Bounding Boxes for Special Sequences in \mathcal{E}^2

Yatsuka Nakamura Shinshu University Nagano Adam Grabowski¹ University of Białystok

Summary. This is the continuation of the proof of the Jordan Theorem according to [18].

 ${\rm MML} \ {\rm Identifier:} \ {\tt JORDAN5D}.$

The articles [16], [8], [6], [2], [21], [20], [5], [3], [12], [13], [15], [9], [1], [14], [17], [4], [23], [11], [10], [22], [19], and [7] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$, s, r denote real numbers, h denotes a non constant standard special circular sequence, g denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, f denotes a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and I, i_1 , i, j, k denote natural numbers.

We now state a number of propositions:

- (1) Let B be a subset of \mathbb{R} . Suppose there exists a real number r_1 such that $r_1 \in B$ and B is lower bounded and for every r such that $r \in B$ holds $s \leq r$. Then $s \leq \inf B$.
- (2) Let B be a subset of \mathbb{R} . Suppose there exists a real number r_1 such that $r_1 \in B$ and B is upper bounded and for every r such that $r \in B$ holds $s \ge r$. Then $s \ge \sup B$.
- (3) $\pi_{\operatorname{len} h}h \in \mathcal{L}(h, \operatorname{len} h 1).$

C 1998 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{A}$ part of this paper was written while the author visited the Shinshu University in the winter of 1997.

- (4) If $3 \le i$, then $i \mod (i 1) = 1$.
- (5) If $p \in \operatorname{rng} h$, then there exists a natural number *i* such that $1 \leq i$ and $i+1 \leq \operatorname{len} h$ and h(i) = p.
- (6) For every finite sequence g of elements of \mathbb{R} such that $r \in \operatorname{rng} g$ holds $(\operatorname{Inc}(g))(1) \leq r$ and $r \leq (\operatorname{Inc}(g))(\operatorname{len} \operatorname{Inc}(g))$.
- (7) Suppose $1 \leq i$ and $i \leq \text{len } h$ and $1 \leq I$ and $I \leq \text{width the Go-board of } h$. Then ((the Go-board of h)_{1,I})₁ $\leq (\pi_i h)_1$ and $(\pi_i h)_1 \leq ((\text{the Go-board of } h)_{\text{len the Go-board of } h, I})_1$.
- (8) Suppose $1 \leq i$ and $i \leq \text{len } h$ and $1 \leq I$ and $I \leq \text{len the Go-board of } h$. Then ((the Go-board of h)_{I,1})₂ $\leq (\pi_i h)_2$ and $(\pi_i h)_2 \leq ((\text{the Go-board of } h)_{I,\text{width the Go-board of } h)_2$.
- (9) Suppose $1 \leq i$ and $i \leq lenthe Go-board of f$. Then there exist k, j such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$.
- (10) Suppose $1 \leq j$ and $j \leq$ width the Go-board of f. Then there exist k, i such that $k \in \text{dom } f$ and $\langle i, j \rangle \in$ the indices of the Go-board of f and $\pi_k f = (\text{the Go-board of } f)_{i,j}$.
- (11) Suppose $1 \leq i$ and $i \leq len the Go-board of f and <math>1 \leq j$ and $j \leq width the Go-board of f$. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $(\pi_k f)_1 = ((\text{the Go-board of } f)_{i,j})_1$.
- (12) Suppose $1 \leq i$ and $i \leq len the Go-board of f and <math>1 \leq j$ and $j \leq width the Go-board of f$. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $(\pi_k f)_2 = ((\text{the Go-board of } f)_{i,j})_2$.

2. Extrema of Projections

One can prove the following propositions:

- (13) If $1 \leq i$ and $i \leq \text{len } h$, then S-bound $\mathcal{L}(h) \leq (\pi_i h)_2$ and $(\pi_i h)_2 \leq N$ -bound $\widetilde{\mathcal{L}}(h)$.
- (14) If $1 \leq i$ and $i \leq \text{len } h$, then W-bound $\widetilde{\mathcal{L}}(h) \leq (\pi_i h)_1$ and $(\pi_i h)_1 \leq \text{E-bound } \widetilde{\mathcal{L}}(h)$.
- (15) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = W\text{-bound }\widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj}_2 \upharpoonright W\text{-most }\widetilde{\mathcal{L}}(h))^\circ$ (the carrier of $(\mathcal{E}^2_T) \upharpoonright W\text{-most }\widetilde{\mathcal{L}}(h)$).
- (16) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj}2 \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h))^\circ$ (the carrier of $(\mathcal{E}^2_T) \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h)$).
- (17) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h))^{\circ}(\text{the carrier of } (\mathcal{E}^2_T) \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h)).$

114

- (18) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h))^{\circ}$ (the carrier of $(\mathcal{E}^2_T) \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h)$).
- (19) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $X = (\operatorname{proj1} \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{E}^2_{\mathrm{T}}) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (20) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \mathcal{L}(g)\}$ holds $X = (\operatorname{proj2} \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{E}^2_{\mathcal{T}}) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (21) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = W$ -bound $\mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\operatorname{proj2} \upharpoonright W$ -most $\widetilde{\mathcal{L}}(h)).$
- (22) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = W\text{-bound }\mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\operatorname{proj2} \upharpoonright W\text{-most }\widetilde{\mathcal{L}}(h)).$
- (23) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\operatorname{proj2} \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h)).$
- (24) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\operatorname{proj2} \upharpoonright \operatorname{E-most} \widetilde{\mathcal{L}}(h)).$
- (25) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \mathcal{L}(g)\}$ holds inf $X = \inf(\operatorname{proj1} \upharpoonright \widetilde{\mathcal{L}}(g)).$
- (26) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\text{proj1} \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h)).$
- (27) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\operatorname{proj1} \upharpoonright \operatorname{S-most} \widetilde{\mathcal{L}}(h)).$
- (28) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\operatorname{proj1} \upharpoonright \operatorname{N-most} \widetilde{\mathcal{L}}(h)).$
- (29) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\operatorname{proj1} \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h)).$
- (30) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \mathcal{L}(g)\}$ holds inf $X = \inf(\operatorname{proj2} \upharpoonright \widetilde{\mathcal{L}}(g)).$
- (31) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \mathcal{L}(g)\}$ holds $\sup X = \sup(\operatorname{proj1} \upharpoonright \widetilde{\mathcal{L}}(g)).$
- (32) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widehat{\mathcal{L}}(g)\}$ holds $\sup X = \sup(\operatorname{proj2} \upharpoonright \widetilde{\mathcal{L}}(g)).$
- (33) If $p \in \mathcal{L}(h)$ and $1 \leq I$ and $I \leq$ width the Go-board of h, then ((the Go-board of $h)_{1,I}$)₁ $\leq p_1$.
- (34) If $p \in \tilde{\mathcal{L}}(h)$ and $1 \leq I$ and $I \leq$ width the Go-board of h, then $p_1 \leq ((\text{the Go-board of } h)_{\text{len the Go-board of } h, I})_1$.
- (35) If $p \in \mathcal{L}(h)$ and $1 \leq I$ and $I \leq lenthe Go-board of <math>h$, then ((the Go-board of $h)_{I,1}$)₂ $\leq p_2$.
- (36) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leq I$ and $I \leq \text{lenthe Go-board of } h$, then $p_2 \leq ((\text{the Go-board of } h)_{I,\text{width the Go-board of } h})_2.$

- (37) Suppose $1 \leq i$ and $i \leq lenthe Go-board of <math>h$ and $1 \leq j$ and $j \leq width the Go-board of <math>h$. Then there exists q such that $q_1 = ((\text{the Go-board of } h)_{i,j})_1$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (38) Suppose $1 \leq i$ and $i \leq lenthe$ Go-board of h and $1 \leq j$ and $j \leq width the Go-board of <math>h$. Then there exists q such that $q_2 = ((\text{the Go-board of } h)_{i,j})_2$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (39) W-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{1,1})_{\mathbf{1}}.$
- (40) S-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{1,1})_{\mathbf{2}}.$
- (41) E-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{\text{len the Go-board of } h, 1})_1.$
- (42) N-bound $\mathcal{L}(h) = ((\text{the Go-board of } h)_{1,\text{width the Go-board of } h})_2.$
- (43) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leq i$,
- (ii) $i \leq \operatorname{len} f$,
- (iii) $1 \leq I$,
- (iv) $I \leq \text{len the Go-board of } f$,
- (v) $Y = \{j : \langle I, j \rangle \in \text{the indices of the Go-board of } f \land \bigvee_k (k \in \text{dom } f \land \pi_k f = (\text{the Go-board of } f)_{I,j})\},$
- (vi) $(\pi_i f)_1 = ((\text{the Go-board of } f)_{I,1})_1, \text{ and}$
- (vii) $i_1 = \min Y$.

Then ((the Go-board of $f)_{I,i_1}$)₂ $\leq (\pi_i f)_2$.

(44) Let Y be a non empty finite subset of \mathbb{N} . Suppose that

- (i) $1 \leq i$,
- (ii) $i \leq \operatorname{len} h$,
- (iii) $1 \leq I$,
- (iv) $I \leq$ width the Go-board of h,
- (v) $Y = \{j : \langle j, I \rangle \in \text{the indices of the Go-board of } h \land \bigvee_k (k \in \text{dom } h \land \pi_k h = (\text{the Go-board of } h)_{j,I})\},$
- (vi) $(\pi_i h)_2 = ((\text{the Go-board of } h)_{1,I})_2, \text{ and}$
- (vii) $i_1 = \min Y.$

Then ((the Go-board of h)_{i_1,I})₁ $\leq (\pi_i h)_1$.

- (45) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
- (i) $1 \leq i$,
- (ii) $i \leq \operatorname{len} h$,
- (iii) $1 \leq I$,
- (iv) $I \leq$ width the Go-board of h,
- (v) $Y = \{j : \langle j, I \rangle \in \text{the indices of the Go-board of } h \land \bigvee_k (k \in \text{dom } h \land \pi_k h = (\text{the Go-board of } h)_{j,I})\},$
- (vi) $(\pi_i h)_2 = ((\text{the Go-board of } h)_{1,I})_2, \text{ and}$
- (vii) $i_1 = \max Y$.

Then ((the Go-board of $h)_{i_1,I}$)₁ $\geq (\pi_i h)_1$.

116

- (46) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leq i$,
- (ii) $i \leq \operatorname{len} f$,
- (iii) $1 \leq I$,
- (iv) $I \leq \text{len the Go-board of } f$,
- (v) $Y = \{j : \langle I, j \rangle \in \text{the indices of the Go-board of } f \land \bigvee_k (k \in \text{dom } f \land \pi_k f = (\text{the Go-board of } f)_{I,j})\},$
- (vi) $(\pi_i f)_1 = ((\text{the Go-board of } f)_{I,1})_1, \text{ and }$
- (vii) $i_1 = \max Y$.

Then ((the Go-board of $f)_{I,i_1}$)₂ $\geq (\pi_i f)_2$.

3. Coordinates of the Special Circular Sequences Bounding Boxes

Let g be a non constant standard special circular sequence. The functor $i_{SW} g$ yields a natural number and is defined as follows:

- (Def. 1) $\langle 1, i_{SW} g \rangle \in$ the indices of the Go-board of g and (the Go-board of g)_{1,isw g} = W-min $\widetilde{\mathcal{L}}(g)$.
 - The functor $i_{NW} g$ yields a natural number and is defined by:
- (Def. 2) $\langle 1, i_{NW} g \rangle \in$ the indices of the Go-board of g and (the Go-board of g)_{1,i_{NW} g} = W-max $\widetilde{\mathcal{L}}(g)$.

The functor $i_{SE} g$ yielding a natural number is defined by the conditions (Def. 3).

(Def. 3)(i) $\langle \text{ len the Go-board of } g, i_{\text{SE}} g \rangle \in \text{the indices of the Go-board of } g, \text{ and}$ (ii) (the Go-board of g)_{len the Go-board of $g, i_{\text{SE}} g = \text{E-min } \widetilde{\mathcal{L}}(g)$.}

The functor $i_{NE} g$ yielding a natural number is defined by the conditions (Def. 4).

(Def. 4)(i) $\langle \text{len the Go-board of } g, i_{\text{NE}} g \rangle \in \text{the indices of the Go-board of } g,$ and

(ii) (the Go-board of g)_{len the Go-board of g, $i_{NE}g = E-\max \widetilde{\mathcal{L}}(g)$.}

The functor $i_{WS} g$ yields a natural number and is defined by:

(Def. 5) $\langle i_{WS} g, 1 \rangle \in$ the indices of the Go-board of g and (the Go-board of g)_{$i_{WS} g,1$} = S-min $\widetilde{\mathcal{L}}(g)$.

The functor $i_{ES} g$ yields a natural number and is defined by:

(Def. 6) $\langle i_{\text{ES}} g, 1 \rangle \in$ the indices of the Go-board of g and (the Go-board of g)_{$i_{\text{ES}} g,1$} = S-max $\widetilde{\mathcal{L}}(g)$.

The functor $i_{WN} g$ yields a natural number and is defined by the conditions (Def. 7).

(Def. 7)(i) $\langle i_{WN} g, width \text{ the Go-board of } g \rangle \in \text{the indices of the Go-board of } g$, and

(ii) (the Go-board of g)_{iwN g,width the Go-board of g = N-min $\mathcal{L}(g)$.}

The functor $i_{EN} g$ yields a natural number and is defined by the conditions (Def. 8).

(Def. 8)(i) $\langle i_{\text{EN}} g$, width the Go-board of $g \rangle \in$ the indices of the Go-board of g, and

(ii) (the Go-board of g)_{iEN g,width the Go-board of g = N-max $\mathcal{L}(g)$.}

Next we state two propositions:

- $(47)(i) \quad 1 \leq i_{\rm WN} h,$
 - (ii) $i_{WN} h \leq \text{len the Go-board of } h$,
- (iii) $1 \leq i_{EN} h$,
- (iv) $i_{\text{EN}} h \leq \text{len the Go-board of } h$,
- (v) $1 \leq i_{WS} h$,
- (vi) $i_{WS} h \leq \text{len the Go-board of } h$,
- (vii) $1 \leq i_{ES} h$, and
- (viii) $i_{\rm ES} h \leq \text{len the Go-board of } h.$
- $(48)(i) \quad 1 \leq i_{\rm NE} h,$
 - (ii) $i_{\text{NE}} h \leq \text{width the Go-board of } h$,
- (iii) $1 \leq i_{SE} h$,
- (iv) $i_{SE} h \leq width the Go-board of h$,
- $(\mathbf{v}) \quad 1 \leq \mathbf{i}_{\mathrm{NW}} h,$
- (vi) $i_{NW} h \leq width the Go-board of h$,
- (vii) $1 \leq i_{SW} h$, and
- (viii) $i_{SW} h \leq width the Go-board of h.$

Let g be a non constant standard special circular sequence. The functor $n_{SW} g$ yields a natural number and is defined as follows:

(Def. 9) $1 \leq n_{SW} g$ and $n_{SW} g + 1 \leq len g$ and $g(n_{SW} g) = W-\min \mathcal{L}(g)$.

The functor $n_{NW} g$ yielding a natural number is defined as follows:

- (Def. 10) $1 \leq n_{\text{NW}} g$ and $n_{\text{NW}} g + 1 \leq \text{len } g$ and $g(n_{\text{NW}} g) = \text{W-max } \mathcal{L}(g)$. The functor $n_{\text{SE}} g$ yielding a natural number is defined by:
- (Def. 11) $1 \leq n_{\text{SE}} g$ and $n_{\text{SE}} g + 1 \leq \text{len } g$ and $g(n_{\text{SE}} g) = \text{E-min } \hat{\mathcal{L}}(g)$. The functor $n_{\text{NE}} g$ yielding a natural number is defined by:
- (Def. 12) $1 \leq n_{\text{NE}} g$ and $n_{\text{NE}} g + 1 \leq \text{len } g$ and $g(n_{\text{NE}} g) = \text{E-max } \widetilde{\mathcal{L}}(g).$
- The functor $n_{WS} g$ yielding a natural number is defined by:
- (Def. 13) $1 \leq n_{WS} g$ and $n_{WS} g + 1 \leq len g$ and $g(n_{WS} g) = S-\min \mathcal{L}(g)$. The functor $n_{ES} g$ yields a natural number and is defined as follows:
- (Def. 14) $1 \leq n_{\text{ES}} g \text{ and } n_{\text{ES}} g + 1 \leq \text{len } g \text{ and } g(n_{\text{ES}} g) = \text{S-max } \mathcal{L}(g).$
 - The functor $n_{WN} g$ yielding a natural number is defined by:
- (Def. 15) $1 \leq n_{WN} g$ and $n_{WN} g + 1 \leq len g$ and $g(n_{WN} g) = N-\min \mathcal{L}(g)$. The functor $n_{EN} g$ yielding a natural number is defined by:
- (Def. 16) $1 \leq n_{\text{EN}} g$ and $n_{\text{EN}} g + 1 \leq \text{len } g$ and $g(n_{\text{EN}} g) = \text{N-max } \mathcal{L}(g)$.

Next we state four propositions:

- (49) $\operatorname{n_{WN}} h \neq \operatorname{n_{WS}} h$.
- (50) $n_{SW} h \neq n_{SE} h$.
- (51) $n_{\rm EN} h \neq n_{\rm ES} h$.
- (52) $n_{NW} h \neq n_{NE} h$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [8] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635-642, 1991.
- [9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 8, 1998