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Summary. This article is concerned with Euler’s theorem and small Fer-
mat’s theorem that play important roles in public-key cryptograms. In the first

section, we present some selected theorems on integers. In the following section,

we remake definitions about the finite sequence of natural, the function of na-

tural times finite sequence of natural and π of the finite sequence of natural.

We also prove some basic theorems that concern these redefinitions. Next, we

define the function of modulus for finite sequence of natural and some funda-

mental theorems about this function are proved. Finally, Euler’s theorem and

small Fermat’s theorem are proved.

MML Identifier: EULER 2.

The articles [6], [3], [2], [11], [10], [9], [1], [8], [4], [12], [5], and [7] provide the

terminology and notation for this paper.

1. Preliminary

We use the following convention: a, b, m, n, k, l, i, j, n1, n2, n3 are natural

numbers, t is an integer, and f , F are finite sequences of elements of N.

We now state a number of propositions:

(1) a and b qua integer are relative prime iff a and b are relative prime.
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(2) If m > 1 and m · t ­ 1, then t ­ 1.

(3) If m > 1 and m · t ­ 0, then t ­ 0.

(4) If m 6= 0, then nmodm = (n qua integer) modm.

(5) Suppose a 6= 0 and b 6= 0 and m 6= 0 and a and m are relative prime and

b and m are relative prime. Then m and a · bmodm are relative prime.

(6) Suppose m > 1 and b 6= 0 and m and n are relative prime and a and m

are relative prime and n = a · bmodm. Then m and b are relative prime.

(7) For every n such that n 6= 0 holds mmod nmod n = mmod n.

(8) For every n such that n 6= 0 holds (l + m)mod n = ((lmod n) + (mmod

n))mod n.

(9) For every n such that n 6= 0 holds l ·mmod n = l · (mmod n)mod n.

(10) For every n such that n 6= 0 holds l ·mmod n = (lmod n) ·mmod n.

(11) For every n such that n 6= 0 holds l·mmodn = (lmodn)·(mmodn)modn.

2. Finite Sequence of Naturals

We now state two propositions:

(12) For every finite sequence f of elements of N such that n 6= 0 and n ¬ m

holds (f↾m)(n) = f(n).

(13) For every finite sequence f of elements of N such that n ¬ m holds

f↾m↾n = f↾n.

Let us consider a, f . Then a · f is a finite sequence of elements of N.

One can prove the following propositions:

(14) For every finite sequence f of elements of N and for every natural number

r holds
∏

(f a 〈r〉) =
∏

f · r.

(15) For all finite sequences f1, f2 of elements of N holds
∏

(f1
a f2) =

∏
f1 ·∏

f2.

(16)
∏

(εN) = 1.

(17)
∏
〈a〉 = a.

(18)
∏

(〈a〉 a F ) = a ·
∏

F.

(19)
∏
〈n1, n2〉 = n1 · n2.

(20)
∏
〈n1, n2, n3〉 = n1 · n2 · n3.

(21)
∏

(i 7→ (1 qua real number)) = 1.

(22)
∏

((i + j) 7→ m) =
∏

(i 7→ m) ·
∏

(j 7→ m).

(23)
∏

((i · j) 7→ m) =
∏

(j 7→
∏

(i 7→ m)).

(24)
∏

(i 7→ (n1 · n2)) =
∏

(i 7→ n1) ·
∏

(i 7→ n2).
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(25) For all finite sequences R1, R2 of elements of N such that R1 and R2 are

fiberwise equipotent holds
∏

R1 =
∏

R2.

3. Modulus for Finite Sequence of Naturals

Let f be a finite sequence of elements of N and let m be a natural number.

The functor f modm yielding a finite sequence of elements of N is defined by:

(Def. 1) len(fmodm) = len f and for every natural number i such that i ∈ dom f

holds (f modm)(i) = f(i)modm.

We now state several propositions:

(26) For every finite sequence f of elements of N such that m 6= 0 holds
∏

(f modm)modm =
∏

f modm.

(27) If a 6= 0 and m > 1 and n 6= 0 and a · nmodm = nmodm and m and n

are relative prime, then amodm = 1.

(28) For every F such that m 6= 0 holds F modmmodm = F modm.

(29) For every F such that m 6= 0 holds a · (F modm)modm = a ·F modm.

(30) For all finite sequences F , G of elements of N such that m 6= 0 holds

F a Gmodm = (F modm) a (Gmodm).

(31) For all finite sequences F , G of elements of N such that m 6= 0 holds

a · (F a G)modm = (a · F modm) a (a ·Gmodm).

Let us consider n, k. Then nk

N
is a natural number.

We now state the proposition

(32) If a 6= 0 and m 6= 0 and a and m are relative prime, then for every b

holds ab

N
and m are relative prime.

4. Euler’s Theorem and Small Fermat’s Theorem

The following propositions are true:

(33) If a 6= 0 and m > 1 and a and m are relative prime, then (aEulerm
N

)mod

m = 1.

(34) If a 6= 0 and m is prime and a and m are relative prime, then (am

N
)mod

m = amodm.
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