such that $X=\left\{q_{\mathbf{2}}: q \in \widetilde{\mathcal{L}}(g)\right\}$ holds $\sup X=$ $\sup (\operatorname{proj} 2 \upharpoonright \widetilde{\mathcal{L}}(g))$.
(33) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant$ width the Go-board of h, then $\left((\text { the Go-board of } h)_{1, I}\right)_{\mathbf{1}} \leqslant p_{\mathbf{1}}$.
(34) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant$ width the Go-board of h, then $p_{\mathbf{1}} \leqslant$ ((the Go-board of $\left.h)_{\text {len the Go-board of } h, I}\right)_{\mathbf{1}}$.
(35) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant$ len the Go-board of h, then $\left((\text { the Go-board of } h)_{I, 1}\right)_{\mathbf{2}} \leqslant p_{\mathbf{2}}$.
(36) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant$ len the Go-board of h, then $p_{\mathbf{2}} \leqslant$ $\left((\text { the Go-board of } h)_{I, \text { width the Go-board of } h)_{\mathbf{2}} .}\right.$.
(37) Suppose $1 \leqslant i$ and $i \leqslant$ len the Go-board of h and $1 \leqslant j$ and $j \leqslant$ width the Go-board of h. Then there exists q such that $q_{\mathbf{1}}=$ $\left((\text { the Go-board of } h)_{i, j}\right)_{1}$ and $q \in \widetilde{\mathcal{L}}(h)$.
(38) Suppose $1 \leqslant i$ and $i \leqslant$ len the Go-board of h and $1 \leqslant j$ and $j \leqslant$ width the Go-board of h. Then there exists q such that $q_{2}=$ $\left((\text { the Go-board of } h)_{i, j}\right)_{2}$ and $q \in \widetilde{\mathcal{L}}(h)$.
(39) W-bound $\widetilde{\mathcal{L}}(h)=\left((\text { the Go-board of } h)_{1,1}\right)_{\mathbf{1}}$.
(40) S-bound $\widetilde{\mathcal{L}}(h)=\left((\text { the Go-board of } h)_{1,1}\right)_{\mathbf{2}}$.
(41) E-bound $\widetilde{\mathcal{L}}(h)=\left((\text { the Go-board of } h)_{\text {len the Go-board of } h, 1}\right)_{\mathbf{1}}$.

(43) Let Y be a non empty finite subset of \mathbb{N}. Suppose that
(i) $1 \leqslant i$,
(ii) $i \leqslant \operatorname{len} f$,
(iii) $1 \leqslant I$,
(iv) $\quad I \leqslant$ len the Go-board of f,
(v) $Y=\left\{j:\langle I, j\rangle \in\right.$ the indices of the Go-board of $f \wedge \bigvee_{k}(k \in$ $\left.\left.\operatorname{dom} f \wedge \pi_{k} f=(\text { the Go-board of } f)_{I, j}\right)\right\}$,
(vi) $\quad\left(\pi_{i} f\right)_{\mathbf{1}}=\left((\text { the Go-board of } f)_{I, 1}\right)_{\mathbf{1}}$, and
(vii) $\quad i_{1}=\min Y$.

Then $\left((\text { the Go-board of } f)_{I, i_{1}}\right)_{\mathbf{2}} \leqslant\left(\pi_{i} f\right)_{\mathbf{2}}$.
(44) Let Y be a non empty finite subset of \mathbb{N}. Suppose that
(i) $1 \leqslant i$,
(ii) $i \leqslant \operatorname{len} h$,
(iii) $1 \leqslant I$,
(iv) $I \leqslant$ width the Go-board of h,
(v) $\quad Y=\left\{j:\langle j, I\rangle \in\right.$ the indices of the Go-board of $h \wedge \bigvee_{k}(k \in$ $\left.\left.\operatorname{dom} h \wedge \pi_{k} h=(\text { the Go-board of } h)_{j, I}\right)\right\}$,
(vi) $\quad\left(\pi_{i} h\right)_{\mathbf{2}}=\left((\text { the Go-board of } h)_{1, I}\right)_{\mathbf{2}}$, and
(vii) $\quad i_{1}=\min Y$.

Then $\left((\text { the Go-board of } h)_{i_{1}, I}\right)_{\mathbf{1}} \leqslant\left(\pi_{i} h\right)_{\mathbf{1}}$.
(45) Let Y be a non empty finite subset of \mathbb{N}. Suppose that
(i) $1 \leqslant i$,
(ii) $\quad i \leqslant \operatorname{len} h$,
(iii) $1 \leqslant I$,
(iv) $\quad I \leqslant$ width the Go-board of h,
(v) $Y=\left\{j:\langle j, I\rangle \in\right.$ the indices of the Go-board of $h \wedge \bigvee_{k}(k \in$ $\left.\left.\operatorname{dom} h \wedge \pi_{k} h=(\text { the Go-board of } h)_{j, I}\right)\right\}$,
(vi) $\quad\left(\pi_{i} h\right)_{\mathbf{2}}=\left((\text { the Go-board of } h)_{1, I}\right)_{\mathbf{2}}$, and
(vii) $\quad i_{1}=\max Y$.

Then $\left((\text { the Go-board of } h)_{i_{1}, I}\right)_{\mathbf{1}} \geqslant\left(\pi_{i} h\right)_{\mathbf{1}}$.
(46) Let Y be a non empty finite subset of \mathbb{N}. Suppose that
(i) $1 \leqslant i$,
(ii) $i \leqslant \operatorname{len} f$,
(iii) $1 \leqslant I$,
(iv) $\quad I \leqslant$ len the Go-board of f,
(v) $Y=\left\{j:\langle I, j\rangle \in\right.$ the indices of the Go-board of $f \wedge \bigvee_{k}(k \in$ $\left.\left.\operatorname{dom} f \wedge \pi_{k} f=(\text { the Go-board of } f)_{I, j}\right)\right\}$,
(vi) $\quad\left(\pi_{i} f\right)_{\mathbf{1}}=\left((\text { the Go-board of } f)_{I, 1}\right)_{\mathbf{1}}$, and
(vii) $\quad i_{1}=\max Y$.

Then ((the Go-board of $\left.f)_{I, i_{1}}\right)_{\mathbf{2}} \geqslant\left(\pi_{i} f\right)_{\mathbf{2}}$.

3. Coordinates of the Special Circular Sequences Bounding Boxes

Let g be a non constant standard special circular sequence. The functor isw g yields a natural number and is defined as follows:
(Def. 1) $\left\langle 1\right.$, i $\left._{\text {SW }} g\right\rangle \in$ the indices of the Go-board of g and (the Go-board of $g)_{1, \text { isw }^{2}} g=\mathrm{W}-\min \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{i}_{\mathrm{NW}} g$ yields a natural number and is defined by:
(Def. 2) $\left\langle 1, \mathrm{i}_{\mathrm{NW}} g\right\rangle \in$ the indices of the Go-board of g and (the Go-board of $g)_{1, \mathrm{i}_{\mathrm{NW}}} g=\mathrm{W}-\max \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{i}_{\mathrm{SE}} g$ yielding a natural number is defined by the conditions (Def. 3).
(Def. 3)(i) 〈len the Go-board of $\left.g, \mathrm{i}_{\mathrm{SE}} g\right\rangle \in$ the indices of the Go-board of g, and

The functor $\mathrm{i}_{\mathrm{NE}} g$ yielding a natural number is defined by the conditions (Def. 4).
(Def. 4)(i) \quad len the Go-board of $\left.g, \mathrm{i}_{\mathrm{NE}} g\right\rangle \in$ the indices of the Go-board of g, and

The functor $\mathrm{i}_{\mathrm{WS}} g$ yields a natural number and is defined by:
(Def. 5) $\left\langle\mathrm{i}_{\mathrm{WS}} g, 1\right\rangle \in$ the indices of the Go-board of g and (the Go-board of $g)_{\mathrm{i}_{\mathrm{WS}} g, 1}=\mathrm{S}-\min \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{i}_{\mathrm{ES}} g$ yields a natural number and is defined by:
(Def. 6) $\left\langle\mathrm{i}_{\mathrm{ES}} g, 1\right\rangle \in$ the indices of the Go-board of g and (the Go-board of $g)_{\mathrm{i}_{\text {ES }} g, 1}=\mathrm{S}-\max \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{i}_{\mathrm{WN}} g$ yields a natural number and is defined by the conditions (Def. 7).
(Def. 7)(i) $\quad\left\langle\mathrm{i}_{\text {WN }} g\right.$, width the Go-board of $\left.g\right\rangle \in$ the indices of the Go-board of g, and
(ii) (the Go-board of $g)_{\mathrm{i}_{\text {WN }}} g$, width the Go-board of $g=\mathrm{N}$-min $\widetilde{\mathcal{L}}(g)$.

The functor $\mathrm{i}_{\mathrm{EN}} g$ yields a natural number and is defined by the conditions (Def. 8).
(Def. 8)(i) $\left\langle\mathrm{i}_{\text {EN }} g\right.$, width the Go-board of $\left.g\right\rangle \in$ the indices of the Go-board of g, and
(ii) (the Go-board of $g)_{\text {ien }} g$,width the Go-board of $g=\mathrm{N}-\max \widetilde{\mathcal{L}}(g)$.

Next we state two propositions:
(47)(i) $1 \leqslant \mathrm{i}_{\mathrm{WN}} h$,
(ii) $\mathrm{i}_{\mathrm{WN}} h \leqslant$ len the Go-board of h,
(iii) $1 \leqslant \mathrm{i}_{\mathrm{EN}} h$,
(iv) $\mathrm{i}_{\mathrm{EN}} h \leqslant$ len the Go-board of h,
(v) $1 \leqslant \mathrm{i}_{\mathrm{WS}} h$,
(vi) $\mathrm{i}_{\mathrm{WS}} h \leqslant$ len the Go-board of h,
(vii) $1 \leqslant \mathrm{i}_{\mathrm{ES}} h$, and
(viii) $\quad \mathrm{i}_{\mathrm{ES}} h \leqslant$ len the Go-board of h.
(48)(i) $1 \leqslant \mathrm{i}_{\mathrm{NE}} h$,
(ii) $\mathrm{i}_{\mathrm{NE}} h \leqslant$ width the Go-board of h,
(iii) $1 \leqslant \mathrm{i}_{\text {SE }} h$,
(iv) $i_{\text {SE }} h \leqslant$ width the Go-board of h,
(v) $1 \leqslant \mathrm{i}_{\mathrm{NW}} h$,
(vi) $\mathrm{i}_{\mathrm{NW}} h \leqslant$ width the Go-board of h,
(vii) $1 \leqslant$ isw $_{\text {sw }} h$, and
(viii) \quad isw $h \leqslant$ width the Go-board of h.

Let g be a non constant standard special circular sequence. The functor $\mathrm{n}_{\mathrm{SW}} g$ yields a natural number and is defined as follows:
(Def. 9) $\quad 1 \leqslant \mathrm{n}_{\mathrm{SW}} g$ and $\mathrm{n}_{\mathrm{SW}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{SW}} g\right)=\mathrm{W}-\min \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{NW}} g$ yielding a natural number is defined as follows:
(Def. 10) $\quad 1 \leqslant \mathrm{n}_{\mathrm{NW}} g$ and $\mathrm{n}_{\mathrm{NW}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{NW}} g\right)=\mathrm{W}-\max \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{SE}} g$ yielding a natural number is defined by:
(Def. 11) $1 \leqslant \mathrm{n}_{\mathrm{SE}} g$ and $\mathrm{n}_{\mathrm{SE}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{SE}} g\right)=\mathrm{E}-\min \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{NE}} g$ yielding a natural number is defined by:
(Def. 12) $1 \leqslant \mathrm{n}_{\mathrm{NE}} g$ and $\mathrm{n}_{\mathrm{NE}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{NE}} g\right)=\mathrm{E}-\max \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{WS}} g$ yielding a natural number is defined by:
(Def. 13) $1 \leqslant \mathrm{n}_{\mathrm{WS}} g$ and $\mathrm{n}_{\mathrm{WS}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{WS}} g\right)=$ S-min $\widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{ES}} g$ yields a natural number and is defined as follows:
(Def. 14) $1 \leqslant \mathrm{n}_{\mathrm{ES}} g$ and $\mathrm{n}_{\mathrm{ES}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{ES}} g\right)=\mathrm{S}-\max \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{WN}} g$ yielding a natural number is defined by:
(Def. 15) $\quad 1 \leqslant \mathrm{n}_{\mathrm{WN}} g$ and $\mathrm{n}_{\mathrm{WN}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{WN}} g\right)=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$.
The functor $\mathrm{n}_{\mathrm{EN}} g$ yielding a natural number is defined by:
(Def. 16) $1 \leqslant \mathrm{n}_{\mathrm{EN}} g$ and $\mathrm{n}_{\mathrm{EN}} g+1 \leqslant \operatorname{len} g$ and $g\left(\mathrm{n}_{\mathrm{EN}} g\right)=\mathrm{N}-\max \widetilde{\mathcal{L}}(g)$.

Next we state four propositions:

$$
\begin{align*}
& \mathrm{n}_{\mathrm{WN}} h \neq \mathrm{n}_{\mathrm{WS}} h . \tag{49}\\
& \mathrm{n}_{\mathrm{SW}} h \neq \mathrm{n}_{\mathrm{SE}} h . \\
& \mathrm{n}_{\mathrm{EN}} h \neq \mathrm{n}_{\mathrm{ES}} h . \\
& \mathrm{n}_{\mathrm{NW}} h \neq \mathrm{n}_{\mathrm{NE}} h .
\end{align*}
$$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[8] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
[9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, $1(3): 471-475,1990$.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[18] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, $5(\mathbf{3}): 317-322,1996$.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ A part of this paper was written while the author visited the Shinshu University in the winter of 1997.

