First-countable, Sequential, and Frechet Spaces

Bartłomiej Skorulski University of Białystok

Summary. This article contains a definition of three classes of topological spaces: first-countable, Frechet, and sequential. Next there are some facts about them, that every first-countable space is Frechet and every Frechet space is sequential. Next section constains a formalized construction of topological space which is Frechet but not first-countable. This article is based on [9, pp. 73–81].

MML Identifier: FRECHET.

The notation and terminology used here are introduced in the following papers: [19], [2], [15], [4], [5], [6], [11], [1], [13], [3], [12], [14], [10], [20], [21], [18], [16], [8], [7], and [17].

1. Preliminaries

One can prove the following proposition

(1) For every non empty 1-sorted structure T and for every sequence S of T holds rng S is a subset of T.

Let T be a non empty 1-sorted structure and let S be a sequence of T. Then rng S is a subset of T.

The following propositions are true:

- (2) Let T_1 be a non empty 1-sorted structure, T_2 be a 1-sorted structure, and S be a sequence of T_1 . If rng $S \subseteq$ the carrier of T_2 , then S is a sequence of T_2 .
- (3) For every non empty topological space T and for every point x of T and for every basis B of x holds $B \neq \emptyset$.

C 1998 University of Białystok ISSN 1426-2630

BARTŁOMIEJ SKORULSKI

Let T be a non empty topological space and let x be a point of T. Note that every basis of x is non empty.

We now state a number of propositions:

- (4) For every topological space T and for all subsets A, B of T such that A is open and B is closed holds $A \setminus B$ is open.
- (5) Let T be a topological structure. Suppose that
- (i) \emptyset_T is closed,
- (ii) Ω_T is closed,
- (iii) for all subsets A, B of T such that A is closed and B is closed holds $A \cup B$ is closed, and
- (iv) for every family F of subsets of T such that F is closed holds $\bigcap F$ is closed.

Then T is a topological space.

- (6) Let T be a topological space, S be a non empty topological structure, and f be a map from T into S. Suppose that for every subset A of S holds A is closed iff f⁻¹(A) is closed. Then S is a topological space.
- (7) Let x be a point of the metric space of real numbers and x', r be real numbers. If x' = x and r > 0, then Ball(x, r) =]x' r, x' + r[.
- (8) Let A be a subset of \mathbb{R}^1 . Then A is open if and only if for every real number x such that $x \in A$ there exists a real number r such that r > 0 and $]x r, x + r[\subseteq A$.
- (9) For every sequence S of \mathbb{R}^1 such that for every natural number n holds $S(n) \in [n \frac{1}{4}, n + \frac{1}{4}[$ holds rng S is closed.
- (10) For every subset B of \mathbb{R}^1 such that $B = \mathbb{N}$ holds B is closed.
- (11) Let M be a metric space, x be a point of M_{top} , and x' be a point of M. Suppose x = x'. Then there exists a basis B of x such that
 - (i) $B = \{ \text{Ball}(x', \frac{1}{n}); n \text{ ranges over natural numbers: } n \neq 0 \},$
- (ii) B is countable, and
- (iii) there exists a function f from \mathbb{N} into B such that for every set n such that $n \in \mathbb{N}$ there exists a natural number n' such that n = n' and $f(n) = \text{Ball}(x', \frac{1}{n'+1})$.
- (12) For all functions f, g holds $\operatorname{rng}(f + g) = f^{\circ}(\operatorname{dom} f \setminus \operatorname{dom} g) \cup \operatorname{rng} g$.
- (13) For all sets A, B such that $B \subseteq A$ holds $(\mathrm{id}_A)^\circ B = B$.
- (14) For all sets B, x holds dom $(B \mapsto x) = B$.
- (15) For all sets A, B, x holds dom(id_A+ $\cdot(B \mapsto x)$) = A \cup B.
- (16) For all sets A, B, x such that $B \neq \emptyset$ holds $\operatorname{rng}(\operatorname{id}_A + (B \longmapsto x)) = (A \setminus B) \cup \{x\}.$
- (17) For all sets A, B, C, x such that $C \subseteq A$ holds $(\operatorname{id}_A + (B \longmapsto x))^{-1}(C \setminus \{x\}) = C \setminus B \setminus \{x\}.$
- (18) For all sets A, B, x such that $x \notin A$ holds $(\operatorname{id}_A + (B \longmapsto x))^{-1}(\{x\}) = B$.

80

- (19) For all sets A, B, C, x such that $C \subseteq A$ and $x \notin A$ holds $(\mathrm{id}_A + \cdot (B \mapsto x))^{-1}(C \cup \{x\}) = C \cup B$.
- (20) For all sets A, B, C, x such that $C \subseteq A$ and $x \notin A$ holds $(id_A + (B \mapsto x))^{-1}(C \setminus \{x\}) = C \setminus B$.

2. FIRST-COUNTABLE, SEQUENTIAL, AND FRECHET SPACES

Let T be a non empty topological structure. We say that T is first-countable if and only if:

- (Def. 1) For every point x of T holds there exists a basis of x which is countable. The following two propositions are true:
 - (21) For every metric space M holds M_{top} is first-countable.
 - (22) \mathbb{R}^1 is first-countable.

Let us note that \mathbb{R}^1 is first-countable.

Let T be a topological structure, let S be a sequence of T, and let x be a point of T. We say that S is convergent to x if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let U_1 be a subset of T. Suppose U_1 is open and $x \in U_1$. Then there exists a natural number n such that for every natural number m such that $n \leq m$ holds $S(m) \in U_1$.

The following proposition is true

(23) Let T be a non empty topological structure, x be a point of T, and S be a sequence of T. If $S = \mathbb{N} \mapsto x$, then S is convergent to x.

Let T be a topological structure and let S be a sequence of T. We say that S is convergent if and only if:

(Def. 3) There exists a point x of T such that S is convergent to x.

Let T be a non empty topological structure and let S be a sequence of T. The functor $\lim S$ yields a subset of T and is defined as follows:

(Def. 4) For every point x of T holds $x \in \text{Lim } S$ iff S is convergent to x.

Let T be a non empty topological structure. We say that T is Frechet if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let A be a subset of T and x be a point of T. If $x \in \overline{A}$, then there exists a sequence S of T such that $\operatorname{rng} S \subseteq A$ and $x \in \operatorname{Lim} S$.

Let T be a non empty topological structure. We say that T is sequential if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let A be a subset of T. Then A is closed if and only if for every sequence S of T such that S is convergent and rng $S \subseteq A$ holds $\lim S \subseteq A$. The following proposition is true (24) For every non empty topological space T such that T is first-countable holds T is Frechet.

Let us observe that every non empty topological space which is first-countable is also Frechet.

We now state four propositions:

- (25) \mathbb{R}^1 is Frechet.
- (26) Let T be a non empty topological space and A be a subset of T. Suppose A is closed. Let S be a sequence of T. If S is convergent and $\operatorname{rng} S \subseteq A$, then $\operatorname{Lim} S \subseteq A$.
- (27) Let T be a non empty topological space. Suppose that for every subset A of T such that for every sequence S of T such that S is convergent and rng $S \subseteq A$ holds $\text{Lim } S \subseteq A$ holds A is closed. Then T is sequential.
- (28) For every non empty topological space T such that T is Frechet holds T is sequential.

Let us mention that every non empty topological space which is Frechet is also sequential.

Next we state the proposition

(29) \mathbb{R}^1 is sequential.

3. Counterexample of Frechet but Not First-countable Space

The strict non empty topological space $\mathbb{R}^1_{\mathbb{N}}$ is defined by the conditions (Def. 7).

(Def. 7)(i) The carrier of $\mathbb{R}^1_{/\mathbb{N}} = (\mathbb{R} \setminus \mathbb{N}) \cup \{\mathbb{R}\}$, and

(ii) there exists a map f from \mathbb{R}^1 into $\mathbb{R}^1_{/\mathbb{N}}$ such that $f = \mathrm{id}_{\mathbb{R}} + \cdot (\mathbb{N} \longmapsto \mathbb{R})$ and for every subset A of $\mathbb{R}^1_{/\mathbb{N}}$ holds A is closed iff $f^{-1}(A)$ is closed.

We now state several propositions:

- (30) \mathbb{R} is a point of $\mathbb{R}^1_{/\mathbb{N}}$.
- (31) Let A be a subset of $\mathbb{R}^1_{\mathbb{N}}$. Then A is open and $\mathbb{R} \in A$ if and only if there exists a subset O of \mathbb{R}^1 such that O is open and $\mathbb{N} \subseteq O$ and $A = (O \setminus \mathbb{N}) \cup \{\mathbb{R}\}.$
- (32) For every set A holds A is a subset of $\mathbb{R}^1_{\mathbb{N}}$ and $\mathbb{R} \notin A$ iff A is a subset of \mathbb{R}^1 and $\mathbb{N} \cap A = \emptyset$.
- (33) Let A be a subset of \mathbb{R}^1 and B be a subset of $\mathbb{R}^1_{\mathbb{N}}$. If A = B, then $\mathbb{N} \cap A = \emptyset$ and A is open iff $\mathbb{R} \notin B$ and B is open.
- (34) For every subset A of $\mathbb{R}^1_{\mathbb{N}}$ such that $A = \{\mathbb{R}\}$ holds A is closed.

82

- (35) $\mathbb{R}^1_{\mathbb{N}}$ is not first-countable.
- (36) $\mathbb{R}^1_{\mathbb{N}}$ is Frechet.
- (37) It is not true that for every non empty topological space T such that T is Frechet holds T is first-countable.

4. Auxiliary Theorems

Next we state three propositions:

- (38) $\frac{1}{4} > 0$ and $\frac{1}{4} < \frac{1}{2}$.
- (39) For every real number r there exists a natural number n such that r < n.
- (40) For every real number r such that r > 0 there exists a natural number n such that $\frac{1}{n} < r$ and $n \neq 0$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65–69, 1991.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN -Polish Scientific Publishers, Warsaw, 1977.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [17] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294, 1997.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

BARTŁOMIEJ SKORULSKI

- [19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
 [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):17-20, 1000
- 1(1):73-83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 13, 1998

84