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The articles [16], [8], [6], [2], [21], [20], [5], [3], [12], [13], [15], [9], [1], [14], [17],

[4], [23], [11], [10], [22], [19], and [7] provide the terminology and notation for

this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q denote points of E2

T,

s, r denote real numbers, h denotes a non constant standard special circular

sequence, g denotes a finite sequence of elements of E2

T, f denotes a non empty

finite sequence of elements of E2

T, and I, i1, i, j, k denote natural numbers.

We now state a number of propositions:

(1) Let B be a subset of R. Suppose there exists a real number r1 such that

r1 ∈ B and B is lower bounded and for every r such that r ∈ B holds

s ¬ r. Then s ¬ inf B.

(2) Let B be a subset of R. Suppose there exists a real number r1 such that

r1 ∈ B and B is upper bounded and for every r such that r ∈ B holds

s  r. Then s  supB.

(3) πlenhh ∈ L(h, lenh−′ 1).

1A part of this paper was written while the author visited the Shinshu University in the

winter of 1997.
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(4) If 3 ¬ i, then imod (i−′ 1) = 1.

(5) If p ∈ rng h, then there exists a natural number i such that 1 ¬ i and

i + 1 ¬ lenh and h(i) = p.

(6) For every finite sequence g of elements of R such that r ∈ rng g holds

(Inc(g))(1) ¬ r and r ¬ (Inc(g))(len Inc(g)).

(7) Suppose 1 ¬ i and i ¬ lenh and 1 ¬ I and I ¬ width the Go-

board of h. Then ((the Go-board of h)1,I)1 ¬ (πih)1 and (πih)1 ¬

((the Go-board of h)len the Go-board of h, I)1.

(8) Suppose 1 ¬ i and i ¬ lenh and 1 ¬ I and I ¬ len the Go-

board of h. Then ((the Go-board of h)I,1)2 ¬ (πih)2 and (πih)2 ¬

((the Go-board of h)I,width the Go-board of h)2.

(9) Suppose 1 ¬ i and i ¬ len the Go-board of f . Then there exist k, j

such that k ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board of f and

πkf = (the Go-board of f)i,j .

(10) Suppose 1 ¬ j and j ¬ width the Go-board of f . Then there exist k, i

such that k ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board of f and

πkf = (the Go-board of f)i,j .

(11) Suppose 1 ¬ i and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the

Go-board of f . Then there exists k such that k ∈ dom f and 〈〈i, j〉〉 ∈ the

indices of the Go-board of f and (πkf)1 = ((the Go-board of f)i,j)1.

(12) Suppose 1 ¬ i and i ¬ len the Go-board of f and 1 ¬ j and j ¬ width the

Go-board of f . Then there exists k such that k ∈ dom f and 〈〈i, j〉〉 ∈ the

indices of the Go-board of f and (πkf)2 = ((the Go-board of f)i,j)2.

2. Extrema of Projections

One can prove the following propositions:

(13) If 1 ¬ i and i ¬ lenh, then S-bound L̃(h) ¬ (πih)2 and (πih)2 ¬

N-bound L̃(h).

(14) If 1 ¬ i and i ¬ lenh, then W-bound L̃(h) ¬ (πih)1 and (πih)1 ¬

E-bound L̃(h).

(15) For every subset X of R such that X = {q2 : q1 = W-bound L̃(h) ∧

q ∈ L̃(h)} holds X = (proj2 ↾ W-most L̃(h))◦(the carrier of

(E2

T)↾W-most L̃(h)).

(16) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈

L̃(h)} holdsX = (proj2 ↾ E-most L̃(h))◦(the carrier of (E2

T)↾E-most L̃(h)).

(17) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧

q ∈ L̃(h)} holds X = (proj1 ↾ N-most L̃(h))◦(the carrier of

(E2

T)↾N-most L̃(h)).



bounding boxes for special sequences in . . . 115

(18) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈

L̃(h)} holds X = (proj1 ↾ S-most L̃(h))◦(the carrier of (E2

T)↾S-most L̃(h)).

(19) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds X =

(proj1 ↾ L̃(g))◦(the carrier of (E2

T)↾L̃(g)).

(20) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds X =

(proj2 ↾ L̃(g))◦(the carrier of (E2

T)↾L̃(g)).

(21) For every subset X of R such that X = {q2 : q1 =W-bound L̃(h) ∧ q ∈

L̃(h)} holds infX = inf(proj2 ↾W-most L̃(h)).

(22) For every subset X of R such that X = {q2 : q1 =W-bound L̃(h) ∧ q ∈

L̃(h)} holds supX = sup(proj2 ↾W-most L̃(h)).

(23) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈

L̃(h)} holds infX = inf(proj2 ↾ E-most L̃(h)).

(24) For every subset X of R such that X = {q2 : q1 = E-bound L̃(h) ∧ q ∈

L̃(h)} holds supX = sup(proj2 ↾ E-most L̃(h)).

(25) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds infX =

inf(proj1 ↾ L̃(g)).

(26) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈

L̃(h)} holds infX = inf(proj1 ↾ S-most L̃(h)).

(27) For every subset X of R such that X = {q1 : q2 = S-bound L̃(h) ∧ q ∈

L̃(h)} holds supX = sup(proj1 ↾ S-most L̃(h)).

(28) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧ q ∈

L̃(h)} holds infX = inf(proj1 ↾ N-most L̃(h)).

(29) For every subset X of R such that X = {q1 : q2 = N-bound L̃(h) ∧ q ∈

L̃(h)} holds supX = sup(proj1 ↾ N-most L̃(h)).

(30) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds infX =

inf(proj2 ↾ L̃(g)).

(31) For every subset X of R such that X = {q1 : q ∈ L̃(g)} holds supX =

sup(proj1 ↾ L̃(g)).

(32) For every subset X of R such that X = {q2 : q ∈ L̃(g)} holds supX =

sup(proj2 ↾ L̃(g)).

(33) If p ∈ L̃(h) and 1 ¬ I and I ¬ width the Go-board of h, then

((the Go-board of h)1,I)1 ¬ p1.

(34) If p ∈ L̃(h) and 1 ¬ I and I ¬ width the Go-board of h, then p1 ¬

((the Go-board of h)len the Go-board of h, I)1.

(35) If p ∈ L̃(h) and 1 ¬ I and I ¬ len the Go-board of h, then

((the Go-board of h)I,1)2 ¬ p2.

(36) If p ∈ L̃(h) and 1 ¬ I and I ¬ len the Go-board of h, then p2 ¬

((the Go-board of h)I,width the Go-board of h)2.
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(37) Suppose 1 ¬ i and i ¬ len the Go-board of h and 1 ¬ j and

j ¬ width the Go-board of h. Then there exists q such that q1 =

((the Go-board of h)i,j)1 and q ∈ L̃(h).

(38) Suppose 1 ¬ i and i ¬ len the Go-board of h and 1 ¬ j and

j ¬ width the Go-board of h. Then there exists q such that q2 =

((the Go-board of h)i,j)2 and q ∈ L̃(h).

(39) W-bound L̃(h) = ((the Go-board of h)1,1)1.

(40) S-bound L̃(h) = ((the Go-board of h)1,1)2.

(41) E-bound L̃(h) = ((the Go-board of h)len the Go-board of h, 1)1.

(42) N-bound L̃(h) = ((the Go-board of h)1,width the Go-board of h)2.

(43) Let Y be a non empty finite subset of N. Suppose that

(i) 1 ¬ i,

(ii) i ¬ len f,

(iii) 1 ¬ I,

(iv) I ¬ len the Go-board of f ,

(v) Y = {j : 〈〈I, j〉〉 ∈ the indices of the Go-board of f ∧
∨

k (k ∈

dom f ∧ πkf = (the Go-board of f)I,j)},

(vi) (πif)1 = ((the Go-board of f)I,1)1, and

(vii) i1 = minY.

Then ((the Go-board of f)I,i1)2 ¬ (πif)2.

(44) Let Y be a non empty finite subset of N. Suppose that

(i) 1 ¬ i,

(ii) i ¬ lenh,

(iii) 1 ¬ I,

(iv) I ¬ width the Go-board of h,

(v) Y = {j : 〈〈j, I〉〉 ∈ the indices of the Go-board of h ∧
∨

k (k ∈

domh ∧ πkh = (the Go-board of h)j,I)},

(vi) (πih)2 = ((the Go-board of h)1,I)2, and

(vii) i1 = minY.

Then ((the Go-board of h)i1,I)1 ¬ (πih)1.

(45) Let Y be a non empty finite subset of N. Suppose that

(i) 1 ¬ i,

(ii) i ¬ lenh,

(iii) 1 ¬ I,

(iv) I ¬ width the Go-board of h,

(v) Y = {j : 〈〈j, I〉〉 ∈ the indices of the Go-board of h ∧
∨

k (k ∈

domh ∧ πkh = (the Go-board of h)j,I)},

(vi) (πih)2 = ((the Go-board of h)1,I)2, and

(vii) i1 = maxY.

Then ((the Go-board of h)i1,I)1  (πih)1.
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(46) Let Y be a non empty finite subset of N. Suppose that

(i) 1 ¬ i,

(ii) i ¬ len f,

(iii) 1 ¬ I,

(iv) I ¬ len the Go-board of f ,

(v) Y = {j : 〈〈I, j〉〉 ∈ the indices of the Go-board of f ∧
∨

k (k ∈

dom f ∧ πkf = (the Go-board of f)I,j)},

(vi) (πif)1 = ((the Go-board of f)I,1)1, and

(vii) i1 = maxY.

Then ((the Go-board of f)I,i1)2  (πif)2.

3. Coordinates of the Special Circular Sequences Bounding Boxes

Let g be a non constant standard special circular sequence. The functor iSW g

yields a natural number and is defined as follows:

(Def. 1) 〈〈1, iSW g〉〉 ∈ the indices of the Go-board of g and (the Go-board of

g)1,iSW g =W-min L̃(g).

The functor iNW g yields a natural number and is defined by:

(Def. 2) 〈〈1, iNW g〉〉 ∈ the indices of the Go-board of g and (the Go-board of

g)1,iNW g =W-max L̃(g).

The functor iSE g yielding a natural number is defined by the conditions (Def. 3).

(Def. 3)(i) 〈〈 len the Go-board of g, iSE g〉〉 ∈ the indices of the Go-board of g, and

(ii) (the Go-board of g)len the Go-board of g, iSE g = E-min L̃(g).

The functor iNE g yielding a natural number is defined by the conditions (Def. 4).

(Def. 4)(i) 〈〈 len the Go-board of g, iNE g〉〉 ∈ the indices of the Go-board of g,

and

(ii) (the Go-board of g)len the Go-board of g, iNE g = E-max L̃(g).

The functor iWS g yields a natural number and is defined by:

(Def. 5) 〈〈 iWS g, 1〉〉 ∈ the indices of the Go-board of g and (the Go-board of

g)iWS g,1 = S-min L̃(g).

The functor iES g yields a natural number and is defined by:

(Def. 6) 〈〈 iES g, 1〉〉 ∈ the indices of the Go-board of g and (the Go-board of

g)iES g,1 = S-max L̃(g).

The functor iWN g yields a natural number and is defined by the conditions

(Def. 7).

(Def. 7)(i) 〈〈 iWN g, width the Go-board of g〉〉 ∈ the indices of the Go-board of g,

and

(ii) (the Go-board of g)iWN g,width the Go-board of g = N-min L̃(g).
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The functor iEN g yields a natural number and is defined by the conditions

(Def. 8).

(Def. 8)(i) 〈〈 iEN g, width the Go-board of g〉〉 ∈ the indices of the Go-board of g,

and

(ii) (the Go-board of g)iEN g,width the Go-board of g = N-max L̃(g).

Next we state two propositions:

(47)(i) 1 ¬ iWN h,

(ii) iWN h ¬ len the Go-board of h,

(iii) 1 ¬ iEN h,

(iv) iEN h ¬ len the Go-board of h,

(v) 1 ¬ iWS h,

(vi) iWS h ¬ len the Go-board of h,

(vii) 1 ¬ iES h, and

(viii) iES h ¬ len the Go-board of h.

(48)(i) 1 ¬ iNE h,

(ii) iNE h ¬ width the Go-board of h,

(iii) 1 ¬ iSE h,

(iv) iSE h ¬ width the Go-board of h,

(v) 1 ¬ iNW h,

(vi) iNW h ¬ width the Go-board of h,

(vii) 1 ¬ iSW h, and

(viii) iSW h ¬ width the Go-board of h.

Let g be a non constant standard special circular sequence. The functor

nSW g yields a natural number and is defined as follows:

(Def. 9) 1 ¬ nSW g and nSW g + 1 ¬ len g and g(nSW g) =W-min L̃(g).

The functor nNW g yielding a natural number is defined as follows:

(Def. 10) 1 ¬ nNW g and nNW g + 1 ¬ len g and g(nNW g) =W-max L̃(g).

The functor nSE g yielding a natural number is defined by:

(Def. 11) 1 ¬ nSE g and nSE g + 1 ¬ len g and g(nSE g) = E-min L̃(g).

The functor nNE g yielding a natural number is defined by:

(Def. 12) 1 ¬ nNE g and nNE g + 1 ¬ len g and g(nNE g) = E-max L̃(g).

The functor nWS g yielding a natural number is defined by:

(Def. 13) 1 ¬ nWS g and nWS g + 1 ¬ len g and g(nWS g) = S-min L̃(g).

The functor nES g yields a natural number and is defined as follows:

(Def. 14) 1 ¬ nES g and nES g + 1 ¬ len g and g(nES g) = S-max L̃(g).

The functor nWN g yielding a natural number is defined by:

(Def. 15) 1 ¬ nWN g and nWN g + 1 ¬ len g and g(nWN g) = N-min L̃(g).

The functor nEN g yielding a natural number is defined by:

(Def. 16) 1 ¬ nEN g and nEN g + 1 ¬ len g and g(nEN g) = N-max L̃(g).
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Next we state four propositions:

(49) nWN h 6= nWS h.

(50) nSW h 6= nSE h.

(51) nEN h 6= nES h.

(52) nNW h 6= nNE h.
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