The Product of the Families of the Groups

Artur Korniłowicz University of Białystok

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{GROUP}_{-7}.$

The terminology and notation used here are introduced in the following articles: [6], [1], [4], [2], [3], [9], [10], [8], [12], [13], [11], [7], and [5].

1. Preliminaries

In this paper a, b, c, d, e, f are sets. Next we state three propositions:

- (1) If $\langle a \rangle = \langle b \rangle$, then a = b.
- (2) If $\langle a, b \rangle = \langle c, d \rangle$, then a = c and b = d.
- (3) If $\langle a, b, c \rangle = \langle d, e, f \rangle$, then a = d and b = e and c = f.

2. The Product of the Families of the Groups

We use the following convention: i, I denote sets, f, g, h denote functions, and s denotes a many sorted set indexed by I.

Let R be a binary relation. We say that R is semigroup yielding if and only if:

(Def. 1) For every set y such that $y \in \operatorname{rng} R$ holds y is a non empty semigroup.

Let us note that every function which is semigroup yielding is also 1-sorted yielding.

Let I be a set. One can verify that there exists a many sorted set indexed by I which is semigroup yielding.

Let us observe that there exists a function which is semigroup yielding.

C 1998 University of Białystok ISSN 1426-2630

125

Let I be a set. A family of semigroups indexed by I is a semigroup yielding many sorted set indexed by I.

Let I be a non empty set, let F be a family of semigroups indexed by I, and let i be an element of I. Then F(i) is a non empty semigroup.

Let I be a set and let F be a family of semigroups indexed by I. One can verify that the support of F is non-empty.

Let I be a set and let F be a family of semigroups indexed by I. The functor $\prod F$ yielding a strict semigroup is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of $\prod F = \prod$ (the support of F), and

(ii) for all elements f, g of \prod (the support of F) and for every set i such that $i \in I$ there exists a non empty semigroup F_1 and there exists a function h such that $F_1 = F(i)$ and h = (the multiplication of $\prod F$)(f, g) and h(i) = (the multiplication of F_1)(f(i), g(i)).

Let I be a set and let F be a family of semigroups indexed by I. Note that $\prod F$ is non empty.

Let I be a set and let F be a family of semigroups indexed by I. Observe that every element of the carrier of $\prod F$ is function-like and relation-like.

Let I be a set, let F be a family of semigroups indexed by I, and let f, g be elements of \prod (the support of F). Observe that (the multiplication of $\prod F$)(f, g) is function-like and relation-like.

One can prove the following proposition

(4) Let F be a family of semigroups indexed by I, G be a non empty semigroup, p, q be elements of the carrier of $\prod F$, and x, y be elements of the carrier of G. Suppose $i \in I$ and G = F(i) and f = p and g = q and $h = p \cdot q$ and f(i) = x and g(i) = y. Then $x \cdot y = h(i)$.

Let I be a set and let F be a family of semigroups indexed by I. We say that F is group-like if and only if:

(Def. 3) For every set i such that $i \in I$ there exists a group-like non empty semigroup F_1 such that $F_1 = F(i)$.

We say that F is associative if and only if:

(Def. 4) For every set i such that $i \in I$ there exists an associative non empty semigroup F_1 such that $F_1 = F(i)$.

We say that F is commutative if and only if:

(Def. 5) For every set i such that $i \in I$ there exists a commutative non empty semigroup F_1 such that $F_1 = F(i)$.

Let I be a non empty set and let F be a family of semigroups indexed by I. Let us observe that F is group-like if and only if:

(Def. 6) For every element i of I holds F(i) is group-like.

Let us observe that F is associative if and only if:

(Def. 7) For every element i of I holds F(i) is associative.

126

Let us observe that F is commutative if and only if:

(Def. 8) For every element i of I holds F(i) is commutative.

Let I be a set. Note that there exists a family of semigroups indexed by I which is group-like, associative, and commutative.

Let I be a set and let F be a group-like family of semigroups indexed by I. Note that $\prod F$ is group-like.

- Let I be a set and let F be an associative family of semigroups indexed by I. One can check that $\prod F$ is associative.
- Let I be a set and let F be a commutative family of semigroups indexed by I. One can verify that $\prod F$ is commutative.

We now state several propositions:

- (5) Let F be a family of semigroups indexed by I and G be a non empty semigroup. If $i \in I$ and G = F(i) and $\prod F$ is group-like, then G is group-like.
- (6) Let F be a family of semigroups indexed by I and G be a non empty semigroup. If $i \in I$ and G = F(i) and $\prod F$ is associative, then G is associative.
- (7) Let F be a family of semigroups indexed by I and G be a non empty semigroup. If $i \in I$ and G = F(i) and $\prod F$ is commutative, then G is commutative.
- (8) Let F be a group-like family of semigroups indexed by I. Suppose that for every set i such that $i \in I$ there exists a group-like non empty semigroup G such that G = F(i) and $s(i) = 1_G$. Then $s = 1_{\prod F}$.
- (9) Let F be a group-like family of semigroups indexed by I and G be a group-like non empty semigroup. If $i \in I$ and G = F(i) and $f = 1_{\prod F}$, then $f(i) = 1_G$.
- (10) Let F be an associative group-like family of semigroups indexed by I and x be an element of the carrier of $\prod F$. Suppose that
 - (i) x = g, and
- (ii) for every set *i* such that $i \in I$ there exists a group *G* and there exists an element *y* of the carrier of *G* such that G = F(i) and $s(i) = y^{-1}$ and y = g(i).

Then $s = x^{-1}$.

(11) Let F be an associative group-like family of semigroups indexed by I, x be an element of the carrier of $\prod F$, G be a group, and y be an element of the carrier of G. If $i \in I$ and G = F(i) and f = x and $g = x^{-1}$ and f(i) = y, then $g(i) = y^{-1}$.

Let I be a set and let F be an associative group-like family of semigroups indexed by I. The functor sum F yielding a strict subgroup of $\prod F$ is defined by the condition (Def. 9).

ARTUR KORNIŁOWICZ

(Def. 9) Let x be a set. Then $x \in$ the carrier of sum F if and only if there exists an element g of \prod (the support of F) and there exists a finite subset J of I and there exists a many sorted set f indexed by J such that $g = 1_{\prod F}$ and x = g + f and for every set j such that $j \in J$ there exists a group-like non empty semigroup G such that G = F(j) and $f(j) \in$ the carrier of G and $f(j) \neq 1_G$.

Let I be a set, let F be an associative group-like family of semigroups indexed by I, and let f, g be elements of the carrier of sum F. One can check that (the multiplication of sum F)(f, g) is function-like and relation-like.

The following proposition is true

(12) For every finite set I and for every associative group-like family F of semigroups indexed by I holds $\prod F = \text{sum } F$.

3. The Product of One, Two and Three Groups

One can prove the following proposition

(13) For every non empty semigroup G_1 holds $\langle G_1 \rangle$ is a family of semigroups indexed by $\{1\}$.

Let G_1 be a non empty semigroup. Then $\langle G_1 \rangle$ is a family of semigroups indexed by $\{1\}$.

We now state the proposition

(14) For every group-like non empty semigroup G_1 holds $\langle G_1 \rangle$ is a group-like family of semigroups indexed by $\{1\}$.

Let G_1 be a group-like non empty semigroup. Then $\langle G_1 \rangle$ is a group-like family of semigroups indexed by $\{1\}$.

Next we state the proposition

(15) For every associative non empty semigroup G_1 holds $\langle G_1 \rangle$ is an associative family of semigroups indexed by $\{1\}$.

Let G_1 be an associative non empty semigroup. Then $\langle G_1 \rangle$ is an associative family of semigroups indexed by $\{1\}$.

The following proposition is true

(16) For every commutative non empty semigroup G_1 holds $\langle G_1 \rangle$ is a commutative family of semigroups indexed by $\{1\}$.

Let G_1 be a commutative non empty semigroup. Then $\langle G_1 \rangle$ is a commutative family of semigroups indexed by $\{1\}$.

We now state the proposition

(17) For every group G_1 holds $\langle G_1 \rangle$ is a group-like associative family of semigroups indexed by $\{1\}$.

Let G_1 be a group. Then $\langle G_1 \rangle$ is a group-like associative family of semigroups indexed by $\{1\}$.

Next we state the proposition

(18) Let G_1 be a commutative group. Then $\langle G_1 \rangle$ is a commutative group-like associative family of semigroups indexed by $\{1\}$.

Let G_1 be a commutative group. Then $\langle G_1 \rangle$ is a group-like associative commutative family of semigroups indexed by $\{1\}$.

- Let G_1 be a non empty semigroup. Note that every element of \prod the support of $\langle G_1 \rangle$ is finite sequence-like.
- Let G_1 be a non empty semigroup. Note that every element of the carrier of $\prod \langle G_1 \rangle$ is finite sequence-like.
- Let G_1 be a non empty semigroup and let x be an element of the carrier of G_1 . Then $\langle x \rangle$ is an element of $\prod \langle G_1 \rangle$.

One can prove the following proposition

(19) For all non empty semigroups G_1 , G_2 holds $\langle G_1, G_2 \rangle$ is a family of semigroups indexed by $\{1, 2\}$.

Let G_1, G_2 be non empty semigroups. Then $\langle G_1, G_2 \rangle$ is a family of semigroups indexed by $\{1, 2\}$.

One can prove the following proposition

(20) For all group-like non empty semigroups G_1 , G_2 holds $\langle G_1, G_2 \rangle$ is a group-like family of semigroups indexed by $\{1, 2\}$.

Let G_1, G_2 be group-like non empty semigroups. Then $\langle G_1, G_2 \rangle$ is a grouplike family of semigroups indexed by $\{1, 2\}$.

Next we state the proposition

(21) For all associative non empty semigroups G_1 , G_2 holds $\langle G_1, G_2 \rangle$ is an associative family of semigroups indexed by $\{1, 2\}$.

Let G_1, G_2 be associative non empty semigroups. Then $\langle G_1, G_2 \rangle$ is an associative family of semigroups indexed by $\{1, 2\}$.

One can prove the following proposition

(22) For all commutative non empty semigroups G_1 , G_2 holds $\langle G_1, G_2 \rangle$ is a commutative family of semigroups indexed by $\{1, 2\}$.

Let G_1, G_2 be commutative non empty semigroups. Then $\langle G_1, G_2 \rangle$ is a commutative family of semigroups indexed by $\{1, 2\}$.

The following proposition is true

(23) For all groups G_1 , G_2 holds $\langle G_1, G_2 \rangle$ is a group-like associative family of semigroups indexed by $\{1, 2\}$.

Let G_1 , G_2 be groups. Then $\langle G_1, G_2 \rangle$ is a group-like associative family of semigroups indexed by $\{1, 2\}$.

Next we state the proposition

(24) Let G_1, G_2 be commutative groups. Then $\langle G_1, G_2 \rangle$ is a group-like associative commutative family of semigroups indexed by $\{1, 2\}$.

Let G_1, G_2 be commutative groups. Then $\langle G_1, G_2 \rangle$ is a group-like associative commutative family of semigroups indexed by $\{1, 2\}$.

Let G_1 , G_2 be non empty semigroups. Note that every element of \prod the support of $\langle G_1, G_2 \rangle$ is finite sequence-like.

Let G_1, G_2 be non empty semigroups. Note that every element of the carrier of $\prod \langle G_1, G_2 \rangle$ is finite sequence-like.

Let G_1 , G_2 be non empty semigroups, let x be an element of the carrier of G_1 , and let y be an element of the carrier of G_2 . Then $\langle x, y \rangle$ is an element of $\prod \langle G_1, G_2 \rangle$.

One can prove the following proposition

(25) For all non empty semigroups G_1 , G_2 , G_3 holds $\langle G_1, G_2, G_3 \rangle$ is a family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1 , G_2 , G_3 be non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is a family of semigroups indexed by $\{1, 2, 3\}$.

Next we state the proposition

(26) For all group-like non empty semigroups G_1 , G_2 , G_3 holds $\langle G_1, G_2, G_3 \rangle$ is a group-like family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1, G_2, G_3 be group-like non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is a group-like family of semigroups indexed by $\{1, 2, 3\}$.

Next we state the proposition

(27) Let G_1, G_2, G_3 be associative non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is an associative family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1 , G_2 , G_3 be associative non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is an associative family of semigroups indexed by $\{1, 2, 3\}$.

One can prove the following proposition

(28) Let G_1 , G_2 , G_3 be commutative non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is a commutative family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1 , G_2 , G_3 be commutative non empty semigroups. Then $\langle G_1, G_2, G_3 \rangle$ is a commutative family of semigroups indexed by $\{1, 2, 3\}$.

Next we state the proposition

(29) For all groups G_1 , G_2 , G_3 holds $\langle G_1, G_2, G_3 \rangle$ is a group-like associative family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1 , G_2 , G_3 be groups. Then $\langle G_1, G_2, G_3 \rangle$ is a group-like associative family of semigroups indexed by $\{1, 2, 3\}$.

One can prove the following proposition

(30) Let G_1, G_2, G_3 be commutative groups. Then $\langle G_1, G_2, G_3 \rangle$ is a group-like associative commutative family of semigroups indexed by $\{1, 2, 3\}$.

130

Let G_1, G_2, G_3 be commutative groups. Then $\langle G_1, G_2, G_3 \rangle$ is a group-like associative commutative family of semigroups indexed by $\{1, 2, 3\}$.

Let G_1 , G_2 , G_3 be non empty semigroups. Observe that every element of \prod the support of $\langle G_1, G_2, G_3 \rangle$ is finite sequence-like.

Let G_1 , G_2 , G_3 be non empty semigroups. Note that every element of the carrier of $\prod \langle G_1, G_2, G_3 \rangle$ is finite sequence-like.

Let G_1 , G_2 , G_3 be non empty semigroups, let x be an element of the carrier of G_1 , let y be an element of the carrier of G_2 , and let z be an element of the carrier of G_3 . Then $\langle x, y, z \rangle$ is an element of $\prod \langle G_1, G_2, G_3 \rangle$.

For simplicity, we adopt the following rules: G_1 , G_2 , G_3 denote non empty semigroups, x_1 , x_2 denote elements of the carrier of G_1 , y_1 , y_2 denote elements of the carrier of G_2 , and z_1 , z_2 denote elements of the carrier of G_3 .

One can prove the following propositions:

$$(31) \quad \langle x_1 \rangle \cdot \langle x_2 \rangle = \langle x_1 \cdot x_2 \rangle.$$

$$(32) \quad \langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = \langle x_1 \cdot x_2, y_1 \cdot y_2 \rangle.$$

 $(33) \quad \langle x_1, y_1, z_1 \rangle \cdot \langle x_2, y_2, z_2 \rangle = \langle x_1 \cdot x_2, y_1 \cdot y_2, z_1 \cdot z_2 \rangle.$

In the sequel G_1 , G_2 , G_3 denote group-like non empty semigroups. We now state three propositions:

- $(34) \quad 1_{\prod \langle G_1 \rangle} = \langle 1_{(G_1)} \rangle.$
- (35) $1_{\prod \langle G_1, G_2 \rangle} = \langle 1_{(G_1)}, 1_{(G_2)} \rangle.$
- (36) $1_{\prod \langle G_1, G_2, G_3 \rangle} = \langle 1_{(G_1)}, 1_{(G_2)}, 1_{(G_3)} \rangle.$

For simplicity, we adopt the following rules: G_1 , G_2 , G_3 are groups, x is an element of the carrier of G_1 , y is an element of the carrier of G_2 , and z is an element of the carrier of G_3 .

The following propositions are true:

- (37) $(\langle x \rangle$ qua element of the carrier of $\prod \langle G_1 \rangle)^{-1} = \langle x^{-1} \rangle$.
- (38) $(\langle x, y \rangle$ qua element of the carrier of $\prod \langle G_1, G_2 \rangle)^{-1} = \langle x^{-1}, y^{-1} \rangle$.
- (39) $(\langle x, y, z \rangle$ qua element of the carrier of $\prod \langle G_1, G_2, G_3 \rangle)^{-1} = \langle x^{-1}, y^{-1}, z^{-1} \rangle$.
- (40) Let f be a function from the carrier of G_1 into the carrier of $\prod \langle G_1 \rangle$. Suppose that for every element x of the carrier of G_1 holds $f(x) = \langle x \rangle$. Then f is a homomorphism from G_1 to $\prod \langle G_1 \rangle$.
- (41) Let f be a homomorphism from G_1 to $\prod \langle G_1 \rangle$. Suppose that for every element x of the carrier of G_1 holds $f(x) = \langle x \rangle$. Then f is an isomorphism.
- (42) G_1 and $\prod \langle G_1 \rangle$ are isomorphic.

References

 Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

ARTUR KORNIŁOWICZ

- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [6] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [8] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [10] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Formalized Mathematics*, 2(4):573–578, 1991.
- [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received June 10, 1998